
DITA2Go User’s Guide
For DITA2Go Version 1.2, Update 4

May 15, 2013
Omni Systems, Inc.

Overview

Lists
§ Contents. .1
§ Figures. .11
§ Tables. .13

How to set up and use DITA2Go
§ About this guide. .17
§1 Getting started with DITA2Go. .25
§2 Converting DITA documents. .39
§3 Editing configuration files. .49
§4 Setting basic conversion options .67
§5 Modifying output appearance .79
§6 Mapping elements to output formats. .87
§7 Configuring output formats. .109
§8 Configuring format components .141
§9 Specifying conditional processing. .161
§10 Including content by reference .175
§11 Defining element sets and properties. .179
§12 Creating and deploying user variables. .185
§13 Processing related and associative links .189
§14 Generating lists and indexes .197

Configuring print RTF output
§15 Converting to print RTF. .219

Configuring on-line Help output
§16 Producing on-line Help .243
§17 Generating WinHelp .281
§18 Generating Microsoft HTML Help .313
§19 Generating OmniHelp .353
§20 Generating JavaHelp or Oracle Help. .385
§21 Generating Eclipse Help .413

Configuring HTML/XML output
§22 Converting to HTML/XHTML .429
§23 Converting to generic XML. .449
§24 Converting to DITA XML. .455
§25 Configuring DITA maps .493
§26 Converting to DocBook XML. .499
§27 Splitting and extracting files .523

§28 Creating HTML links. 545
§29 Providing navigation in HTML . 555
§30 Mapping text formats to HTML/XML. 565
§31 Setting up CSS for HTML . 591
§32 Including graphics in HTML . 611
§33 Converting tables to HTML. 625

Web Accessibility Initiative
§34 Generating WAI markup for HTML . 649
§35 Identifying HTML table structure for WAI . 657
§36 Marking HTML table cells for WAI. 667

Advanced topics
§37 Working with macros. 679
§38 Working with processing instructions . 717
§39 Working with templates . 727
§40 Working with graphics. 745
§41 Working with content models. 753
§42 Overriding configuration settings. 765

Project workflow
§43 Automating DITA2Go conversions . 777
§44 Producing deliverable results. 787
§45 Converting via DCL. 809
§46 Creating a map with DITA2Map . 815

Reference
§A Technical support for DITA2Go . 819
§B Element type default properties. 825
§C Content model configuration. 833
§ Subject index . 873

ALL RIGHTS RESERVED. MAY 19, 2013 1

Contents

Figures 11

Tables 13

About this guide 17

1 Getting started with DITA2Go 25
1.1 What you need to know .25

1.2 What you need to have .27

1.3 What you need to do. .28

1.4 How to update DITA2Go .36

1.5 How DITA2Go works .37

1.6 How to start and stop DITA2Go .38

1.7 How to work with DITA2Go .38

1.8 How to uninstall DITA2Go .38

2 Converting DITA documents 39
2.1 Creating a DITA2Go conversion project. .39

2.2 Modifying a DITA2Go conversion project .40

2.3 Configuring default DITA2Go project settings. .40

2.4 Inspecting and editing configuration files .44

2.5 Running a DITA2Go conversion. .44

2.6 Customizing the DITA2Go Project Manager .45

2.7 Converting documents from the command line .46

3 Editing configuration files 49
3.1 Working with DITA2Go configuration files .49

3.2 Editing files with the Configuration Manager .49

3.3 Understanding where project settings come from .61

3.4 Understanding the rules for configuration settings .62

3.5 Specifying file paths in configuration settings .64

3.6 Using wildcards in configuration settings .65

3.7 Commenting out configuration sections. .66

3.8 Ending a configuration file. .66

4 Setting basic conversion options 67
4.1 Specifying operating settings .67

4.2 Logging conversion events. .74

4.3 Identifying files and elements .76

4.4 Processing graphics .77

5 Modifying output appearance 79
5.1 Understanding where to modify formats .79

5.2 Understanding how to modify formats. .80

DITA2GO USER’S GUIDE

2 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

5.3 Changing how the output looks . 80

5.4 Determining how an element is rendered . 83

6 Mapping elements to output formats 87
6.1 Understanding how to assign formats. 87

6.2 Specifying options for naming formats. 87

6.3 Mapping outputclass attribute values to formats . 89

6.4 Mapping element paths to output formats . 91

6.5 Mapping element attributes to output formats . 95

6.6 Specifying formats for cross references . 101

6.7 Specifying formats for footnotes . 102

6.8 Specifying options for figures. 102

6.9 Specifying formats and options for tables . 103

6.10 Specifying options for special lists . 104

6.11 Specifying options for draft comments. 105

6.12 Specifying options for maps . 105

6.13 Deciding where to display title and shortdesc . 107

7 Configuring output formats 109
7.1 Understanding the purpose of output formats. 109

7.2 Working with format configuration files . 110

7.3 Creating aliases to existing format names . 112

7.4 Understanding how to define output formats . 114

7.5 Understanding text output formats . 119

7.6 Configuring text output formats . 121

7.7 Configuring table output formats . 129

7.8 Configuring page layouts for RTF output. 134

7.9 Inserting line, column, and page breaks in output . 138

8 Configuring format components 141
8.1 Managing format components . 141

8.2 Defining border format components. 144

8.3 Defining shading format components. 145

8.4 Overriding border and shading properties . 145

8.5 Configuring output numbering properties . 146

8.6 Configuring run-in headings for text formats . 153

8.7 Defining cross-reference output formats . 155

8.8 Configuring trademark formats. 157

8.9 Localizing output headings, labels, and names. 157

9 Specifying conditional processing 161
9.1 Extracting conditions from ditaval files . 161

9.2 Defining conditional actions . 162

9.3 Including flags for ditaval conditions . 165

9.4 Configuring conditional flags . 166

 CONTENTS

ALL RIGHTS RESERVED. MAY 19, 2013 3

9.5 Assigning attributes with conditional flags .169

9.6 Scoping and filtering within maps .169

10 Including content by reference 175
10.1 Pushing and pulling content by reference .175

10.2 Referencing external code or text fragments .176

11 Defining element sets and properties 179
11.1 Defining sets of elements .179

11.2 Specifying properties of element types .179

12 Creating and deploying user variables 185
12.1 Understanding how DITA2Go user variables work .185

12.2 Assigning variable names to element paths .186

12.3 Including user variables in DITA2Go macros. .186

12.4 Deploying user variables in template macros. .187

13 Processing related and associative links 189
13.1 Understanding how DITA2Go treats reltables .189

13.2 Generating and including related links. .189

13.3 Appending links to topics. .190

13.4 Including descriptions with related links .191

13.5 Generating associative links for Help output .192

13.6 Formatting links in output .192

13.7 Changing link path for peer related links .196

14 Generating lists and indexes 197
14.1 Understanding how DITA2Go produces lists .197

14.2 Naming generated HTML list and index files .198

14.3 Generating a table of contents .198

14.4 Generating a list of figures .201

14.5 Generating a list of tables. .202

14.6 Treating figure titles as table titles .203

14.7 Producing a glossary .203

14.8 Producing an index. .206

14.9 Configuring variant booklist components .213

15 Converting to print RTF 219
15.1 Setting up a print RTF project .219

15.2 Adjusting output for different versions of Word .224

15.3 Converting paragraph and character formats .225

15.4 Modifying text appearance. .227

15.5 Converting cross references and hypertext links .229

15.6 Converting tables to print RTF. .232

15.7 Managing graphics for print RTF. .234

15.8 Including RTF code for Word output. .238

DITA2GO USER’S GUIDE

4 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

15.9 Turning on revision tracking in Word . 239

15.10 Managing Word output after conversion . 239

15.11 Converting to OpenOffice or StarOffice. 241

16 Producing on-line Help 243
16.1 Weighing Help-system alternatives . 243

16.2 Completing Help system construction . 247

16.3 Producing contents and index for Help systems. 248

16.4 Configuring contents entries for Help systems. 250

16.5 Configuring index entries for Help systems . 251

16.6 Providing related-topic links for Help systems. 258

16.7 Jumping to secondary windows in Help systems . 262

16.8 Creating pop-up topics for Help systems . 263

16.9 Including expandable sections in Help topics. 264

16.10 Setting up Context Sensitive Help (CSH). 277

16.11 Setting up a dynamic modular Help system . 280

17 Generating WinHelp 281
17.1 Obtaining tools for WinHelp . 281

17.2 Setting up a WinHelp project . 281

17.3 Converting text . 286

17.4 Converting cross references . 288

17.5 Converting tables to WinHelp RTF . 290

17.6 Managing graphics for WinHelp . 292

17.7 Configuring WinHelp topics. 294

17.8 Creating jumps and pop-ups for WinHelp . 299

17.9 Invoking WinHelp macros . 302

17.10 Creating related-topic links in WinHelp . 303

17.11 Configuring index entries for WinHelp . 305

17.12 Configuring contents for WinHelp . 306

17.13 Creating browse sequences. 310

18 Generating Microsoft HTML Help 313
18.1 Understanding how DITA2Go produces HTML Help 313

18.2 Understanding why Unicode is not the answer. 314

18.3 Setting up an HTML Help project . 315

18.4 Customizing HTML Help display features. 319

18.5 Creating pop-ups for HTML Help . 322

18.6 Creating links and hypertext jumps in HTML Help . 323

18.7 Creating related-topic links for HTML Help . 325

18.8 Using secondary windows in HTML Help . 332

18.9 Generating contents and index for HTML Help . 334

18.10 Providing full-text search (FTS) for HTML Help . 339

18.11 Setting up CSH for HTML Help. 340

 CONTENTS

ALL RIGHTS RESERVED. MAY 19, 2013 5

18.12 Generating HTML Help in non-Western languages 344

18.13 Compiling and testing HTML Help .346

18.14 Mapping and merging CHM files .348

19 Generating OmniHelp 353
19.1 Understanding how OmniHelp works .353

19.2 Setting up OmniHelp viewer control files .354

19.3 Setting up an OmniHelp project. .357

19.4 Using CSS with OmniHelp .361

19.5 Customizing OmniHelp display features .363

19.6 Choosing navigation features for OmniHelp .367

19.7 Configuring contents and index for OmniHelp .367

19.8 Providing related-topic links in OmniHelp .370

19.9 Jumping to secondary windows in OmniHelp .370

19.10 Configuring full-text search for OmniHelp .371

19.11 Setting up CSH for OmniHelp .375

19.12 Merging OmniHelp projects. .377

19.13 Assembling OmniHelp files for viewing .380

19.14 Deploying OmniHelp .381

20 Generating JavaHelp or Oracle Help 385
20.1 Deciding which Java Help system to use .385

20.2 Obtaining tools for a Java-based Help system .385

20.3 Setting up a JavaHelp or Oracle Help project .386

20.4 Generating contents and index .395

20.5 Providing full-text search for JavaHelp / Oracle Help397

20.6 Creating and viewing a Java Archive (JAR) file .400

20.7 Converting a glossary to JavaHelp 2 .401

20.8 Defining windows for JavaHelp or Oracle Help .403

20.9 Linking to destinations within topics .409

20.10 Creating ALinks for Oracle Help .409

20.11 Merging JavaHelp or Oracle Help systems .410

20.12 Setting up CSH for JavaHelp or Oracle Help. .410

21 Generating Eclipse Help 413
21.1 Understanding how Eclipse Help works .413

21.2 Setting up an Eclipse Help project .413

21.3 Configuring Eclipse Help manifest files .416

21.4 Configuring contents and index for Eclipse Help .420

21.5 Configuring search properties for Eclipse Help .423

21.6 Merging Eclipse Help projects .423

21.7 Setting up CSH for Eclipse Help .425

21.8 Packaging Eclipse Help files .427

DITA2GO USER’S GUIDE

6 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

22 Converting to HTML/XHTML 429
22.1 Deciding which type of output to produce . 430

22.2 Setting up an HTML project . 430

22.3 Including starting code and entity references. 432

22.4 Supplying values for the <head> element. 432

22.5 Specifying HTML <body> attributes . 438

22.6 Specifying document-wide properties for HTML . 438

22.7 Defining text colors for HTML. 439

22.8 Importing HTML files as insets . 441

22.9 Providing hover text for links in HTML. 441

22.10 Generating XHTML for Confluence 4.x . 442

22.11 Exporting content for database input . 443

22.12 Specifying a starting topic for HTML or XHTML. 443

22.13 Using framesets. 443

22.14 Passing W3C validation tests . 445

23 Converting to generic XML 449
23.1 Setting up a generic XML project. 449

23.2 Specifying generic XML output settings . 449

23.3 Providing XML tags and structure . 451

23.4 Configuring links for generic XML . 454

24 Converting to DITA XML 455
24.1 Generating DITA XML output from DITA input. 455

24.2 Setting up a DITA XML project. 455

24.3 Specifying general options for DITA . 458

24.4 Configuring DITA elements . 459

24.5 Nesting DITA block elements . 471

24.6 Specifying options for tables in DITA XML . 480

24.7 Specifying options for images in DITA XML . 482

24.8 Configuring DITA topics . 484

24.9 Configuring cross references and links for DITA. 489

24.10 Including CSH targets in DITA XML . 491

24.11 Overriding DITA settings with markers . 491

25 Configuring DITA maps 493
25.1 Configuring ditamaps . 493

25.2 Overriding map settings with PI markers . 498

26 Converting to DocBook XML 499
26.1 Generating DocBook XML with DITA2Go . 499

26.2 Setting up a DocBook XML project . 500

26.3 Specifying general options for DocBook . 502

26.4 Configuring DocBook elements . 504

26.5 Nesting DocBook block elements. 511

 CONTENTS

ALL RIGHTS RESERVED. MAY 19, 2013 7

26.6 Designating ancestors for table elements .519

26.7 Specifying options for figure elements .520

26.8 Overriding DocBook settings with PI markers .521

27 Splitting and extracting files 523
27.1 Splitting and extracting vs. chunking .523

27.2 Chunking DITA maps .523

27.3 Splitting files .526

27.4 Extracting files .528

27.5 Identifying split and extract files .530

27.6 Inserting HTML code in split and extract files .534

27.7 Referencing split and extract files .536

27.8 Customizing and replacing extracts .537

28 Creating HTML links 545
28.1 Understanding sources of links .545

28.2 Specifying link appearance .545

28.3 Specifying link destination. .549

28.4 Creating jumps to particular windows for HTML .550

28.5 Converting DITA cross-reference links to HTML. .551

28.6 Linking to other files and other DITA2Go projects .553

28.7 Linking to external destinations .554

29 Providing navigation in HTML 555
29.1 Understanding how navigation links work. .555

29.2 Generating trails of links .555

29.3 Creating a browse sequence .559

30 Mapping text formats to HTML/XML 565
30.1 Choosing how to map formats .565

30.2 Mapping paragraph formats .566

30.3 Mapping character formats. .569

30.4 Assigning properties to text formats .570

30.5 Mapping special characters .574

30.6 Mapping fonts. .576

30.7 Managing typographic elements for HTML or XML579

30.8 Specifying text colors for HTML. .580

30.9 Configuring preformatted text for HTML/XML .581

30.10 Converting footnotes to HTML or XML .581

30.11 Converting list formats to HTML (deprecated) .584

31 Setting up CSS for HTML 591
31.1 Deciding whether to use CSS. .591

31.2 Understanding how to use CSS .591

31.3 Understanding how DITA2Go generates CSS .592

31.4 Specifying CSS file and link options .593

DITA2GO USER’S GUIDE

8 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

31.5 Understanding how CSS affects other options . 596

31.6 Linking to alternate CSS files . 597

31.7 Assigning CSS classes . 599

31.8 Customizing CSS properties . 606

32 Including graphics in HTML 611
32.1 Locating graphics files for HTML . 611

32.2 Specifying options for HTML graphics . 612

32.3 Omitting graphics from HTML output . 613

32.4 Selecting and modifying graphics. 613

32.5 Positioning graphics in HTML output . 617

32.6 Specifying HTML image attributes . 619

32.7 Providing (or omitting) alternate text for images . 620

32.8 Scaling images for HTML . 620

32.9 Creating image maps for HTML. 622

32.10 Supplying a background image or watermark . 624

33 Converting tables to HTML 625
33.1 Assigning properties to tables. 625

33.2 Defining sets of tables. 626

33.3 Specifying table structure . 627

33.4 Specifying table attributes. 632

33.5 Positioning tables, table titles, and table footnotes . 640

33.6 Using macros to control table properties . 642

33.7 Converting tables to paragraphs . 647

34 Generating WAI markup for HTML 649
34.1 Comparing DITA2Go markup methods for WAI . 649

34.2 Applying WAI markup to images. 650

34.3 Applying WAI markup to links . 651

34.4 Applying WAI markup to tables. 652

35 Identifying HTML table structure for WAI 657
35.1 Identifying table rows and columns . 657

35.2 Associating table cells with header cells . 660

36 Marking HTML table cells for WAI 667
36.1 Understanding table cell settings . 667

36.2 Using the scope method to identify table cells . 667

36.3 Using the id/headers method to identify table cells . 669

36.4 Overriding default table-cell settings . 675

36.5 Using ColGroup and RowGroup cells . 676

37 Working with macros 679
37.1 Defining and invoking macros . 679

37.2 Accessing DITA2Go macro libraries. 684

 CONTENTS

ALL RIGHTS RESERVED. MAY 19, 2013 9

37.3 Using macro variables .687

37.4 Using multiple-value list variables. .695

37.5 Accessing settings with configuration macros .699

37.6 Using expressions in macros .700

37.7 Passing a parameter to a macro .709

37.8 Debugging macros .709

37.9 Deploying macros and macro variables .710

37.10 Using macros to fine-tune HTML or XML output. .713

38 Working with processing instructions 717
38.1 Understanding DITA2Go PI markers .717

38.2 Understanding effects of PI markers .718

38.3 Adding attributes with PI markers .721

38.4 Assigning properties to PI marker types .723

38.5 Inserting code with PI markers. .724

39 Working with templates 727
39.1 Working with configuration templates. .727

39.2 Referencing configuration files and templates. .731

39.3 Including document-specific configuration files .732

39.4 Deciding which configuration file to edit. .734

39.5 Creating your own configuration templates .741

40 Working with graphics 745
40.1 Choosing an appropriate graphics format .745

40.2 Replacing and relocating graphics files .746

40.3 Specifying custom settings for individual graphics .752

41 Working with content models 753
41.1 Understanding DITA2Go content models. .753

41.2 Modifying or replacing a content model .753

41.3 Preparing a content model for use with DITA2Go .755

41.4 Understanding content-model configurations .756

41.5 Understanding how DITA2Go uses content models .759

41.6 Inspecting and correcting element types .760

41.7 Specializing or modifying DITA topic types .761

41.8 Extracting content-model debug information. .764

42 Overriding configuration settings 765
42.1 Using a different configuration for selected files. .765

42.2 Overriding settings with PI markers or macros .766

42.3 Overriding configuration settings with text .776

43 Automating DITA2Go conversions 777
43.1 Executing operating-system commands. .777

43.2 Converting autonumbers for database systems .780

DITA2GO USER’S GUIDE

10 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

43.3 Renaming output files for automated systems . 781

44 Producing deliverable results 787
44.1 Understanding DITA2Go pre- and post-processing. 787

44.2 Activating and logging production of deliverables. 788

44.3 Understanding path values for deliverables . 788

44.4 Clearing out old files before converting . 789

44.5 Gathering additional files before converting . 791

44.6 Assembling files for distribution . 792

44.7 Placing graphics files for distribution . 796

44.8 Placing CSS or XSL files for assembly . 800

44.9 Gathering files for an HTML project: an example . 801

44.10 Gathering and processing Help-system files. 802

44.11 Archiving deliverables . 803

44.12 Placing deliverables in a shipping directory. 806

44.13 Postprocessing separately from converting . 807

45 Converting via DCL 809
45.1 How the DCL filter works . 809

45.2 Using the DCL filter . 809

45.3 DCL command-line syntax . 810

45.4 Specifying output file paths and names . 812

45.5 About DCL technology. 813

46 Creating a map with DITA2Map 815
46.1 Understanding how DITA2Map works . 815

46.2 Setting up a DITA2Map project . 815

46.3 Specifying DITA2Map configuration options. 815

46.4 Running DITA2Map . 817

A Technical support for DITA2Go 819

B Element type default properties 825

C Content model configuration 833

RTF keyword index 837

HTML/XML keyword index 849

Subject index 873

ALL RIGHTS RESERVED. MAY 19, 2013 11

Figures

Figure 18-1 HTML Help Workshop Project tab .320

Figure 18-2 HTML Help Workshop Window Types. .321

Figure 22-1 RGB color 0099CC .440

Figure 36-1 Extent of row and column groups. .672

Figure 36-2 Extent of column and row spans. .673

Figure 36-3 Extent of column and row IDs .675

DITA2GO USER’S GUIDE

12 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 13

Tables

Table 0-1 DITA2Go User’s Guide formats and archives. .17

Table 2-1 Configuration Wizard output-specific settings .42

Table 3-1: Absolute vs. relative file-path settings .65

Table 4-1 Output types, file extensions, project configuration files 71

Table 4-2: Topics included in output based on PrintProject setting.72

Table 7-1 Valid suffixes for names of formats and format components114

Table 7-2 Inline properties for text formats .123

Table 7-3 Block properties for output paragraph formats .124

Table 7-4 Border properties for paragraph formats .128

Table 7-5 Table output format properties. .130

Table 7-6 Format properties of table rows .132

Table 7-7 Format properties of table cells .133

Table 7-8 RTF output section properties .135

Table 8-1 Properties of border format components .144

Table 8-2 Properties of number streams. .147

Table 8-3 Properties of number format components .148

Table 8-4 Building blocks for run-in heading formats. .154

Table 8-5 Building blocks for cross-reference formats .155

Table 8-6 Default cross-reference format names and definitions 157

Table 9-1 Text properties for flags. .166

Table 10-1 DITA2Go support for push and pull conrefs .175

Table 11-1 Element type properties .181

Table 13-1 Default treatment of related links by link source and type 189

Table 14-1: Default file name suffixes for generated files.198

Table 15-1 RTF differences between Word 7/95 and later versions224

Table 15-2 Effects of cross-reference settings in Word .230

Table 15-3 Graphics scale percentages for Word versions 236

Table 16-1 Index link options for KeywordRefs in HTML-based Help255

Table 16-2 Effects of drop-down format properties. .267

Table 17-1 Starting and following format properties for topics and hotspots295

Table 17-2 Effects of format properties on topics and hotspots 296

Table 18-1 ALink and KLink jump properties for HTML Help327

Table 18-2 Binary TOC/Index advantages and disadvantages for HTML Help . . .336

Table 18-3 Rationale for HHW settings by CHM role .351

Table 18-4 HTML Help Workshop settings for stand-alone vs. merged CHMs . . .352

Table 19-1 OmniHelp viewer control files included in the distribution 356

Table 19-2 OmniHelp data and control files generated by DITA2Go 357

Table 19-3 OmniHelp navigation features .367

Table 19-4 OmniHelp viewer files copied from OHViewPath to WrapPath.380

Table 20-1 [JavaHelpOptions] pop-up and secondary window properties 405

DITA2GO USER’S GUIDE

14 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Table 20-2 [JavaHelp window name] window-access object properties. 406

Table 20-3 Oracle Help for Java window properties . 408

Table 21-1: Eclipse Help properties in either MANIFEST.MF or plugin.xml. . . . 416

Table 22-1 Ways to express Web-safe RGB color values 441

Table 22-2 Default options for Confluence 4.x XHTML. 442

Table 22-3 Characters replaced or removed for W3C validation 446

Table 24-1 Precedence of DITA topic type assignment methods. 486

Table 24-2 Predefined marker types for DITA XML. 492

Table 25-1 DITA map navigation elements from PI markers 498

Table 25-2 Predefined PI marker types for DITA maps and bookmaps. 498

Table 26-1 Predefined PI marker types for DocBook . 521

Table 27-1 Precedence of HTML page titles . 531

Table 27-2 Extract code insertion methods . 535

Table 27-3 Basic macro-insertion keywords and locations 535

Table 27-4 Keyword prefixes for split or extract code insertion 535

Table 27-5 Code insertion keywords for split and extract files 536

Table 27-6 Predefined macro variables for splits and extracts 537

Table 27-7 Predefined PI marker types for extracts. 537

Table 27-8 Predefined macro variables for extract replacement code 539

Table 29-1 Default destination and label values for browse macros 560

Table 29-2 Component macro variables for browse macros 560

Table 29-3 Scope of [NavigationMacros] keywords . 563

Table 29-4 Default values of text-link browse keywords. 563

Table 29-5 Default values of button browse keywords . 564

Table 30-1 HTML properties for paragraph and character formats 571

Table 30-2 Special characters to replace for HTML/XML output 575

Table 31-1 Default CSS file options when [HtmlOptions]Stylesheet is used 596

Table 31-2 CSS-dependent default values of options. 597

Table 33-1 Precedence of table and cell property assignment methods 626

Table 33-2 Browser-dependent HTML tags for tables . 628

Table 33-3 Default counts of table header rows/columns and footer rows 631

Table 35-1 Format properties for WAI table-cell attributes 662

Table 35-2 Using paragraph formats to identify table cells (example) 664

Table 36-1 WAI scope attributes for table cells . 667

Table 36-2 WAI id/header table cell attributes. 670

Table 36-3 ColGroup property effects . 677

Table 36-4 RowGroup property effects . 677

Table 37-1 Predefined macros for HTML output . 683

Table 37-2 Predefined macros for RTF output . 684

Table 37-3 Dita2Go macro libraries . 684

Table 37-4 Character literals for macro variables. 689

Table 37-5 Predefined macro variables . 691

Table 37-6 Operators for HTML macro expressions . 701

ALL RIGHTS RESERVED. MAY 19, 2013 15

Table 37-7 Format components for displaying expression results.703

Table 37-8 Predefined control-structure elements .704

Table 37-9 String operators in macro expressions .707

Table 37-10 Macro code placement properties .712

Table 38-1 PI marker types with predefined effects .719

Table 38-2 Elements to which attribute PI markers apply, by output type 722

Table 38-3 Effects of [MarkerTypes] properties .723

Table 39-1 Output-type-specific general configuration files728

Table 39-2 Configuration options determined at run time.733

Table 39-3 Intended scope of settings by configuration type 735

Table 39-4 Chain of general configuration files for HTML Help output 736

Table 39-5 Output types and starting project configuration files.737

Table 39-6 Editable local output-specific configuration files 738

Table 39-7 Output types and format configuration files .739

Table 39-8 Language configuration files .740

Table 39-9 Macro configuration files. .741

Table 40-1 RTF replacement graphics file mappings and locations 749

Table 41-1 Configuration files for DITA2Go built-in content models754

Table 42-1 Precedence of settings in configuration files and templates 766

Table 42-2 Fixed-key configuration sections subject to overrides.770

Table 42-3 Text configuration sections subject to overrides772

Table 42-4 Cross-reference sections subject to overrides .773

Table 42-5 HTML table sections subject to overrides .774

Table 42-6 HTML graphic sections subject to overrides .775

Table 44-1 Default files copied from project directory to wrap directory794

Table 44-2 Files copied by default to the wrap directory. .795

Table 44-3 Default graphics files copied for assembly .797

Table 44-4 Automation settings activated by CompileHelp or FTSCommand803

Table 44-5 Default base file name for deliverables archive.806

Table 45-1 DCL intermediate input and output options. .812

Table A-1 Examples of build numbers for DITA2Go DLL files 820

Table B-1 Default properties assigned to elements .825

DITA2GO USER’S GUIDE

16 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 17

About this guide

The DITA2Go User’s Guide describes how to install and use Omni Systems DITA2Go
version 1.2 software and configuration files, to convert DITA documents to any of several
output types. This guide assumes you are familiar with DITA, and also with the output
type to which you are converting DITA files. DITA2Go supports the DITA 1.2
specification.

In this section:
§ Availability on page 17
§ New information on page 17
§ Colophon on page 22

Availability
The DITA2Go User’s Guide is available in the formats listed in Table 0-1. All editions
except the PDF edition are produced with DITA2Go .

You can download any of these archives from Omni Systems:
http://www.dita2go.com

Extract the files from their archive before you try to view them.

New information
The DITA2Go User’s Guide is a perpetual work-in-progress, largely unreviewed.This
section identifies substantive additions and corrections since prior editions. Corrections
are shown in red.

May 15, 2013 version 1.2, update 4

Editing configuration files:

 • Edit settings with the DITA2Go Configuration Manager. New tool, accessible
from the Project Manager; see §3.2 Editing files with the Configuration Manager on
page 49.

Table 0-1 DITA2Go User’s Guide formats and archives

Format Archive Starting file Comments*

Eclipse Help UGDITA2Go_EH4.zip Not applicable Requires Eclipse platform or infocenter

HTML UGDITA2Go_HTM4.zip _ugdita2go.htm Requires JavaScript to enable CSS

HTML Help UGDITA2Go_HH4.zip ugdita2go.chm Must be registered for network use

JavaHelp 2 UGDITA2Go_JH4.zip ugdita2go.jar Requires Java Runtime Environment

OmniHelp UGDITA2Go_OH4.zip _ugdita2go.htm Requires browser and JavaScript

Oracle Help UGDITA2Go_OHJ4.zip ugdita2go.hs Requires Java Virtual Machine

PDF UGDITA2Go_PDF4.zip ugdita2go.pdf Designed for duplex printing

Word 2007 UGDITA2Go_RTF4.zip ugdita2go.rtf Includes active cross references and hypertext links

XHTML UGDITA2Go_XH4.zip _ugdita2go.htm Requires JavaScript for CSS; some browsers ignore

*See § Colophon on page 22 for additional information.

http://www.dita2go.com

NEW INFORMATION DITA2GO USER’S GUIDE

18 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • Use relative path settings with care! Relativity of some path settings has changed,
notably those listed in Table 3-1; see §3.5 Specifying file paths in configuration
settings on page 64.

Setting basic conversion options:

 • One setting for output file extension. Use [Setup]FileSuffix for all output
types; see §4.1.6 Checking output type and file extension on page 70. Though still
recognized, the following are deprecated in favor of [Setup]FileSuffix , which
overrides them in any event:

WordperfectSuffix
WordSuffix
XMLSuffix
HTMLSuffix

 • Turn off warnings about undefined formats. New setting
ShowUndefinedFormats , on by default; see §4.2 Logging conversion events on
page 74.

Configuring output formats:

 • Format names require valid suffixes. Not just a convention any more; see §7.4
Understanding how to define output formats on page 114.

Configuring format components:

 • Stream numbers have changed for figures, tables, and equations. If you number
figures, tables, or equations, and you use other than the default subformat definitions
supplied in system configuration files, you must change your subformat definitions so
that figures use stream number 8, tables use stream number 9, and equations use
stream number 10; see §8.5.2 Defining number streams on page 147.

Generating lists and indexes:

 • You get lists, like it or not, as per DITA spec. DITA2Go is required to output
whatever booklist components are present in your bookmap; see §14.1 Understanding
how DITA2Go produces lists on page 197.

 • Generate and configure a glossary. New settings GenerateGLS , GLSFile ,
GLSSuffix , GLSTitle , GLSFormat , GlossaryItem , GLSTitleFormat ,
GLSXrefFormat , ResetAbbrevAt , UseAbbrevInTitles ; see §14.7 Producing a
glossary on page 203.

 • Specify IDXTitle in a language configuration file (correction). This setting
belongs in section [IndexText] , not in [Index] ; see §14.8.1 Specifying output
formats for the index on page 207.

 • RTF indexes now have active links. DITA2Go uses a new method that does not
involve creating the Word INDEX field. The following settings, which have no
reasonable equivalents in the new system, are deprecated: IndexStyle ,
IndexLeader , and IndexColumns ; see §14.8.4 Configuring index references on
page 209.

 • Override default formats for index entries and references. New sections
IndexEntryFormats and IndexRefParaFormats ; see §14.8.2 Overriding
formats for index entries and references on page 207.

 • Configure see and see-also entries for variant indexes. New [IndexSeeText]
settings SeeStartListIndex and SeeAlsoStartListIndex , new
[IndexSeeFormats] settings IndexSeeListStart and
IndexSeeAlsoListStart ; see §14.8.3 Configuring see and see-also index entries
on page 208.

 • Configure index references. New settings UseCompactForm , FullIndexRanges ,
IndexRefSep , and IndexRangeSep ; see §14.8.4 Configuring index references on
page 209.

 ABOUT THIS GUIDE NEW INFORMATION

ALL RIGHTS RESERVED. MAY 19, 2013 19

 • Configure index alphabetic headings and links. New settings
IndexLettersFormat and IndexTopLettersFormat ; see §14.8.5 Including
heading letters in the index on page 210.

 • Toss [HTMLOptions]UseIndex . This setting is no longer needed for a non-Help
HTML index, which will be built if you include <indexlist> in your map; see
§14.8.6 Configuring index features for HTML output on page 211.

 • Generate multiple variants of the same booklist type. New sections
[BookLists] , [*BList] , [*BLItems] , [*BLForms] , [*BLRefForms] ,
[IndexClasses] , [IndexLists] ; see §14.9 Configuring variant booklist
components on page 213.

 • Provide outputclass via PI for indexterms. If your bookmap contains more than one
indexlist; see§14.9.5 Mapping indexterms to variant indexes on page 217.

Producing on-line Help:

 • Use <data /> elements for CSH targets. Additional support for context-sensitive
help; see §16.10.2 Specifying CSH mappings on page 278.

Generating Microsoft HTML Help:

 • Specify binary TOC or index for HTML Help . Newly documented settings
BinaryTOC and BinaryIndex ; see §18.9.2 Choosing whether to generate binary
contents or index on page 335.

 • Generate a CSH map file. New settings MakeCshMapFile , CshMapFileNumStart ,
and CshMapFileNumIncrement ; see §18.11.3 Specifying and generating a map file
for CSH links on page 342.

Generating OmniHelp:

 • Make compound terms searchable in OmniHelp. Newly documented setting
CompoundWordChars ; see §19.10.3 Making compound terms searchable on
page 372.

Converting to DITA XML:

 • Wrap anchored images in <fig> as an exception. Newly documented HTML
format property Figure ; see §24.7.2 Specifying what to include in a <fig> wrapper
on page 483.

 • Keep selected topics out of the TOC. New PI marker type DITANoTOC ; see §24.8.6
Omitting a DITA topic from the TOC on page 489.

 • CSH targets via TopicAlias markers are included by default. New setting
UseTopicAlias ; see §24.10 Including CSH targets in DITA XML on page 491.

Creating HTML links:

 • Tell DITA2Go to leave link text case alone. Although its internal default value is No,
MakeFileHrefsLower is set to Yes in system file d2htm_config.ini , which is
referenced for every HTML output type. If you want DITA2Go to leave case alone in
hypertext links, you must explicitly set MakeFileHrefsLower to No in a project or
local configuration file; see §28.2.6 Forcing link text to lowercase on page 549.

Mapping text formats to HTML/XML:

 • Assign HTML tags in new configuration sections. [ParaTags] and [CharTags]
replace [ParaStyles] and [CharStyles] , respectively; see:

§30.2.1 Assigning HTML tags and attributes to paragraph formats on page 566
§30.3 Mapping character formats on page 569

 • Distinguish paragraph (block) from character (inline) format properties. New
sections [HTMLParaStyles] and [HTMLCharStyles] supersede [HTMLStyles] ,
which is still honored; see §30.4 Assigning properties to text formats on page 570.

 • Exclude size attribute from font tags. Newly documented setting UseFontSize ;
see §30.6.4 Excluding face and size attributes from font tags on page 578.

NEW INFORMATION DITA2GO USER’S GUIDE

20 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Including graphics in HTML:

 • Indent images without using CSS. Only if CSS is not an option; see §32.5.2
Indenting images (deprecated) on page 617.

Converting tables to HTML:

 • Indent tables without using CSS. Only if CSS is not an option; see §33.5.1 Indenting
tables (deprecated) on page 641.

Working with macros:

 • Distinguish between paragraph and character code inclusions. New sections:

The old sections are deprecated, but still honored; see §37.9.3 Surrounding or
replacing text with code or macros on page 711.

Working with processing instructions:

 • Replace PI marker content with code. New section [MarkerTypeCodeReplace] ;
see §38.5 Inserting code with PI markers on page 724.

August 21, 2012 update 03

Generating Microsoft HTML Help:

 • Exclude selected topics from FTS for HTML Help. An inelegant hack via @search
or new PI marker Search ; see §18.10 Providing full-text search (FTS) for HTML Help
on page 339.

Converting to HTML/XHTML:

 • Prevent adjacent HTML <pre> elements from merging. New setting MergePre ;
see §22.6.4 Preventing adjacent <pre> elements from merging on page 439.

Setting up CSS for HTML:

 • Omit element tags from CSS selectors. New setting SelectorIncludesTag ; see
§31.7.9 Omitting tags from CSS selectors on page 605.

Converting tables to HTML:

 • HTML table rows are now wrapped in groups by default . Reversed setting
HeadFootBodyTags ; see §33.3.2.4 Wrapping table row groups on page 629.

May 1, 2012, version 4.0, update 54

Editing configuration files:

 • Override, or produce the effect of, the @print attribute . New setting
PrintProject , new PI marker Print ; see §4.1.7 Producing print output selectively
on page 71.

 • Pop up current log file if conversion errors occur. New settings EditorFileName
and HistoryFileName ; see §4.2 Logging conversion events on page 74.

Mapping elements to output formats:

 • Ignore outputclass attributes for border and shading properties. New setting
OutputclassHasBorderShadeFormats ; see §6.2 Specifying options for naming
formats on page 87.

Old section New for paragraph formats New for character formats
[StyleCodeAfter] [ParaStyleCodeAfter] [CharStyleCodeA fter]

[StyleCodeBefore] [ParaStyleCodeBefore] [CharStyleCod eBefore]

[StyleCodeEnd] [ParaStyleCodeEnd] [CharStyleCodeEnd]

[StyleCodeReplace] [ParaStyleCodeReplace] [CharStyleC odeReplace]

[StyleCodeStart] [ParaStyleCodeStart] [CharStyleCodeS tart]

 ABOUT THIS GUIDE NEW INFORMATION

ALL RIGHTS RESERVED. MAY 19, 2013 21

 • Specify a default heading for <note> elements. The DITA2Go default is no
heading; see §6.5.8 Understanding default attribute-based prefixes and headings on
page 100.

 • Designate a table row as a table footer row on output. New setting
TableFooterClass ; see §6.9 Specifying formats and options for tables on
page 103.

 • Give draft comments special formats; see §6.11 Specifying options for draft
comments on page 105.

Configuring format components:

 • Include page numbers, text, and spaces in cross-reference formats. Previously
undocumented building blocks; see Table 8-5 on page 155.

Specifying conditional processing:

 • Limit the scope of keydefs to named map branches. New settings
UseBranchKeydefs and KeydefsOnlyWithinBranch ; see §9.6.6 Limiting the
scope of keydefs by branch on page 172.

 • Keyref named map branches. New PI marker type KeyrefBranch ; see §9.6.7
Directing a key reference to the correct branch on page 173.

Including content by reference:

 • Push to more places than specified for DITA 1.2. New push actions pushatstart
and pushatend ; see §10.1 Pushing and pulling content by reference on page 175.

 • Include external code snippets. New PI marker types ExtCode* , plus support for
RFC 5147 fragment identifiers; see §10.2 Referencing external code or text fragments
on page 176.

Defining element sets and properties:

 • Assign element type properties to class attributes. Not just to element names; see:
 – §11.2.3 Assigning properties to element types on page 183
 – §B Element type default properties on page 825.

 • New element type properties: CascadeSet , CascadeItem , Draft , Abbrev ,
NoLevel , NoNumber, Task , BookTitle , PList , PLEntry , PLTerm, PLDef ,
Navtitle , Reference , Glossary , and Trademark ; see:
 – §11.2.2 Understanding what properties are available on page 180
 – §B Element type default properties on page 825

Generating lists and indexes:

 • Specify different suffixes for the base names of generated files. New settings
TOCSuffix , LOFSuffix , LOTSuffix , and IDXSuffix ; see §14.2 Naming
generated HTML list and index files on page 198.

 • Get navigation titles into the TOC. And set defaults to use if attributes are missing.
New settings TopicheadsHaveNavtitles , LockAllNavtitles , UseAllInTOC ;
see §14.3 Generating a table of contents on page 198.

Converting to print RTF:

 • Produce .doc or .docx files via Word macro. See §15.10.1 Supporting more than
one version of Word on page 239.

Producing on-line Help:

 • Choose plain or modified topic titles for TOC entries. New setting
UseNavtitleMarkers ; see §16.4.2 Including contents entries in HTML-based Help
on page 250.

 • Produce index meta elements for Microsoft Help Viewer. New setting
UseHVIndex ; see §16.5.2 Preparing index entries for Microsoft Help Viewer on
page 252.

COLOPHON DITA2GO USER’S GUIDE

22 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Generating Microsoft HTML Help:

 • Omit code-page mapping for uncompiled HTML Help. New setting
UseCodePage ; see §18.3.5 Deciding whether to compile HTML Help on page 317.

 • Generate Asian or Cyrillic HTML Help . New code-page DLLs; see §18.12
Generating HTML Help in non-Western languages on page 344.

 • Fixed spaces become ideographs for Japanese HTML Help . Or you can map them
to something else; see §18.12 Generating HTML Help in non-Western languages on
page 344.

 • Exclude content from full-text search. If no @search attributes in your topicrefs,
use new PI marker Search ; see §19.10.7 Excluding content from being searched on
page 374.

Converting to HTML/XHTML:

 • For ePub, XHTML output can provide input to Calibre. See §22.1 Deciding
which type of output to produce on page 430.

 • For HTML 5 output, set DOCTYPE as appropriate. See §22.4.1 Specifying
HTML/XML version, DOCTYPE, and DTD on page 432.

 • Generate XHTML for Confluence 4.x. New settings Confluence ,
ConfluenceLinks , and ConfluenceLink* ; see §22.10 Generating XHTML for
Confluence 4.x on page 442.

 • Change the View Output starting topic for HTML/XHTML . New setting
ViewOutputFile ; see §22.12 Specifying a starting topic for HTML or XHTML on
page 443.

Splitting and extracting files:

 • Insert space or a separator between HTML topics in a single output file. New
[Inserts] keyword TopicBreak ; see:

§27.6.2 Assigning code to [Inserts] keywords for splits and extracts on page 535
§37.9.2 Invoking macros at predetermined points in output on page 710.

Setting up CSS for HTML:

 • Replace spaces in CSS class names with hyphens or underscores. Instead of only
alphanumerics as a value for ClassSpaceChar ; see §31.7.1 Understanding CSS
class name restrictions on page 600.

Including graphics in HTML:

 • Omit empty alt attribute values from HTML output . New setting
AllowEmptyAlt ; see §32.7 Providing (or omitting) alternate text for images on
page 620.

Converting tables to HTML:

Automating DITA2Go conversions:

 • Execute system commands before and after conversion. New automation
keywords SystemStartCommand , SystemWrapCommand, SystemEndCommand;
see §43.1 Executing operating-system commands on page 777.

Producing deliverable results:

 • Gather referenced graphics files for distribution. New setting
CopyOriginalGraphics ; see §44.7.1 Copying referenced graphics to a distribution
directory on page 796.

Colophon
PDF edition The PDF edition of the DITA2Go User’s Guide is:

 ABOUT THIS GUIDE COLOPHON

ALL RIGHTS RESERVED. MAY 19, 2013 23

 • intended for duplex printing (using both sides of the paper).
 • sized to fit either US Letter or A4 size paper.

HTML edition The OmniHelp edition of the DITA2Go User’s Guide has been tested with the following
browsers:

 • Internet Explorer 9.x
 • Mozilla Firefox 16.x
 • Opera 12.x
 • Google Chrome 26.x

Source files The DITA2Go User’s Guide is an unstructured FrameMaker version 8.0 document,
converted to DITA XML using Mif2Go , and from DITA XML to all output formats
(except PDF) using DITA2Go . The FrameMaker source files in UGDITA2Go_frm4.zip
include path information and the configuration files used to generate DITA XML, as well
as those used to generate all other outputs from DITA XML. You can download this
archive from Omni Systems:

http://www.dita2go.com

The DITA XML source files, in d2gug_demo.zip , are also available for download. Log
in and go to Download > User’s Guide .

(5/19/13 13:14:00)

http://www.dita2go.com

COLOPHON DITA2GO USER’S GUIDE

24 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 25

1 Getting started with DITA2Go

This section tells you how to install DITA2Go , and how to update DITA2Go . Topics
include:

§1.1 What you need to know on page 25
§1.2 What you need to have on page 27
§1.3 What you need to do on page 28
§1.4 How to update DITA2Go on page 36
§1.5 How DITA2Go works on page 37
§1.6 How to start and stop DITA2Go on page 38
§1.7 How to work with DITA2Go on page 38
§1.8 How to uninstall DITA2Go on page 38

1.1 What you need to know
To use DITA2Go effectively, it is best if all the following apply:

 • You are intimately acquainted with the structure of your DITA document.
 • You understand the output type to which you are converting your document.
 • You have a good idea which DITA elements you want to map to which output

features.

In this section:
§1.1.1 How DITA2Go is organized on page 25
§1.1.2 File, directory, and path names on page 26
§1.1.3 Output types you can specify on page 26
§1.1.4 Languages and character sets on page 27

1.1.1 How DITA2Go is organized

DITA2Go is organized around the idea of formats, which are packages of presentational
content, just as elements are packages of semantic content.

To convert your DITA source to an HTML or RTF representation, DITA2Go provides the
means to perform two primary tasks:

 • Map DITA elements to output formats.
 • Define presentational properties of those output formats.

DITA2Go also carries out a number of output-type-dependent secondary tasks, such as
constructing Help file infrastructure.

For each element in your DITA document, DITA2Go considers the element and its
context, then maps the content to an appropriate output style. You can change the
mapping, add exceptions, and revise the styles.

To map DITA elements to output formats, DITA2Go relies on both rules and instance
mark-up. Rules come from settings in configuration files; instance mark-up is in the DITA
files themselves, either as @outputclass values or as processing instructions (PIs).

To define format presentation, DITA2Go uses rules based on settings in format
configuration files that include output formats for text and tables, and also for headers and
footers and page layout formats for RTF output. Your DITA2Go distribution comes with a

WHAT YOU NEED TO KNOW DITA2GO USER’S GUIDE

26 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

set of predefined output formats. You can override the definitions of these formats, and
define additional formats of your own. DITA2Go provides a way to specify presentation
that works for both HTML and RTF output, which are radically different output types. The
method is based mainly on CSS, but using configuration-file syntax, with extensions to
support native CSS and RTF as needed. This approach incorporates the notion of “based”
formats, as in Word, so that entire branches can be adjusted with just one setting.

For output-type-dependent transformations, the rules are in chains of output-type-specific
configuration files; for a particular document, the rules are in DITA-source-specific
configuration files. Configuration inheritance simplifies common styling across a set of
projects, using a single-source set of formats.

1.1.2 File, directory, and path names

This section describes naming conventions that apply to all the resources in your
conversion project.

No spaces or
punctuation in file

or path names

Files referenced by your DITA document, or by configuration settings, should have names
and paths that conform to the following guidelines:

 • Preferably no spaces in file or path names.
 • Only alphanumeric characters in file or path names (even underscores can cause

problems on some systems).
 • Maximum 256 characters in a file name, 1,024 characters in a path name (Windows

limits).
 • At most one period in a file or path name.

DITA2Go is not
the problem!

Although DITA2Go supports file and path names that include underscores and spaces, the
output type you choose, or the target operating system where your output will be
deployed, might not. For example, Microsoft acknowledges a known defect in HTML
Help when you use underscores in file names. Some flavors of UNIX do not like
underscores, either. In the interest of compatibility, we advise against file names that are
not strictly alphanumeric.

Single period
followed by

extension

Use only one period in a path or file name, followed by the correct extension for the type
of file. Many Windows programs break because this tiny character is misused. It is best
not to challenge the easily confused software on your computer.

1.1.3 Output types you can specify

Choose from the following output types:

Print RTF DITA2Go handles styles, tables, and graphics. See §15 Converting to print RTF on
page 219 for more information.

WinHelp RTF You can configure and generate WinHelp RTF with DITA2Go ; and if you have access to
Help Workshop (unfortunately no longer available from Microsoft) you can compile
WinHelp files that need no further tweaking. DITA2Go produces all the files you need,
including a TOC, an Index, and a Help project file. See:

§17 Generating WinHelp on page 281.

RTF / WinHelp HTML / XML HTML-based Help Other formats
Word 7/95 Standard HTML MS HTML Help ASCII DCL
Word 8/97+ XHTML Eclipse Help PDF

WinHelp 4/95 Generic XML JavaHelp
DITA XML Oracle Help for Java
DocBook XML OmniHelp

1 GETTING STARTED WITH DITA2GO WHAT YOU NEED TO HAVE

ALL RIGHTS RESERVED. MAY 19, 2013 27

HTML-based
Help

You can use DITA2Go to configure and generate several flavors of HTML-based Help.
DITA2Go produces all the files you need, typically including TOC, Index, and a Help
project file. For the two Java formats, DITA2Go prepares the map file; for HTML Help,
the aliases file. See:

§18 Generating Microsoft HTML Help on page 313
§19 Generating OmniHelp on page 353
§20 Generating JavaHelp or Oracle Help on page 385
§21 Generating Eclipse Help on page 413.

HTML and XML DITA2Go can produce HTML 4.01, XHTML 1.0, and XML 1.0 files from your DITA
document, and also create Cascading Style Sheets. You can include arbitrary JavaScript
anywhere in HTML output. You can produce ePub input from DITA2Go XHTML output.
See:

§22 Converting to HTML/XHTML on page 429
§23 Converting to generic XML on page 449.

DITA and
DocBook

DITA2Go can produce DITA XML and DocBook XML from DITA documents. See:
§24 Converting to DITA XML on page 455
§26 Converting to DocBook XML on page 499.

PDF DITA2Go produces PDF output indirectly, through a Word macro; once you have that in
place, you can generate PDF output with one click. See:

§15.1.5 Producing PDF automatically via Word on page 222

Intermediate
format

You can run a DITA2Go conversion in two stages, stopping the first part of the process
when DCL files have been created. You can use the intermediate files for other purposes,
or modify them and then run DITA2Go again to continue the conversion.

1.1.4 Languages and character sets

In addition to Western languages, DITA2Go supports Russian, Greek, and Central/Eastern
European languages. For HTML/XML outputs DITA2Go supports all languages, via
Unicode (UTF-8). For RTF outputs, DITA2Go supports only single-byte languages,
although it is possible to produce decent Japanese RTF for Word.

DITA2Go does not currently support non-Unicode double-byte languages, nor right-to-
left languages such as Hebrew and Arabic. However, if you use DITA2Go to produce
Microsoft HTML Help, you can specify Japanese, Chinese, or Korean output, via Asian
code pages that you must download separately; see §1.2 What you need to have on
page 27.

1.2 What you need to have
To use DITA2Go your computer system should be equipped as follows:

 • Windows: 2000, XP, Vista, or 7
 • Intel-compatible Pentium-level processor
 • 1+ GB memory recommended

In addition to DITA2Go , you will need at least some of the following software:
XML editor
Text editor
File comparison tool (optional)
Archiving tool

WHAT YOU NEED TO DO DITA2GO USER’S GUIDE

28 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Ancillary tools for Help output.

XML editor You can integrate DITA2Go with <oXygen/>, using external commands. See §1.3.11
Integrate DITA2Go with <oXygen/> (optional) on page 36. However, you might find it
more efficient to use the DITA2Go Project Manager; see §2.5 Running a DITA2Go
conversion on page 44.

Text editor To work with configuration files you will need a text editor, such as Notepad, that uses
ANSI or UTF-8 encoding; do not use UTF-16.

File comparison
tool (optional)

If you modify any of the local configuration files provided with your DITA2Go
distribution, you might find it helpful to have a file comparison tool such as WinMerge;
see §1.3.9 Obtain a file comparison tool (optional) on page 35.

Archiving tool To have DITA2Go automatically archive the output from your conversion projects for
safe storage or for distribution, you will need an archiving program that can be run from a
Windows command line, such as WinZip (via wzzip) or PKZip.

Ancillary tools for
Help output

If you intend to generate on-line Help, you will need one or more of the following tools;
see §1.3.6 Obtain tools for Help systems or eBooks on page 32:

To produce Asian code-page output, such as for HTML Help in Japanese, you will also
need two enormous ICU DLLs: icudt40.dll (13MB) and icuuc40.dll (1MB). These
DLLs are available in archive icu401.zip (6 MB), which you can download from the
Omni Systems Web site. These DLLs are not needed for RTF output.

1.3 What you need to do
Follow the instructions in this section the first time you install a version of DITA2Go . To
update DITA2Go , see §1.4 How to update DITA2Go on page 36.

In this section:
§1.3.1 Set up a framework for Omni Systems applications on page 29
§1.3.2 Download a DITA2Go distribution on page 30
§1.3.3 Install DITA2Go on page 30
§1.3.4 Make Omni Systems executables accessible on page 31
§1.3.5 Check your DITA2Go installation on page 32
§1.3.6 Obtain tools for Help systems or eBooks on page 32
§1.3.7 Establish system-wide configuration settings on page 33
§1.3.8 Locate document-specific settings on page 35
§1.3.9 Obtain a file comparison tool (optional) on page 35
§1.3.10 Download the DITA2Go User’s Guide (optional) on page 36
§1.3.11 Integrate DITA2Go with <oXygen/> (optional) on page 36

WinHelp Microsoft Help Workshop (no longer available) and viewer

HTML Help Microsoft HTML Help Workshop

JavaHelp Java Runtime Environment (JRE) and JavaHelp software

Oracle Help for Java Oracle Help for Java Developer’s Kit 2.0

Eclipse Help Java Runtime Environment (JRE), Eclipse Platform

1 GETTING STARTED WITH DITA2GO WHAT YOU NEED TO DO

ALL RIGHTS RESERVED. MAY 19, 2013 29

1.3.1 Set up a framework for Omni Systems applicat ions

If this is the first Omni Systems application to be installed on your system, you must
establish a new directory structure for executables, configuration templates, and ancillary
files. You must:

Create an Omni Systems home directory
Create an Omni Systems environment variable
Verify that your new framework is accessible.

Create an Omni
Systems home

directory

Unless you already have the Omni Systems directory structure in place, create a new
directory on your system for all Omni Systems applications; for example, D:\omsys . This
is your Omni Systems home directory.

Do not place the Omni Systems home directory:

 • on a network drive; latency issues can cause intermittent problems
 • on any path that contains spaces.

See §A.1.4 Check path names, file names, and drive location on page 820.

Create an Omni
Systems

environment
variable

Unless your system already has system environment variable %OMSYSHOME% that specifies
an absolute path to the Omni Systems home directory, you will need to create this variable.

1. In Control Panel (on Windows XP, for example):
Control Panel > System > Advanced > Environment Var iables

2. If OMSYSHOME is not listed in the System variables section, click New to create this
environment variable. For example:

Click OK.

3. Under System variables select Path and click Edit . You should see something like:

4. Place your cursor in the Variable value field and press the End key on your keyboard,
to navigate to the end of the Path value.

5. If the last character in the Path value is a semicolon, very carefully add the following
to the end of the Path value:

%omsyshome%\common\bin;

Otherwise, if the last character in the Path value is not a semicolon, very carefully
add the following to the end of the Path value:

;%omsyshome%\common\bin

Be sure to include the leading semicolon!

6. Click OK three times to save the environment variable definition and revised system
path, and return to Control Panel. Now DITA2Go will be able to find all the Omni
Systems files.

Verify that your
new framework is

accessible

Reboot your Windows system. Then open a command-prompt window, type dcl , and
press Enter . You should see a usage message for dcl.exe . If you see a “not found”
message instead, something is wrong.

Next: §1.3.2 Download a DITA2Go distribution on page 30.

Variable name: OMSYSHOME

Variable value: D:\omsys

Variable name: Path

Variable value: C:\a\long\string;C:\of\directory\paths;

WHAT YOU NEED TO DO DITA2GO USER’S GUIDE

30 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

1.3.2 Download a DITA2Go distribution

Register (or log in) at:
http://www.dita2go.com

and go to one of the Download pages.

Download one of the following, depending on what Omni Systems software is already
present on your system:

Next: §1.3.3 Install DITA2Go on page 30.

1.3.3 Install DITA2Go

Before you begin:

 • If you do not yet have an Omni Systems home directory on your system, first §1.3.1
Set up a framework for Omni Systems applications on page 29.

 • If you already have DITA2Go on your system, skip this section and instead §1.4.1
Update your DITA2Go installation on page 37.

Why no installer? Omni Systems does not provide an installer for DITA2Go . This is for transparency; you
know DITA2Go does not “call home”, make changes to the Windows Registry, put files
where your company policy does not permit them, nor alter any other files on your system.
Information-system technicians can see exactly what will happen, and adjust the
instructions as needed to comply with company policy.

In this section:
§1.3.3.1 Extract files from the DITA2Go distribution archive on page 30
§1.3.3.2 Finish installing DITA2Go on page 31

1.3.3.1 Extract files from the DITA2Go distributio n archive

To install DITA2Go for the first time, place DITA2Go distribution d2g_full_ 4.zip in
your Omni Systems home directory and extract all files, allowing the extraction process to
create subdirectories.

Check extraction If your unzip or uncompress utility puts the extracted files in a directory named after the
distribution archive, move them up one level so they are directly under the Omni Systems
home directory (see §1.3.1 Set up a framework for Omni Systems applications on
page 29).

For example, executables should be here:
%OMSYSHOME%\common\bin

not here:
%OMSYSHOME%\d2g_full_4\common\bin

Check directory
structure

You should have a directory structure that looks like this:

%OMSYSHOME%
|
|--common
| |--bin
| |--local
| +--system

Already on your system: What to download:
DITA2Go , any version d2g_update_4.zip

Mif2Go version 4.0 or later, but not DITA2Go d2g_addon_4.zip

Neither DITA2Go nor Mif2Go version 4.0 or later d2g_full_4.zip

http://www.dita2go.com

1 GETTING STARTED WITH DITA2GO WHAT YOU NEED TO DO

ALL RIGHTS RESERVED. MAY 19, 2013 31

|
|--d2g
| |--documents
| |--dtds
| |--local
| |--specializations
| |--system
| |--usersguide
| +--zip
|
+--demo

 +--DITATestSuite

1.3.3.2 Finish installing DITA2Go

To complete the installation:

1. Move the DITA2Go distribution .zip file to subdirectory %OMSYSHOME%\d2g\zip,
where it will be available for future reference.

2. On your desktop, create shortcuts to:
%OMSYSHOME%\common\bin\d2gpm.exe
%OMSYSHOME%\common\bin\d2gcm.exe

This gives you double-click access to the following tools:
DITA2Go Project Manager: create, modify, and run conversion projects
DITA2Go Configuration Manager : edit project settings.

See §2 Converting DITA documents on page 39.

3. In Windows Explorer, navigate to:
%OMSYSHOME%\d2g\usersguide

Right-click ugdita2go.chm , select Properties , and click Unblock . This is a
standard Microsoft “security” measure, used for all CHM files downloaded from the
Internet, or contained in archives downloaded from the Internet.

4. Double-click ugdita2go.chm to register the DITA2Go context-sensitive Help
system with Windows, so DITA2Go can find it.

5. On your desktop, create a shortcut to:
%OMSYSHOME%\d2g\usersguide\ugdita2go.chm

This gives you access to the DITA2Go User’s Guide, HTML Help edition. You can
download other editions from Omni Systems; see Availability on page 17.

Next: §1.3.4 Make Omni Systems executables accessible on page 31.

1.3.4 Make Omni Systems executables accessible

Starting with DITA2Go version 4.0, all Omni Systems executables are located in the
following directory:

%omsyshome%\common\bin

Make sure you add this directory to your system PATH; see §1.3.1 Set up a framework for
Omni Systems applications on page 29.

Old Mif2Go files If you have Mif2Go version 3.3 installed on your system (even the evaluation version), do
the following:

1. Move drmif.dll from your Windows system directory to your new Omni Systems
executables directory, %omsyshome%\common\bin (see § Create an Omni Systems
environment variable on page 29).

WHAT YOU NEED TO DO DITA2GO USER’S GUIDE

32 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

2. Delete from your Windows system directory (\windows\system32 or, for 64-bit
systems, \windows\SysWOW64) the following Mif2Go components, for which there
are new versions that work for both Mif2Go and DITA2Go :

dcl.exe
dwrtf.dll
dwhtm.dll
dwinf.dll
dwinf.dll
libexpat.dll

Note: If you leave the old files in the system directory, Windows will use them
instead of your new DITA2Go executables, and you will wonder why
DITA2Go does not work as expected.

Automated build
systems

If you have been using automated build systems for DITA2Go that rely on finding
executables in the Windows system directory, you have two choices:

 • Change your scripts to access %omsyshome%\common\bin instead; this is the
preferred method.

 • Every time you update DITA2Go, copy all the new executables from
%omsyshome%\common\bin to the Windows system directory.

Next, §1.3.5 Check your DITA2Go installation on page 32.

1.3.5 Check your DITA2Go installation

To make sure everything is set up correctly, try running the DITA Test Suite demonstration
project included with the DITA2Go distribution:

1. Start the DITA2Go Project Manager (if you do not already have a desktop shortcut to
this program, see Step 2 under §1.3.3 Install DITA2Go on page 30).

2. On the Run Project tab, select project DTS Word Demo (for RTF output) or
DTS HTML Demo (for HTML output).

3. Click Start .

If the project produces output and a log file, your installation is fine. If the project
produces an error message, or appears to run instantly without producing a log file, this
means the Project Manager did not find the necessary files.

Next, if you plan to produce on-line Help or ebook formats, §1.3.6 Obtain tools for Help
systems or eBooks on page 32; otherwise, §1.3.7 Establish system-wide configuration
settings on page 33.

1.3.6 Obtain tools for Help systems or eBooks

If you plan to generate any of the Help formats, you will need additional tools to compile
or complete your Help project.

MS HTML Help Tools, including HTML Help Workshop, are in the Microsoft Library:
http://msdn.microsoft.com/en-us/library/ms669985.aspx

If you plan to generate HTML Help in non-Western languages, you will also need the ICU
library; see §18.12 Generating HTML Help in non-Western languages on page 344.

Oracle Help Oracle Help for Java, available from Oracle:
http://www.oracle.com/technetwork/topics/ohj50ext-089966.html

JavaHelp JavaHelp, available from java.net :
http://download.java.net/javadesktop/javahelp/

http://msdn.microsoft.com/en-us/library/ms669985.aspx
http://www.oracle.com/technetwork/topics/ohj50ext-089966.html
http://download.java.net/javadesktop/javahelp/

1 GETTING STARTED WITH DITA2GO WHAT YOU NEED TO DO

ALL RIGHTS RESERVED. MAY 19, 2013 33

Eclipse Help Eclipse SDK or Infocenter, available from Eclipse:
http://www.eclipse.org/downloads/

WinHelp Microsoft Help Workshop for 32-bit WinHelp is no longer available; however, you can
still obtain the viewer; see §17.1 Obtaining tools for WinHelp on page 281.

eBooks You can produce ePub input with DITA2Go XHTML output, then use free converter
Calibre:http://calibre-ebook.com

Next, §1.3.7 Establish system-wide configuration settings on page 33.

1.3.7 Establish system-wide configuration settings

Telling DITA2Go how to use certain tools will allow you to run conversions directly from
the DITA2Go Project Manager.

To specify values for system-wide settings that apply to all Omni Systems applications,
open the following configuration file in a text editor:

%omsyshome%\common\local\config\local_omsys.ini

This configuration file is accessed by all other DITA2Go configuration files, through
chains of links; the settings it contains are available to all DITA2Go projects. You can
place in this file any setting that will apply to most or all of your DITA2Go and Mif2Go
projects. For particular DITA documents or conversion projects, you can override these
settings in output- or document-specific configuration files.

Note: For proper syntax, see §3.4 Understanding the rules for configuration settings on
page 62.

Specify settings for any of the following features that might be required for your
conversion projects:

XML catalogs
Specialized DTD
Archiving program and options
HTML Help compiler command
Eclipse Help zip command
JavaHelp, Oracle Help index and JAR commands
WinHelp copyright statement and compiler command
View-output command

XML catalogs If you have specialized, you must prepare an XML catalog for your specialized DTDs, list
their local paths here, and define an access key for each. See §4.1.1 Connecting to XML
catalogs on page 67.

Specialized DTD By default, DITA2Go uses the Oasis DITA 1.1 DTD located in directory
%OMSYSHOME%\common\dtds\dita1.1 , or whichever catalog you have specified. If
your DITA XML includes specializations for which you did not create a catalog, you must
tell DITA2Go where to find your own DTD:

[Setup]
DTDPath=path\to\specialized\dtd

See §4.1.3 Specifying a DITA XML DTD on page 68.

Archiving
program and

options

DITA2Go can package the output from your conversion projects in .zip files for
distribution. You must provide an archiving program that can be run from a command line,
and specify appropriate parameters:

[Automation]
ArchiveCommand = path\to\archiver

http://www.eclipse.org/downloads/
http://calibre-ebook.com

WHAT YOU NEED TO DO DITA2GO USER’S GUIDE

34 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ArchiveStartParams = parameters preceding name of archive file
ArchiveEndParams = parameters following name of archive file
ArchiveExt = file extension; usually zip
MoveArchive = Yes to move archive, No to copy archive
LogAuto = Yes to record archiving steps in the run log

See §44.11 Archiving deliverables on page 803. You can use the DITA2Go Project
Manager to specify an archive name and version for each project. The starting and ending
parameters for the archive command have default values; for some output types you will
need to override these defaults in your project configuration file.

HTML Help
compiler

command

For HTML Help projects, DITA2Go can run the Microsoft HTML Help compiler for you,
to produce compiled CHM files. Unless the compiler is on your system PATH, you must
tell DITA2Go where to find it:

[MSHtmlHelpOptions]
Compiler = path\to\hhc

See §18.13.1 Directing DITA2Go to run the HTML Help compiler on page 346.

Eclipse Help zip
command

For Eclipse Help projects, DITA2Go can package your HTML topic files in doc.zip .
You must provide an archiving program that can be run from a command line, and specify
appropriate parameters:

[EclipseHelpOptions]
ZipCommand = path\to\archiver
ZipParams = all required parameters

See §21.8 Packaging Eclipse Help files on page 427.

JavaHelp, Oracle
Help index and

JAR commands

For JavaHelp projects, DITA2Go can run the JavaHelp indexer to produce a full-text
search index, and also package the output in a .jar file. You must specify the indexer and
JAR commands:

[JavaHelpOptions]
FTSCommand = path\to\jhindexer
JarCommand = path\to\jar

For Oracle Help projects, DITA2Go can run the Oracle Help indexer to produce a full-text
search index:

[OracleHelpOptions]
FTSCommand = java -mx256m oracle.help.tools.index.I ndexer

See §20.5 Providing full-text search for JavaHelp / Oracle Help on page 397, and

§20.6.1 Creating a JAR file on page 400.

WinHelp
copyright

statement and
compiler

command

For WinHelp projects, DITA2Go can provide a copyright statement to be included in the
WinHelp .hpj project file:

[HelpOptions]
HelpCopyright = your copyright statement

DITA2Go can also run the Microsoft WinHelp compiler for you, to produce compiled
HLP files. Unless the WinHelp compiler is already on your system PATH, you must tell
DITA2Go where to find it. For example:

[HelpOptions]
; Compiler = path\to\hcw; can include run parameters
Compiler = hcw /c /e

See §17.2.10 Compiling a WinHelp project on page 285.

View-output
command

When you use the DITA2Go Project Manager to run a conversion, you can view the
output immediately with the View Output button on the Run Project tab, provided the
Project Manager can launch an appropriate viewer:

1 GETTING STARTED WITH DITA2GO WHAT YOU NEED TO DO

ALL RIGHTS RESERVED. MAY 19, 2013 35

 • For HTML, XHTML, and generic XML output, no command is needed; the TOC file
(if any) opens in the default browser. See§22.12 Specifying a starting topic for HTML
or XHTML on page 443.

 • For HTML Help and WinHelp, no command is needed to run the compiled Help
system in the wrap directory; for OmniHelp, the default topic opens in the default
browser.

 • For all other outputs, you must provide a Windows command the Project Manager can
execute:
[*Options]
; ViewOutputCommand = path\to\viewer, default none

You can specify an absolute path or a path relative to the wrap directory. For example.
[JavaHelpOptions]
ViewOutputCommand = java -jar D:\JH2\demos\bin\hsvi ewer.jar -helpset

Specify each view-output command in an options configuration section specific to the
output type:

1.3.8 Locate document-specific settings

You can choose a default location for document-specific configuration files on the
Preferences tab of the DITA2Go Project Manager; see §2.6 Customizing the DITA2Go
Project Manager on page 45. To determine which location is appropriate, see §39.3.2
Deciding where to keep document-specific configuration files on page 733.

Your DITA2Go installation is now complete, and you can set up a DITA2Go conversion
project, or run an existing conversion. Your existing project configuration files will work
without modification. See §2 Converting DITA documents on page 39.

1.3.9 Obtain a file comparison tool (optional)

If you do not already have software on your system that compares text files and allows you
to accept or reject changes, consider downloading WinMerge for this purpose:

http://winmerge.org/

If you customize local copies of any of the configuration templates or macro libraries
included in DITA2Go distributions, with WinMerge you will be able to see what has
changed when you update the system copies.

Output type Options configuration section
DITA XML [DITAOptions]

Docbook XML [DocBookOptions]

Eclipse Help [EclipseHelpOptions]

HTML/XHTML [HTMLOptions]

JavaHelp [JavaHelpOptions]

Microsoft HTML Help [MSHtmlHelpOptions]

Microsoft Word [WordOptions]

OmniHelp [OmniHelpOptions]

Oracle Help for Java [OracleHelpOptions]

WinHelp [HelpOptions]

XML (flat) [HTMLOptions]

http://winmerge.org/

HOW TO UPDATE DITA2GO DITA2GO USER’S GUIDE

36 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

1.3.10 Download the DITA2Go User’s Guide (optional)

The HTML Help edition of the DITA2Go User’s Guide is included with your DITA2Go
installation. You can download other editions of the DITA2Go User’s Guide, in several
formats, from the Omni Systems Web site:

http://www.dita2go.com/

Log in, and go to Download > User’s Guide . Download any or all current editions.

1.3.11 Integrate DITA2Go with <oXygen/> (optional)

You can integrate DITA2Go with XML editor <oXygen/>, using external commands. You
will need to set up a command for each output format you wish to produce,

1. Use the DITA2Go Project Manager to set up a starting project configuration file in an
appropriate output directory; see §2.1 Creating a DITA2Go conversion project on
page 39. Use the recommended directory structure, with the output directory under the
directory where your map is located.

2. Start <oXygen/>.

3. Go to Tools > External Tools > Preferences ; select Global Options ; Click New.

4. Enter any name and description, leaving encoding at defaults; pick any shortcut key.

5. For HTML output (for example), set Working Directory to:
${cfd}\html

6. Set Command Line to:
dcl -f html ..\${cfne}

7. Click OK.

For other output formats, change the Working Directory name and the -f option from
html to another format, such as rtf or omnihelp ; see §2.7.2 Understanding how to run
DITA2Go DCL on page 47.

To publish or transform your topic or map, select the map in the Editor, make sure the map
is the active window, then use Tools > External Tools > YourCommand , and go. Or just
use the toolbar button <oXygen/> creates for your command.

This procedure assumes you are using the recommended directory structure, with the
output directory under the directory where your map is located. If you have a different
directory structure, you will need to make some adjustments; see §2.7 Converting
documents from the command line on page 46.

1.4 How to update DITA2Go
If you have never installed DITA2Go on your system, you must first §1.3.3 Install
DITA2Go on page 30. Then in future you can use one of the update procedures described
here.

In this section:
§1.4.1 Update your DITA2Go installation on page 37
§1.4.2 Try out DITA2Go beta executables on page 37

http://mif2go.com/
http://www.dita2go.com/

1 GETTING STARTED WITH DITA2GO HOW DITA2GO WORKS

ALL RIGHTS RESERVED. MAY 19, 2013 37

1.4.1 Update your DITA2Go installation

As long as you subscribe to DITA2Go support, you are automatically notified of new
versions of DITA2Go .

Note: Updates do not change anything in your %OMSYSHOME%\d2g\local or
%OMSYSHOME%\common\local subdirectories, nor replace executables that are
unchanged since the prior update.

To update DITA2Go to the latest version:

1. Download d2g_update_4.zip into your Omni Systems home directory,
%OMSYSHOME%.

2. Extract all files from d2g_update_4.zip , allowing old files to be overwritten.

1.4.2 Try out DITA2Go beta executables

You can obtain the latest beta revisions of DITA2Go distribution files dr*.dll and
dw*.dll from the Omni Systems Web site:

http://www.dita2go.com/

Log in, go to Download > Basic Software , and scroll down to Beta Components . Each
.dll file is in an individual .zip archive with a name that includes the build number,
such as dwrtf372.zip .

To see if a .dll file you have is the latest revision:

1. In Windows Explorer, right-click the file icon for the copy of the .dll file that is
located in %OMSYSHOME%\common\bin.

2. Go to Properties > Version .

3. Compare the build number displayed after File version: with the build number that
appears in the name of the corresponding .zip archive. The larger number represents
the later version.

Extract the beta .dll file to %OMSYSHOME%\common\bin.

1.5 How DITA2Go works
DITA2Go works on map files, not directly on .dita files. If necessary, you can use
auxiliary program DITA2Map to generate a map file from your DITA files; see §46
Creating a map with DITA2Map on page 815.

DITA2Go can work with files anywhere on the local system or on mapped drives (in
Windows). DITA2Go does not attempt to duplicate the source directory structure in the
output, but instead creates by default a flat structure, and by adjusting the HTML names,
ensures that there are no name conflicts.

If you really need a directory structure for output, you can have it, but the structure cannot
go above the level of the default output directory. This is a limitation imposed by many
Help formats, such as CHM for HTML Help. DITA2Go handles such output structure
requirements so they do not dictate the input structure you can use.

With the DITA2Go Project Manager, a simple tabbed dialog, you can set up DITA2Go
projects, edit your project configuration files, run conversions, and inspect the resulting
log files. When you click Start on the Run Project tab, Document Coding Language filter
dcl.exe is invoked; see §45 Converting via DCL on page 809.

http://www.dita2go.com/

HOW TO START AND STOP DITA2GO DITA2GO USER’S GUIDE

38 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

First, the files in your DITA document are converted to an intermediate representation via
input filter drxml.dll .

Next, the intermediate representation is converted to whichever output format your
starting configuration file specifies, via output filter dwhtm.dll (for HTML/XML
outputs) or dwrtf.dll (for Word or WinHelp outputs).

1.6 How to start and stop DITA2Go
Starting DITA2Go On your desktop, double-click the shortcut to the DITA2Go Project Manager. (If you do

not already have a desktop shortcut to this program, see Step 2 under §1.3.3 Install
DITA2Go on page 30).

Stopping
DITA2Go

If you are running a conversion from the DITA2Go Project Manager, on the Run tab click
Stop . If the Windows command window is open, you will have to close it manually.

If you are running a conversion from the command line, how to cancel a DITA2Go
conversion before it finishes depends on which version of Windows you are using. Try one
of the following:

 • Press Ctrl+C , which works in some Windows environments.
 • Open the Windows Task Manager (on Windows 2000/XP/Vista/7):

1. Select the DITA2Go process, dcl.exe .

2. Click End Task .

1.7 How to work with DITA2Go
The methodology for converting documents with DITA2Go is iterative:

1. Run your conversion project using the defaults for the output type you specify.

2. Look at the results, and pick one thing you want different.

3. Look up that feature in the DITA2Go User’s Guide (this document), and find out
what setting you need to change to get what you want.

4. Make that setting in your project configuration file.

5. Rerun the conversion, then go to Step 2.

What makes this feasible is the running time, which for a sample document set is about 3
seconds; and is seldom more than a few minutes for any size project. So you do not lose
your train of thought waiting for completion.

1.8 How to uninstall DITA2Go
To uninstall DITA2Go , delete all files and subdirectories from directory
%OMSYSHOME%\d2g. If you have no other Omni Systems applications installed, you can
also delete the Omni Systems home directory and all subdirectories.

(No tables)
(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 39

2 Converting DITA documents

This section shows how to set up a conversion project and use DITA2Go to convert DITA
XML documents to another format. Topics include:

§2.1 Creating a DITA2Go conversion project on page 39
§2.2 Modifying a DITA2Go conversion project on page 40
§2.3 Configuring default DITA2Go project settings on page 40
§2.4 Inspecting and editing configuration files on page 44
§2.5 Running a DITA2Go conversion on page 44
§2.6 Customizing the DITA2Go Project Manager on page 45
§2.7 Converting documents from the command line on page 46

See also:
§5 Modifying output appearance on page 79

2.1 Creating a DITA2Go conversion project
To create a DITA2Go project, start the DITA2Go Project Manager. (If you do not already
have a desktop shortcut to this program, see Finish installing DITA2Go, Step 2 under
§1.3.3 Install DITA2Go on page 30).

On the Create tab:

1. For Project name , specify a name for your conversion project; or, to start with the
same configuration as an existing project, select the name of that project and change it
to a new name.

2. For DITA source directory , browse to the directory where the DITA map file you
wish to use for this conversion is located. It does not matter where the files referenced
in the map are located, as long as those files are accessible.

3. For DITA source map file , browse to the bookmap or to a ditamap to use for the
project. If your DITA document does not include any map files, select a topic file as a
starting point, and DITA2Go will create a map for the document.

Note: If there is a bookmap in the directory, DITA2Go will select it automatically,
and you will not have to browse for it. If there is no bookmap, DITA2Go will
check for a ditamap; if no ditamap, for a .dita file. If none of those are
present, DITA2Go will show the last map used in an active project.

4. For Output type , select the output format you want DITA2Go to produce. The default
output type is OmniHelp.

5. For Output Directory , use the Browse dialog to create a new directory for the output
files to be produced with this project. A good place to create such a directory is under
the directory where your DITA .bookmap , .ditamap , or .dita files are located.

Note: Never create more than one output in the same directory; they will conflict
badly.

6. Click Create Project . The DITA2Go Project Manager copies a starting configuration
file for the output type you specified, from your DITA2Go d2g\local\starts
directory (or from d2g\system\starts) to the output directory; then DITA2Go
saves the project options you specified.

MODIFYING A DITA2GO CONVERSION PROJECT DITA2GO USER’S GUIDE

40 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

7. Click Configure Defaults to use a wizard to establish values for basic project
settings; see §2.3 Configuring default DITA2Go project settings on page 40.

8. Click Edit Ini Files to edit the starting and source-specific configuration files directly;
see § Specify a text editor on page 45.

2.2 Modifying a DITA2Go conversion project
You can use the DITA2Go Project Manager to change the map file, the source directory,
or the output directory for an existing DITA2Go conversion project.

On the Modify Project tab:

1. Select the project to modify.

2. Change to a different DITA source directory only if you have moved the DITA
document files for this project.

3. Select a map file: bookmap or ditamap. The default is the map file specified when the
project was created.

4. Change the output type only to correct a mistaken choice; otherwise, create a new
project instead.

5. Optionally, browse to, or even create, a different output directory.

6. Click Modify Project . The DITA2Go Project Manager saves the options you
changed, in %OMSYSHOME%\d2g\system\projects.ini .

7. Click Configure Defaults to use a wizard to change additional settings; see §2.3
Configuring default DITA2Go project settings on page 40. Or click Edit Ini Files to
edit the starting and source-specific configuration files directly; see § Specify a text
editor on page 45.

2.3 Configuring default DITA2Go project settings
Once you have created or modified a conversion project, you can use the DITA2Go
Project Manager to establish or alter additional project settings. When you click
Configure Defaults , the Configuration Wizard guides you through a series of steps to
specify default values for certain settings.

In this section:
§2.3.1 Understanding where to specify configuration settings on page 40
§2.3.2 Choosing a source-specific configuration file on page 41
§2.3.3 Deciding whether to compile and assemble output on page 41
§2.3.4 Specifying a ditaval file on page 41
§2.3.5 Naming an archive for output on page 42
§2.3.6 Assembling graphics to include with output on page 42
§2.3.7 Including output-specific settings on page 42
§2.3.8 Reviewing initial project settings on page 43

2.3.1 Understanding where to specify configuration settings

Some settings can be specified in either of the following configuration files:

Source-specific: Settings that apply to all or most conversions from the DITA
source document you selected. This is the primary configuration
file for all projects related to that DITA source document.

2 CONVERTING DITA DOCUMENTS CONFIGURING DEFAULT DITA2GO PROJECT SETTINGS

ALL RIGHTS RESERVED. MAY 19, 2013 41

Other settings are specific to the output type you selected; those settings always go in the
starting configuration file.

When you create the first DITA2Go conversion project for a given DITA source
document, pretty much every setting (except those specific to the output type) should go in
the source-specific configuration file with a reasonable value that serves as the default for
all outputs from that DITA source. Then you can override that value as needed for
individual conversion projects.

When you create another DITA2Go conversion project for the same DITA source
document, changing or negating a setting in the source-specific configuration file might
not be a wise move:

 • If other projects have that same setting in their starting configuration files, a value you
change in the source-specific configuration file will be ignored for those projects,
because settings in a starting configuration file override settings in a source-specific
configuration file. If you intend the new value to affect all such projects, you will have
to reconfigure each of those projects.

 • If other projects do not include that setting in their starting configuration files, those
projects are relying on the value in the source-specific configuration file, which might
no longer be appropriate. If you do not want the new value to affect all such projects,
you will have to reconfigure any for which it is inappropriate.

2.3.2 Choosing a source-specific configuration fil e

On the Configure Default Settings page, the Configuration Wizard displays the source-
specific configuration file selected when you created or modified the current project. This
will almost always be the file you want to use. However, if you have additional source-
specific configuration files for the same source document, you can browse to one of those
files instead, to use for the current project. Default settings that relate to the DITA source
document will be placed in this file.

2.3.3 Deciding whether to compile and assemble out put

On the Configure Default Settings page, you can choose whether to have DITA2Go
compile Help (if this is a compilable Help project), and assemble all output components,
including graphics, into a ready-to-ship deliverable. Unlike other settings that can go in
either the source-specific or the starting configuration file, this particular setting is placed
in both files. You can always override the value of this setting at run time; see §2.5
Running a DITA2Go conversion on page 44.

2.3.4 Specifying a ditaval file

On the Conditional Options page, the Configuration Wizard displays the last ditaval file
selected, or just the source directory if no ditaval file was previously selected. You can do
any of the following:

 • If the appropriate ditaval file is already displayed, do nothing.
 • Click Use and browse to a ditaval file to use for the current project.
 • Click None if the current project does not need a ditaval file.

Next you can choose whether to store this ditaval setting in the source-specific
configuration file, where it can be used for all conversions from your DITA source

Project: Settings that apply only to the current conversion project, with
values that override values of the same settings in the source-
specific configuration file.

CONFIGURING DEFAULT DITA2GO PROJECT SETTINGS DITA2GO USER’S GUIDE

42 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

document, or in the starting configuration file, where it will be used only for the current
project.

Note: If other conversion projects already exist for this particular DITA document, you
might not want to change or negate a ditaval entry in the source-specific
configuration file; see §2.3.1 Understanding where to specify configuration
settings on page 40.

2.3.5 Naming an archive for output

On the Archive Name and Version page, you can name an archive file for the output
from a conversion. The base name of the archive file is a concatenation of the archive
name and the archive version: NameVersion.zip .

The default archive name is the name of the map file selected for the current project; the
default archive version is the name of the output type for the current project. For example,
the default name for a conversion from the Omni Systems DITA test suite to WinHelp
would be DITATestSuitewinhelp.zip . If you expect to produce future updates of the
same project, you might want to use the project name for the archive name, and an
incremental version number for the archive version; for example, DTS2WH_01.zip .

Use only letters, digits, and underscores in the archive name and version settings.

Most likely you will want to apply these settings to the current project only, rather than to
all outputs from the current DITA source document.

2.3.6 Assembling graphics to include with output

On the Graphics Assembly page, you can specify graphics files to be included with
output, and tell DITA2Go where to get those graphics.

DITA2Go automatically copies graphics files to the assembly directory for your project,
from a single other directory. The default is the DITA source directory selected for the
current project. You can browse to another directory.

For HTML and XML output types, by default DITA2Go copies all JPEG and GIF files
from the directory you select. For RTF output types, by default DITA2Go copies all BMP
and WMF files. You can specify other graphics types, and individual graphics file names,
separated by spaces. You can include ? and * wildcards in file specifications.

2.3.7 Including output-specific settings

For each output type, the Configuration Wizard includes a page of settings that apply only
to the output type specified for the current project. All such settings go into the starting
configuration file for the project. Table 2-1 lists the output-specific settings available
through the Configuration Wizard.

Table 2-1 Configuration Wizard output-specific settings

Output type Configuration section Keyword Description Ref.
OmniHelp [HTMLOptions] Title Default page title 22.4.5

[OmniHelpOptions] ProjectName Help project name 19.3.2

HelpFileTitle Help system title 19.3.4

DefaultTopicFile Opening topic file 19.3.5

[OHTopLeftNav] Any code or macro for branding 19.5.2

2 CONVERTING DITA DOCUMENTS CONFIGURING DEFAULT DITA2GO PROJECT SETTINGS

ALL RIGHTS RESERVED. MAY 19, 2013 43

2.3.8 Reviewing initial project settings

On the Review Settings page, you can look over the settings you specified, presented as
they will appear in both the source-specific and the starting configuration files:

 • to make changes, click Back

 • to have DITA2Go write these settings to their respective files, click Finish

 • to discard all settings, click Cancel .

Depending on the type of output, the DITA2Go Project Manager adds to your starting
configuration file certain settings that are not normally needed by the main program:

[Automation]
; MakeFTS = Yes (default, create a search index for JavaHelp or
; Oracle Help for Java) or No
MakeFTS = Yes
; MakeJar = Yes (default, package JavaHelp outpu in a .jar file) or No
MakeJar = Yes
; MakeArchive = Yes (default, archive output in a . zip file) or No
MakeArchive = Yes
; UseDCLSource = No (default) or Yes, convert from .dcl if available
UseDCLSource = No

HTML Help [HTMLOptions] Title Default page title 22.4.5

[MSHtmlHelpOptions] HHPFileName Help project file name 18.3.6

HelpFileTitle Help system title 18.3.4

DefaultTopicFile Opening topic file 18.3.7

HTML 4.0 [HTMLOptions] Title Default page title 22.4.5

XHTML 1.0 [HTMLOptions] Title Default page title 22.4.5

Eclipse Help [EclipseHelpOptions] TocLabel Help system title 21.4.3.1

PluginName Name attribute 21.3.2

PluginID ID attribute 21.3.2

PluginProvide Provider attribute 21.3.2

TocTopic Opening topic file 21.4.3.2

JavaHelp [HTMLOptions] Title Default page title 22.4.5

[JavaHelpOptions] HSFileName HelpSet file name 20.3.7.1

HelpFileTitle Help system title 20.3.7.1

DefaultTopicFile Opening topic ID 20.3.7.2

Oracle Help [HTMLOptions] Title Default page title 22.4.5

[OracleHelpOptions] HSFileName HelpSet file name 20.3.7.1

HelpFileTitle Help system title 20.3.7.1

DefaultTopicFile Opening topic ID 20.3.7.2

Word [FileIDs] Map file name Bookmark prefix 4.3.3

[WordOptions] Word8
Word2000
Word2002
Word2003

Version of MS Word 15.2

WinHelp [HelpOptions] HPJFileName Help project file name 17.2.6

[HelpContents] CntTitle Contents title 17.12.1

CntTopic Opening topic 17.12.1

Table 2-1 Configuration Wizard output-specific settings (continued)

Output type Configuration section Keyword Description Ref.

INSPECTING AND EDITING CONFIGURATION FILES DITA2GO USER’S GUIDE

44 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; UseDCLOutput = No (default) or Yes, convert to .d cl instead of
; formatted output
UseDCLOutput = No

Based on the choices you make on the Run Options tab (see §2.5 Running a DITA2Go
conversion on page 44), the Project Manager switches these settings on and off when
appropriate for the output type you select.

2.4 Inspecting and editing configuration files
Once you have created or modified a conversion project, you can use the DITA2Go
Project Manager to edit settings in the source-specific and the starting configuration files,
and the DITA2Go Configuration Manager to inspect and edit all settings in all the
configuration files you project accesses.

To inspect and edit source-specific and starting configuration files, click Edit Ini Files .
The Project Manager opens these files for editing in the text editor of your choice; see §
Specify a text editor on page 45.

To inspect and edit all settings in all configuration files that your project accesses, click
Configure . The Configuration Manager opens with your project selected; see §3.1
Working with DITA2Go configuration files on page 49.

2.5 Running a DITA2Go conversion
Once you have created a conversion project with the DITA2Go Project Manager (see §2.1
Creating a DITA2Go conversion project on page 39), you can use the DITA2Go Project
Manager to execute the conversion. However, you can also run DITA2Go from a
command line; see §2.7 Converting documents from the command line on page 46.

To operate DITA2Go with the Project Manager:

1. On the Run Project tab, select the conversion project you wish to run. The DITA2Go
Project Manager shows the DITA source directory, map file, and output directory, and
the output type. You can browse to a different map file, perhaps to convert just a
subset of your DITA document. The Project Manager also sets run options based on
current settings in the starting project configuration file.

2. On the Run Options tab:

Under Automation Options , specify any post-conversion steps you need for the
current run, or turn off those you do not need. With appropriate settings in place (see
§1.3.7 Establish system-wide configuration settings on page 33), DITA2Go can
produce a ready-to-distribute archive of your completed conversion, and place the
archive in the shipping directory.

Under Advanced Options , you can choose whether to involve creation or use of an
intermediate format: ASCII DCL. Your choice has the following effect:

When you run normally, with Use ASCII DCL set to Both or Neither , you get the full
automation effect: both Start and End automation tasks. If instead you run with Use

Source ASCII DCL files, if any, are converted to the output format.

Output DITA XML files are converted to ASCII DCL.

Neither DITA XML files are converted straight to the output format.

Both DITA XML files are converted first to ASCII DCL, then the ASCII
DCL files are converted to the output format.

2 CONVERTING DITA DOCUMENTS CUSTOMIZING THE DITA2GO PROJECT MANAGER

ALL RIGHTS RESERVED. MAY 19, 2013 45

ASCII DCL set to Output , you get only the Start automation tasks, because the files
processed by End do not exist yet. If Use ASCII DCL is set to Source , you get only
the End automation tasks, because the files removed by Start are needed for your
current process.

Also, you can choose to run only automation tasks.

Note: If you choose Run only automation tasks, you must have the bookmap or
ditamap in place in the output directory, even though it is not needed for these
tasks.

3. On the Run Project tab, click Start . When the conversion is complete, you will see a
message to that effect in the Results: field. If you chose run option Wrap and Ship ,
for some output types the View Output button is enabled by default. For other output
types you will have to provide a view-output command to enable the button; see
§1.3.7 Establish system-wide configuration settings on page 33.

4. Click Show Log File to see an event log that shows what happened during
conversion.

5. Click View Output (if this button is enabled) to see the conversion output. To tell
DITA2Go which file to open first on View Output , see §22.12 Specifying a starting
topic for HTML or XHTML on page 443. The View Output button works nicely for
XHTML, HTML, OmniHelp, HTML Help, and Word RTF output. However, for
JavaHelp, Oracle Help, and Eclipse Help, for the Project Manager to be able to launch
the viewer, you will need to add appropriate commands to
%OMSYSHOME%\common\local\config\local_omsys.ini . See §1.3.7 Establish
system-wide configuration settings on page 33.

You can specify options to display a console window while the conversion is running, and
a log file when the conversion is complete. See §2.6 Customizing the DITA2Go Project
Manager on page 45.

2.6 Customizing the DITA2Go Project Manager
You can specify several default values that will apply to all DITA2Go projects you
subsequently create, modify, or run via the DITA2Go Project Manager. These default
settings are on the Preferences tab.

Specify a text
editor

You will need a text editor to manage project configuration files and display log files. The
default editor is Windows Notepad. To replace Notepad, in the Text editor field enter one
of the following:

 • the name of your text editor, if the editor is already on your system execution path
 • the full absolute path to the editor executable, if it is not on the system path.

If the path to the editor executable includes spaces, you must enclose it in double quotes.

If your desktop has a shortcut to your preferred text editor, an easy way to supply the path
is as follows:

1. Right-click the desktop shortcut and choose Properties > Shortcut .

2. Copy the contents of the Target field, including any path-enclosing quotes.

3. Paste the contents into the Text editor field on the Preferences tab of the DITA2Go
Project Manager.

Choose what to
display for a

conversion

Check whether you want either or both of the following displayed when you click Run
Project :

CONVERTING DOCUMENTS FROM THE COMMAND LINE DITA2GO USER’S GUIDE

46 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • a Windows console window, while the project is running
 • the resulting log file, after the run finishes.

The log file is displayed in the text editor you named; see § Specify a text editor on
page 45.

The default name of every DITA2Go log file is _d2g_log.txt , and the default location
is the project output directory. With a text editor you can change the name and location in
the starting configuration file; see §4.2 Logging conversion events on page 74. However,
you cannot use the DITA2Go Project Manager to change this setting. All you can do is
point the DITA2Go Project Manager to a log file (or any other existing file). Log entries
for successive runs of the same conversion are appended to the same log file.

Choose Central
vs. Local

You can establish a default location for configuration files that contain settings that apply
only to conversion projects for a particular DITA source document. See §39.3.2 Deciding
where to keep document-specific configuration files on page 733.

Save and restore
preferences

To save the current set of options, click Set Options .

Click Reset Options to restore options to any of the following:

 • The options enabled the last time you clicked Set Options .
 • The options that were in force when you started the current DITA2Go Project

Manager session.
 • The original default options.

2.7 Converting documents from the command line
DITA2Go can be run from a command line via DCL, using the version of dcl.exe
located in %omsyshome%\common\bin ; see §1.3.3 Install DITA2Go on page 30.

In this section:
§2.7.1 Executing the correct version of DCL on page 46
§2.7.2 Understanding how to run DITA2Go DCL on page 47
§2.7.3 Creating a script to run DITA2Go DCL on page 48

See also:
§45 Converting via DCL on page 809

2.7.1 Executing the correct version of DCL

If you have Mif2Go version 3.3 installed on your system, you already have an older copy
of DCL executable dcl.exe in the Windows system directory. If you need to keep that
copy in place for Mif2Go system builds, on the command line you must use the full path
to the newer DITA2Go dcl.exe ; otherwise Windows will use the old copy instead, and
you will wonder why DITA2Go does not work as expected.

To ensure you are executing the correct version of dcl.exe , create a Windows
environment variable to use on the command line:

1. In Control Panel (on Windows XP, for example):
Control Panel > System > Advanced > Environment Var iables

2. If DCL is not listed in the System variables section, click New to create this
environment variable. For example:

Variable name: DCL

Variable value: %omsyshome%\common\bin\dcl.exe

2 CONVERTING DITA DOCUMENTS CONVERTING DOCUMENTS FROM THE COMMAND LINE

ALL RIGHTS RESERVED. MAY 19, 2013 47

If DCL is already listed with a different value, you will have to use a different name.

3. Click OK three times to save the definition and return to Control Panel.

Now you can execute DCL on the command line with the command %DCL% (or %dcl%)
instead of typing the full path.

2.7.2 Understanding how to run DITA2Go DCL

To use dcl.exe to convert DITA documents:

1. Open a Windows Command Prompt window.

2. Navigate to the output directory where your DITA2Go project configuration file is
located.

3. Type a command of the following form:
%dcl% -f output_format [-o output_file] input_file

where:

4. Press Enter .

For example, at a command prompt:
D:\Tests\HTML> %dcl% -f html ..\DITATestSuite.ditam ap

would produce HTML files in directory HTML, from map file DITATestSuite.ditamap
located in directory Tests .

If your input_file has an extension other than .ditamap , .bookmap , .dita , or .xml ,
you must include one more argument, before the -f switch:

-s xml

to tell dcl.exe what type of file you are converting.

Although dcl.exe provides the -o switch for naming output location, file, or extension,
typically you do not need this switch. For topics, DITA provides a naming method for the
output files: the copy-to attribute. If your DITA files do not use this attribute, the names
of output files are based on the topic id attribute. If necessary, you can remap file names
for HTML output; see §43.3 Renaming output files for automated systems on page 781.

output_format can be one of the following:
HTML
XML
XHTML
HTMLHelp
JavaHelp
OracleHelp
EclipseHelp
OmniHelp
ASCII
DITA
DocBook
Word
WinHelp

output_file is optional for RTF or HTML output (but required for XML
output); one of:
name - base file name (path optional), with or without
extension
ext - output file-name extension, period required

input_file path (absolute or relative) to your .ditamap , .bookmap ,
.dita , or .xml file, with extension

CONVERTING DOCUMENTS FROM THE COMMAND LINE DITA2GO USER’S GUIDE

48 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

2.7.3 Creating a script to run DITA2Go DCL

If you get tired of typing the command-line switches every time you run dcl.exe , you
can make yourself a script that calls dcl.exe , using system variable %dcl% (see §2.7.1
Executing the correct version of DCL on page 46). You can give the script file any name
(except dita2go ; that name is reserved), as long as the file has extension .bat .

For example, to create MyD2G.bat :

1. Using a text editor, copy the following line and paste it into a new text file:
%dcl% -f%1 %2

2. Save the new file in your DITA2Go output directory as "MyD2G.bat" , and exit the
text editor.

Note: The quote marks are not part of the file name. Their purpose is to prevent the text
editor from saving the file as MyD2G.bat.txt , which is what many editors
would do otherwise.

Now you can run dcl.exe from the command line as follows:
MyD2G output_format input_file

For example:
D:\Tests\HTML> MyD2G html ..\DITATestSuite.ditamap

would produce HTML files in directory HTML, from map file DITATestSuite.ditamap
located in directory Tests .

You can customize MyD2G.bat for a particular type of output or for a specific project. For
example, to modify MyD2G.bat so it always produces HTML Help:

%dcl% -f htmlhelp %1

You would run MyD2G.bat as follows:
MyD2G input_file

For example:
D:\Tests\MyHHproject> MyD2G ..\DITATestSuite.ditamap

Suppose you always convert a .ditamap ; your output directory is always a subdirectory
of the directory containing the .ditamap ; and you always produce HTML 4.0 output:

%dcl% -f html ..\%1.ditamap

For a map named ProjectA.ditamap you would run MyD2G.bat as follows:
MyD2G input_file

For example:
D:\Maps\ToHTML> MyD2G ProjectA

If the only conversion you are likely to run from your output directory is from
ProjectA.ditamap , change the command in MyD2G.bat to:

%dcl% -f html ..\ProjectA.ditamap

Now you can run MyD2G.bat as follows:
D:\Maps\ToHTML> MyD2G

See §45 Converting via DCL on page 809 for additional ways to modify and deploy DCL
commands.

(No tables)
(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 49

3 Editing configuration files

This section explains how DITA2Go configuration files are created, and presents the rules
for adding and modifying configuration settings. Topics include:

§3.1 Working with DITA2Go configuration files on page 49
§3.2 Editing files with the Configuration Manager on page 49
§3.3 Understanding where project settings come from on page 61
§3.4 Understanding the rules for configuration settings on page 62
§3.5 Specifying file paths in configuration settings on page 64
§3.6 Using wildcards in configuration settings on page 65
§3.7 Commenting out configuration sections on page 66
§3.8 Ending a configuration file on page 66

See also:
§39 Working with templates on page 727

3.1 Working with DITA2Go configuration files
To add or change conversion settings after you set up a DITA2Go project, you must edit
the contents of one or more configuration files: text files with file extension .ini .

You will need two tools to work effectively with DITA2Go configuration files:

 • The DITA2Go Configuration Manager, to see and manipulate individual sections
and settings selected from all relevant configuration files and system templates that
apply to your project; see §3.2 Editing files with the Configuration Manager on
page 49

 • A text editor (even Notepad) to inspect and optionally edit all sections and settings in
individual configuration files:
 – Make sure you use only ANSI, or UTF-8, encoding; do not use UTF-16 for

configuration files.
 – Do not use Word, or any other application that gets an exclusive-write lock on

files.

You might find it useful to have both tools open at once, so you can readily see in context,
in the text editor, any changes you make with the Configuration Manager.

3.2 Editing files with the Configuration Manager
The DITA2Go Configuration Manager gives you access to all the configuration settings,
output formats, language strings, and macros that affect a conversion project, regardless of
which configuration or template files hold those values.

In this section:
§3.2.1 Understanding how to use the Configuration Manager on page 50
§3.2.2 Starting the Configuration Manager on page 52
§3.2.3 Setting Configuration Manager preferences on page 52
§3.2.4 Establishing a starting point on page 54
§3.2.5 Choosing a configuration category or file type on page 54
§3.2.6 Understanding variable vs. fixed names and keys on page 55

EDITING FILES WITH THE CONFIGURATION MANAGER DITA2GO USER’S GUIDE

50 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§3.2.7 Choosing the kind of change to make on page 55
§3.2.8 Selecting a configuration section on page 59
§3.2.9 Selecting a configuration setting on page 60
§3.2.10 Selecting a configuration file on page 60
§3.2.11 Specifying a final value on page 61

3.2.1 Understanding how to use the Configuration M anager

With the Configuration Manager you can “drill down” to see where a setting is located,
and also see the scope of each setting: does it affect only the current project, all your
projects, all outputs of one type, or perhaps only one document?

In this section:
§3.2.1.1 Drilling down to find a section or setting on page 50
§3.2.1.2 Heeding status and result messages on page 51
§3.2.1.3 Getting help with controls and configuration data on page 51
§3.2.1.4 Providing help for your own format and macro definitions on page 51
§3.2.1.5 Correcting configuration errors on page 51

3.2.1.1 Drilling down to find a section or setting

The process goes like this:

1. Select a project (thus identifying the project configuration file), or designate another
configuration file; all other files or templates referenced from that initial file via
[Templates] settings can be included in the current Configuration Manager session.

2. Decide what kinds of settings you want to work with: general configuration settings,
formats, language settings, macros, or content models

3. Pick what you want to do: add, change, delete, restore, copy, move, or merge a setting
or a whole section.

4. Pick the section (and possibly setting) to work on. At this point you can see where the
item occurs in all the configuration files included in the current session; and you see
the scope of effect of each value.

5. Pick the file where you want the change to take place.

6. Apply your selections to make the change.

For example, suppose you wish to change the bullet style for unordered-list elements that
are mapped to the Bulleted2 output format, for the document involved in your current
project, and for any related conversion projects that work on this document. You would
follow these steps:

1. Start the Configuration Manager and select your project.

2. Because Bulleted2 is an paragraph format for an unordered-list item, choose
configuration category Unordered (under List Formats , under Paragraph Formats ,
under Text Formats).

3. Choose the action to perform: Edit one setting in section .

4. Choose the section where the setting occurs: Bulleted2 .

5. Choose list style from the list of settings that are present in some or all definitions of
Bulleted2 that can affect your project.

6. Choose, from a list of the format configuration files accessed by your project, the file
that is specific to the document for this project.

3 EDITING CONFIGURATION FILES EDITING FILES WITH THE CONFIGURATION MANAGER

ALL RIGHTS RESERVED. MAY 19, 2013 51

7. Choose a different value for list style .

8. Click Finish action , and you are done.

3.2.1.2 Heeding status and result messages

A message box at the bottom of each Configuration Manager page displays status
messages and reports the result of each action. If the Configuration Manager is unable to
proceed on a retry of the same action, you will need to exit and restart the program.

For example, if you try to use the Configuration Manager to make changes in a file that is
open in another application that locked the file, you will see this message:

File not updated, changes in .new

This means the Configuration Manager was unable to write your changes to that file, and
instead made a copy of the file but with extension .new , made the changes there, and
saved the .new file in the same directory as the original. If this happens, you must exit the
Configuration Manager and release the file from the application that locked it. Then restart
the Configuration Manager and retry the action.

3.2.1.3 Getting help with controls and configurati on data

On any Configuration Manager page, after making a selection or moving focus to a
control, you can click [?] in the lower right corner of the page to open a section of the
DITA2Go User’s Guide that explains that selection or control.

Note: Make sure that ugdita2go.chm , the HTML Help version of the DITA2Go
User’s Guide, is available in %OMSYSHOME%\d2g\usersguide ; see §1.3.3.2
Finish installing DITA2Go on page 31.

3.2.1.4 Providing help for your own format and mac ro definitions

The Configuration Manager displays one-line descriptions of all fixed-name configuration
sections, including all format and format component definitions and all macro definitions
supplied in the DITA2Go distribution.

For definitions of formats and macros that you create and name, by default the
Configuration Manager displays:

No Help for this section

Help for format
definitions

To provide descriptive help for a format, include a setting in the definition of that format
for keyword help , and supply descriptive text as the value; for example:

[OverTitle]
based = PrefaceTitle
help = Format for title of Overview topic

Help for macro
definitions

To provide descriptive help for a macro, prefix keyword help with special comment
delimiters ;= to keep it from being parsed as part of the macro. For example:

[AnotherURL]
;=help = The URL for the DTS project at SourceForge
http://sourceforge.net/projects/ditatestsuite

3.2.1.5 Correcting configuration errors

If any of the configuration files open for a given session contain settings that appear not to
be valid in their section, or sections that appear not to be valid in their file, the
Configuration Manager displays the names of those settings or sections in red. You will
need to delete the items, rename them, or move them to a valid location.

EDITING FILES WITH THE CONFIGURATION MANAGER DITA2GO USER’S GUIDE

52 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Note: Format names (other than paragraph format names) that do not end with the
required suffix always show red in the Configuration Manager. You cannot use the
Configuration Manager to rename formats, because renaming a format can affect
many other types of settings.

Format names
without a valid

suffix

If a format name is displayed in red on the Section page, usually this is because either the
name lacks an appropriate suffix, or the name ends in a suffix that is not valid in the file
where the format is defined. Table 7-1 on page 114 shows valid suffixes for format names.

The Configuration Manager assumes any format in a Formats configuration file is a
paragraph format, unless its name ends in Char . Any format in a Tables configuration
file is assumed to be a table format, unless its name ends in Row or Cell .

To correct an improperly named format that is already in use, besides renaming the format,
also assign the new name to the old in [FormatAliases] ; see §7.3.2 Mapping legacy
names to defined formats on page 113. In the Configuration Manager, select the top-level
category for the type of format: Text Formats , Table Formats , Page Formats , or
Format Components .

For example, if you are changing the name of a special table-row format so it ends in Row,
select category Table Formats , action Add new setting to section , and section
FormatAliases ; add a setting such as the following:

[FormatAliases]
; Old format name = new name with proper suffix
MyTableRow1 = MyTableFirstRow

This will ensure DITA2Go substitutes the new name for the old, in case the old name
persists in some settings.

3.2.2 Starting the Configuration Manager

To access configuration values for your project, start the DITA2Go Configuration
Manager, either of the following ways:

 • On the Windows desktop: double-click the shortcut to
%OMSYSHOME%\common\bin\d2gcm.exe. (If you do not already have a desktop
shortcut to this program, see §1.3.3.2 Finish installing DITA2Go on page 31.) The
Configuration Manager opens to the Start page; see §3.2.4 Establishing a starting
point on page 54.

 • From the DITA2Go Project Manager: with your project selected, click Configure
(see §2.4 Inspecting and editing configuration files on page 44). The Configuration
Manager opens to the Category page; see §3.2.5 Choosing a configuration category
or file type on page 54.

Before you use the Configuration Manager to change the way your projects work,
consider visiting the Preferences page; see §3.2.3 Setting Configuration Manager
preferences on page 52.

3.2.3 Setting Configuration Manager preferences

You can change text colors in Configuration Manager displays, and choose to have all
your configuration edits annotated and timestamped in configuration files.

In this section:
§3.2.3.1 Specifying colors for different types of settings on page 53
§3.2.3.2 Annotating changes made to configuration files on page 53

3 EDITING CONFIGURATION FILES EDITING FILES WITH THE CONFIGURATION MANAGER

ALL RIGHTS RESERVED. MAY 19, 2013 53

3.2.3.1 Specifying colors for different types of s ettings

These are the colors the Configuration Manager uses to display different kinds of items:

To change the color of an item, click the colored box next to the description. The Windows
color picker opens. Here you can go wild with any colors that float your boat; however,
avoid red. The Configuration Manager uses red to flag invalid section and setting names;
see§3.2.1.5 Correcting configuration errors on page 51.

Click OK to dismiss the color picker and establish the new color. The color change takes
effect immediately.

3.2.3.2 Annotating changes made to configuration f iles

To keep an annotated record of all the changes made to your files with the Configuration
Manager, check Include history comments .

To own up to these changes, under User name for history comments provide an
identifier such as your name or initials.

The Configuration Manager inserts a comment above each change, showing what was
changed and when. Deleted items are “commented out”, rather than removed. For
example:

[HTMLOptions]
Title=DITA2Go User's Guide
;2012-11-30 15:16:08: CS deleted duplicate Title
;=Title=DITA2Go User's Guide

Annotation takes effect immediately.

Available fixed-name sections Configuration sections that are valid in the category
of settings you are working with, but that do not
appear in any files for the current session.

Available fixed-key settings Configuration settings that are valid in the section you
are working with, but that do not appear in any
instances of that section in the files for the current
session.

Variable names and keys Configuration sections such as format and macro
definitions, and settings with keys such as format
names or object identifiers, whether or not they
appear in the files for the current session.

Internal defaults Values that DITA2Go uses for settings that do not
appear in any of the files for the current session.

System configuration files Values specified for settings in the system
configuration templates. You cannot change these
values; instead, you override them in the
corresponding local configuration templates. See
§39.4.1 Understanding what configuration files are
available on page 735.

EDITING FILES WITH THE CONFIGURATION MANAGER DITA2GO USER’S GUIDE

54 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

3.2.4 Establishing a starting point

On the Configuration Manager Start page, select one of your conversion projects, or
choose a configuration template or file to start with. If you select a project, the project
configuration file for that project becomes the starting point for the current session.

The file designated as a “starting” configuration file determines which other configuration
files the Configuration Manager can include in your current session. Candidates include
all configuration files referenced through the chain of [Templates] settings (see §39.2
Referencing configuration files and templates on page 731) in the starting configuration
file, and in the files referenced by that file. Which subset of these files will be accessed
depends on which category of settings you intend to work with.

Once you have selected a starting point, click Apply file ; the Configuration Manager
switches to the Category page. See §3.2.5 Choosing a configuration category or file type
on page 54.

3.2.5 Choosing a configuration category or file ty pe

On the Configuration Manager Category page, choose a category of settings to work with,
or a type of configuration file. You are not locked into your choice; you can always return
to this page to switch to a different category or configuration type.

At the top of the Configuration Manager Category page you see the full path to the
starting configuration file for the current session; this is either the project configuration
file for a project you selected, or another file you specified on the Start page; see §3.2.4
Establishing a starting point on page 54.

Select type of file
or category of

settings

Under Select type of configuration file , you can highlight the kind of configuration file
or template you want to focus on. As an alternative, under Select category , click one of
the following categories:

If the category has a + in front of it, click the + to see a list of subcategories. For example:
+ Text Formats

+ Paragraph Formats
 + Title/Heading Formats
 + List Formats

 + Ordered
 + Unordered
 . . .

Section matches
and Setting

matches

To narrow down your selection, you can specify the name of a configuration section, the
name of a setting in that section, or both; and you can use wildcards in either name. For
example, if you want to edit one or more of the many Bulleted formats, and you want to see
them all, you could select category Unordered List Formats and specify Bulleted* for
Section matches . If you specify both a section name and a setting name, make sure that
setting actually is valid in the named section.

Category Description Ref.
General Configuration Project configuration options and settings 4
Text Formats Definitions of paragraph and character output formats 7.6

Table Formats Definitions of table output formats 7.7
Page Formats Page layout definitions for RTF output 7.8
Format Components Building blocks for link and other format definitions 8

Languages Localization strings for output formats 8.9
Macros Definitions of DITA2Go macros 37
Content Models Configuration-style representation of a DTD 41

3 EDITING CONFIGURATION FILES EDITING FILES WITH THE CONFIGURATION MANAGER

ALL RIGHTS RESERVED. MAY 19, 2013 55

Apply selections Once you have selected a category or file type (and optionally specified section and/or
setting names), click Apply selections ; the Configuration Manager switches to the
Action page. See §3.2.7 Choosing the kind of change to make on page 55.

3.2.6 Understanding variable vs. fixed names and k eys

To specify certain actions for the Configuration Manager to perform, you must distinguish
between variable-name and fixed-name configuration sections, and between variable-key
and fixed-key settings.

Variable-name vs.
fixed-name

sections

 • A variable-name configuration section can have any name at all; examples are
format definitions and macro definitions, where the section name is the name of the
format or macro.

 • A fixed-name configuration section has a name defined by DITA2Go ; examples
include Setup and HTMLOptions .

Variable-key vs.
fixed-key settings

 • Variable-key settings are characterized by keys that usually consist of a format name
(such as the settings in section HTMLParaStyles) or an object identifier (such as the
settings in section GraphGroup).

 • Fixed-key settings must use a key from a set of DITA2Go -specified names for keys
that are valid in their section (such as the settings in section Setup). See §42.2.7
Understanding fixed-key vs. variable-key settings on page 769.

3.2.7 Choosing the kind of change to make

On the Configuration Manager Action page, select the kind of change you want to make
to a configuration. Some actions distinguish between variable-name and fixed-name
sections, or between variable-key and fixed-key settings; to determine which to select for
the section or setting you want to change, see §42.2.7 Understanding fixed-key vs.
variable-key settings on page 769.

Under Select action to be performed , click a button to act on a section or a setting. Once
you have selected an action, click Apply action . Provided there are no duplicate settings
or sections in any of the files for the current session, the Configuration Manager switches
to one of the following:

 • the Section page, to select a configuration section
 • the Setting page, if only one section applies
 • the.ini file page, if both section and setting are already determined.

Duplicate
sections or

settings

However, if the Configuration Manager finds duplicate settings in a section or duplicate
sections in a file, instead of proceeding with the action you specified, the Configuration
Manager changes your selection to one of the merge options; see §3.2.7.8 Merging
duplicate sections or settings on page 59. You can change it back again, but the
Configuration Manager will continue to nag you about duplicates until you resolve them.

In this section:
§3.2.7.1 Adding a new section or setting on page 56
§3.2.7.2 Editing a section or setting on page 56
§3.2.7.3 Deleting a section or setting on page 57
§3.2.7.4 Restoring a deleted section or setting on page 57
§3.2.7.5 Renaming a section or setting on page 58
§3.2.7.6 Moving a section or setting on page 58
§3.2.7.7 Copying a section or setting to another configuration file on page 59
§3.2.7.8 Merging duplicate sections or settings on page 59

EDITING FILES WITH THE CONFIGURATION MANAGER DITA2GO USER’S GUIDE

56 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

3.2.7.1 Adding a new section or setting

You can add a new section to a selected configuration file, or a new setting to a section.
Under ADD new item on the Configuration Manager Action page, choose one of the
following:

If you try to add a section to a file that already has a section by the same name, the
Configuration Manager presents the existing section for you to edit instead; see §3.2.7.2
Editing a section or setting on page 56.

Note: You cannot add a setting to a named macro. Macro sections do not contain
settings. Instead, choose Edit full section content ; see §3.2.7.2 Editing a section
or setting on page 56.

Click Apply action ; the Configuration Manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

3.2.7.2 Editing a section or setting

You can edit an entire section, or a single setting, in a selected configuration file. Under
EDIT existing item on the Configuration Manager Action page, choose one of the
following:

If you edit the value for a setting, and you want a leading space before the value, you have
to add that space explicitly. A single space is stripped; multiple spaces are preserved. If
you change something else, spaces in the value are not altered, unlike spaces before the
equals sign, which are always removed.

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

Add new fixed-name
section to file

A fixed-name section is pretty much any configuration
section that is neither a format definition nor a macro
definition. You select from applicable section names on
the Section page.

Add new variable-name
section to file

To add a format definition or a macro definition, select
this option. You get to specify the name on the Section
page.

Add new setting to section If you try to add a setting to a file that does not contain the
section that the setting belongs in, the Configuration
Manager creates that section for you. Do not use for
macro definitions.

Add new variable-key
setting to one section

You get to choose the configuration section where you
want the new setting. Do not use for macro definitions.

Edit full section content Edit the content of a section, and also the section heading
and any comments; you can even change the name of the
section.

Edit one setting in section First you choose a section, then you pick the setting, then
you choose the file where you want to make changes. Do
not use for named macros; instead, edit the full section.

3 EDITING CONFIGURATION FILES EDITING FILES WITH THE CONFIGURATION MANAGER

ALL RIGHTS RESERVED. MAY 19, 2013 57

3.2.7.3 Deleting a section or setting

You can delete an entire section, or a single setting, from a selected configuration file.
Under DELETE existing item on the Configuration Manager Action page, choose one of
the following:

When you delete a section or a setting, the Configuration Manager does not remove the
item from the file, but instead deactivates it by commenting it out. This allows you to
restore the item later. If you really want the item expunged leaving no trace, the
Configuration Manager allows you to edit it; at that point you can simply erase the item.

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

Note: The Configuration Manager will continue to show the deleted item until you
return to the Action or Category page and make another selection.

3.2.7.4 Restoring a deleted section or setting

You can restore an entire deleted section, or a single setting, in a selected configuration
file. Under RESTORE deleted item on the Configuration Manager Action page, choose
one of the following:

When you delete a section or a setting, the Configuration Manager does not remove the
item from the file, but instead deactivates it by commenting it out. When you choose to
restore an item, the Configuration Manager removes the commenting that deactivated the
item.

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

Delete section from one
file

When you choose to delete a section, the Configuration
Manager allows you to inspect and optionally edit the
content of the section before committing to its deletion.

Delete setting from one
section

First you choose a section, then you pick the setting, then
you choose the file from which you want to delete the
setting. Do not use for named macros; macro sections do
not contain settings.

Restore deleted section in
one file

You can restore a section that has been marked for
deletion. The Configuration Manager will remove the
commenting that deactivated the section. To restore a
section that was physically removed from a file, instead
add it (§3.2.7.1 Adding a new section or setting on
page 56) or copy it from another file (§3.2.7.7 Copying a
section or setting to another configuration file on
page 59).

Restore deleted setting in
one section

First you choose a section, then you pick the setting, then
you choose the file where you want to restore the setting.

EDITING FILES WITH THE CONFIGURATION MANAGER DITA2GO USER’S GUIDE

58 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

3.2.7.5 Renaming a section or setting

You can rename a variable-name section, or rename a single variable-key setting, in a
selected configuration file. Under RENAME existing item on the Configuration Manager
Action page, choose one of the following:

If a file contains the wrong fixed-name section, you have to delete that section and add the
correct section. On deletion you might get away with simply changing the section name;
this could work only if the settings already present are valid under the new name.

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

3.2.7.6 Moving a section or setting

You can move sections within or between files, and you can move settings either within a
section or between instances of that section in different files. Under MOVE existing item
on the Configuration Manager Action page, choose one of the following:

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

Rename variable-name
section in one file

Only variable-name sections, such as format and macro
definitions, can be renamed.

Rename variable-key
setting in one section

Only variable-key settings can be renamed, with keys that
represent format names or object group names. First you
choose a section, then you pick the setting, then you
choose the file where you want to change the name of the
setting.

Move section within one
file

For the most part, the order of sections within a
configuration file does not affect functionality. However,
you might want to change the order of sections in a file for
readability.

Move section between files You might want to move a section “upstream” or
“downstream”; that is, make it apply more widely or less
widely.

Move setting within one
section

The only time the order of settings within a section affects
functionality is when you use wildcards in the names of
variable-key settings, such as in group names for graphics
or tables. This option lets you move a selected setting up
or down within the same section.

Move setting between files To change the scope of a setting, you can move it
“upstream” (to a configuration file with a wider scope) or
“downstream” (to a configuration file with a narrower
scope).

3 EDITING CONFIGURATION FILES EDITING FILES WITH THE CONFIGURATION MANAGER

ALL RIGHTS RESERVED. MAY 19, 2013 59

3.2.7.7 Copying a section or setting to another co nfiguration file

You can copy sections between files, and you can copy settings between instances of the
same section in different files. Under COPY existing item on the Configuration Manager
Action page, choose one of the following:

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

3.2.7.8 Merging duplicate sections or settings

The Configuration Manager detects duplicate sections in a file, and duplicate settings in a
section, and warns you about them on the Action page; inviting you to fix them by
selecting for you, under MERGE duplicate items , one of the following:

Click Apply action ; the Configuration manager switches to the .ini file page, where the
offending section name or setting value shows in the Value column for the highlighted file
that contains the duplicates.

3.2.8 Selecting a configuration section

At the top of the Configuration Manager Section page you see the full path to the starting
configuration file for the current session, and also the edit action you selected on the
Action page; see §3.2.7 Choosing the kind of change to make on page 55.

Under Select section for action you see listed all the sections (if any) that meet the
criteria you established on the Category page.

For example, if you had selected category Para Char Formats and specified Bulleted*
for Section matches , you might see this list of sections:

Bulleted1
Bulleted1L2
Bulleted1L3
Bulleted2
Bulleted2L3
BulletedL

Copy section between files Insert a full copy of the designated section in another file,
even if that section does not exist in the “from” file.

Copy setting between files Copy one setting from a section you select to an instance
of the same section in another file. If the section is not
already present in the destination file, the Configuration
Manager creates it there before copying the setting.

Merge duplicate sections
in one file

The Configuration Manager moves the second instance of
the duplicate section to a position immediately after the
first, and comments out the second section heading. The
effect is to include all settings from both sections in the
first section, possibly resulting in duplicate settings. You
get a chance to edit the merged section.

Merge duplicate settings in
one section

The Configuration manager edits the first of the
duplicated settings to show the value you select on the
Finish page, then comments out the second setting, even
if the second was the one that had the correct value. This
is because only the first of duplicate settings in a section
has any effect.

EDITING FILES WITH THE CONFIGURATION MANAGER DITA2GO USER’S GUIDE

60 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Click a section name to select it. Immediately below the selection box you see a statement
that characterizes the section. For example, if you had selected Bulleted2 (or any other
name) from the section list above, you would see:

Section is in current inis and is variable-name with fixed keys

If you had chosen to add a new variable-name section on the Action page, you could
specify its name after Name for new section . Or, if you had chosen to rename a variable-
name section on the Action page, you could specify its new name after Rename section .

Once you have selected a section, or possibly named a new section or renamed an existing
section, click Apply section ; what happens next depends on whether the action you chose
pertains to a section or to a setting:

3.2.9 Selecting a configuration setting

At the top of the Configuration Manager Setting page you see the full path to the starting
configuration file for the current session, and also the edit action you selected on the
Action page; see §3.2.7 Choosing the kind of change to make on page 55. Next you see
the name of the section you selected, and a note of its purpose.

Under Select setting for action you see listed all the settings (if any) that meet the
criteria you established on the Category page and that are valid (or already exist) in the
section you selected. For example, if you had selected Bulleted2 from the list on the
Section page, you would see a list of settings that are valid in this paragraph-format-
definition section.

If you chose to add a fixed-key setting, those listed in black are already in use in at least
one configuration file for the current session, while those listed in an alternate color (see
§3.2.3 Setting Configuration Manager preferences on page 52) are available for use.

If you chose to add a variable-key setting, you can specify Name for new setting .

If you chose to edit a setting, only those currently in use are listed.

If you chose to rename a variable-key setting, you can Rename setting .

Once you have selected a setting or entered a new setting name, click Apply setting ; the
Configuration manager switches to the .ini File page, where you choose the file in which
you want to make the change; see §3.2.10 Selecting a configuration file on page 60.

3.2.10 Selecting a configuration file

At the top of the Configuration Manager .ini File page you see the full path to the starting
configuration file for the current session, and also the action you selected on the Action
page; see §3.2.7 Choosing the kind of change to make on page 55. Next you see the name
of the section you selected, and a note of its purpose; then, if you are changing a setting,
the name and value of the setting you selected, with a note of its purpose.

Under Select .ini to change for this action you see listed all the configuration files and
templates that apply to the current session, with the value of the setting in each file (or the
name of the section, if present in the file), along with a statement of the scope of effect of
the value. If the setting in question has an internal default value (see §3.2.3 Setting
Configuration Manager preferences on page 52), that value is listed at the top.

Section The Configuration Manager switches to the .ini File page; see §3.2.10
Selecting a configuration file on page 60

Setting The Configuration Manager switches to the Setting page; see §3.2.9
Selecting a configuration setting on page 60.

3 EDITING CONFIGURATION FILES UNDERSTANDING WHERE PROJECT SETTINGS COME FROM

ALL RIGHTS RESERVED. MAY 19, 2013 61

The configuration files for which the category and section you selected are valid, are listed
from greatest scope of effect (at top) to least scope (at bottom). A setting in a particular
configuration file overrides the value of the same setting in all configuration files listed
above, and is overridden by the value in any configuration files listed below.

Once you have selected the file where you want to make the change to the setting or
section, click Apply ini file ; the Configuration manager switches to the Finish page,
where you finally get to execute the action you chose; see §3.2.11 Specifying a final value
on page 61.

3.2.11 Specifying a final value

At the top of the Configuration Manager Finish page you see the full path to the starting
configuration file for the current session, and also the action you selected on the Action
page; see §3.2.7 Choosing the kind of change to make on page 55. Next you see the name
of the section you selected, and a note of its purpose; then, if you are changing a setting,
the name and value of the setting you selected, with a note of its purpose. Next you see the
name of the configuration file you selected, then the “current value” of the setting in that
file, and the purpose of the value.

The rest of the Finish page is devoted to giving you values to select from or settings or
sections to edit, depending on the action.

If you edit the value for a setting, and you want a leading space before the value, you have
to add that space explicitly. A single space is stripped; multiple spaces are preserved. If
you change something else, spaces in the value are not altered, unlike spaces before the
equals sign, which are always removed.

Once you have completed your edits and/or selections, click Finish action ; the
Configuration Manager executes your changes and then switches back to the Action page;
see §3.2.7 Choosing the kind of change to make on page 55. There you can choose another
action, or you can go back to the Start or Category page to establish a different universe
of discourse.

To see what actually happened, either inspect the file you selected in a text editor, or
choose an Edit action on the Action page, and select the relevant section and file.

3.3 Understanding where project settings come from
When you set up a new conversion project, the DITA2Go Project Manager copies a new
output-type-specific starting configuration file into your project directory. This file is
populated with the settings you specify at set-up time. DITA2Go gets this file from a
repository of configuration templates located in your DITA2Go distribution; see §39.1.1
Understanding how templates are organized on page 727. Each configuration template
already contains values for basic settings specific to the output type for your project.

Default
configuration

values

Configuration values present in DITA2Go configuration files at set-up time are not
always the same as the internal default values for configuration settings:

Often, the internal default value produces the effect you would have experienced before a
feature was added to DITA2Go ; this is to maintain backward compatibility with existing

Set-up value: The value people usually want (or expect) for a new project for a
given output type.

Internal default: The value DITA2Go applies when the setting is missing entirely
from the configuration files for your project.

UNDERSTANDING THE RULES FOR CONFIGURATION SETTINGS DITA2GO USER’S GUIDE

62 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

configuration files. The effect is almost always equivalent to turning the feature “Off”.
However, if the feature corrects a defect, the corresponding configuration value might
default to “On”, with the setting provided to support users who had already put a
workaround in place and wanted its functionality left alone.

Referenced
configuration

values

Your project configuration file includes references to:

 • an optional document-specific configuration file created when you set up this or a
previous project

 • a required chain of configuration templates located in your DITA2Go distribution.

Your project incorporates by reference any settings those files contain, unless the settings
are overridden in your project configuration file. If you intend to work with many
conversion projects, you might want to inspect and possibly modify the local editions of
some of these templates. See §39.1 Working with configuration templates on page 727.

3.4 Understanding the rules for configuration sett ings
Every DITA2Go configuration file must begin with at least one line of header text, even if
it is an empty line. The content of the line does not matter to DITA2Go , as long as it does
not duplicate the name of a configuration section.

After the header text, each configuration file contains a series of sections. Each section
consists of a section name in square brackets, followed by a list of settings of the form
Key=Value or Key=Command, each on a separate line; and possibly by one or more
comments:

[Section]
Key = Value
Key = Value1 Value2 Value3 ...
Key = Command
; Comment

Section names may not contain spaces or punctuation. The opening bracket for each
section name must be in column 1.

Keep in mind these Microsoft rules for configuration files:

 • Section names must be unique; if there are duplicate section names in a
configuration file, only the first instance is processed.

 • Key names must be unique in a section; if you repeat a key name in the same
section, only the first instance is processed.

And these DITA2Go rules:

 • The first line in the file must be a comment; DITA2Go requires a header line.
 • No more than one space after the equals sign; otherwise, bad things can happen:

 – If the value is Boolean (Yes/No), DITA2Go treats it as No, even if you typed Yes.
 – If the value is a string, all spaces after the first are included in the string.

Consider all of the following:
Section names must be unique
Key names must be unique in a section
Key names must be valid ASCII
Key names are not case sensitive, by default
Fixed-key sections differ from variable-key sections
Order of settings can be important for variable keys
Multiple values are separated by spaces

3 EDITING CONFIGURATION FILES UNDERSTANDING THE RULES FOR CONFIGURATION SETTINGS

ALL RIGHTS RESERVED. MAY 19, 2013 63

Spaces and tabs: some retained, some removed
Comments start with a semicolon
Boolean values can be expressed various ways

Section names
must be unique

Section names must be unique. If you use the same section name twice in your
configuration file, only the first section is processed. Otherwise, order of sections does not
matter, except for macro sections (see §37.1.1.2 Understanding where you can define
named macros on page 680).

Key names must
be unique in a

section

Each Key= setting in a given section must be the only setting for that key in that section. A
common error is to add a setting to a section that already has a setting for that key. For
example, any repeated lines assigning additional values to the same format name are
ignored; only the first line is processed. Instead, place any additional values on the same
line as the first, separated by spaces.

Key names must
be valid ASCII

All ASCII characters are valid in key names, with the following exceptions:

 • “?” and “* ” are treated as wildcards, unless you turn off wildcard usage; see §4.1.10
Specifying how to treat cases, spaces, and wildcards on page 73. (However, when you
override a configuration setting with a configuration variable, DITA2Go does not
recognize wildcards in the key name; see §42.2.4 Assigning values to configuration
variables on page 768.)

 • “ ; ” or “ [” must be prefixed with escape character “\ ” if you want to start a key name
with either of these characters.

Spaces are nominally allowed in key names, but the spaces are ignored unless you turn off
[Options]SpacelessMatch ; see §4.1.10 Specifying how to treat cases, spaces, and
wildcards on page 73. Do not use spaces if you can possibly avoid them.

Key names are
not case

sensitive, by
default

Comparisons of key names are caseless, unless you turn on case sensitivity; see §4.1.10
Specifying how to treat cases, spaces, and wildcards on page 73. (However, when you
override a configuration setting with a configuration variable, the key name is case
sensitive; see §42.2.4 Assigning values to configuration variables on page 768.)

Fixed-key
sections differ

from variable-key
sections

Configuration files contain two kinds of sections: those with fixed keys (key names
predefined by DITA2Go) and those with variable keys. For example, sections such as
[HTMLOptions] and [WordOptions] are for settings with fixed key names; sections
such as [HTMLParaStyles] and [HelpStyles] are for settings with key names you
specify, typically names of formats assigned to DITA elements.

Order of settings
can be important
for variable keys

In a fixed-key section, the order of settings does not matter. Order is important only in
sections where you can use variable keys, and usually only if you use wildcards in key
names (see §3.6 Using wildcards in configuration settings on page 65).

Often the variable-key names you specify are names of formats assigned to DITA
elements, such as paragraph, character, or table formats.

Multiple values
are separated by

spaces

Some variable-key sections allow multiple values for each key: sections such as
[HTMLParaStyles] , [WordStyles] , and [HelpStyles] , where you can assign
multiple properties to each format. Use spaces between values.

Spaces and tabs:
some retained,
some removed

DITA2Go treats spaces and tabs in configuration settings as follows:

 • Spaces and tabs before the Key and before the equals sign are ignored, unless
[Options]SpacelessMatch=No , in which case those before the Key are not
ignored (see §4.1.10 Specifying how to treat cases, spaces, and wildcards on page 73).

 • If the equals sign is followed by one or more spaces or tabs, the first such space or tab
is removed, and the rest are treated as part of the value. Put no more than one space
after the equals sign. If you want to align settings vertically for readability, put extra
spaces before the equals sign, not after.

SPECIFYING FILE PATHS IN CONFIGURATION SETTINGS DITA2GO USER’S GUIDE

64 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • All spaces and tabs that follow a value are retained in the output.
 • Do not try to indent settings in your project configuration file. When DITA2Go

updates this file, Windows rewrites the file, and deletes all leading spaces in the
settings. You can use indentation in macro definitions in other configuration files and
macro libraries.

Comments start
with a semicolon

Lines that start with a semicolon “; ” are comments. For a line to be treated as a comment,
the semicolon must be the first character on the line (no leading blanks or tabs). DITA2Go
pays no attention to comment lines; you can use them to add your own notes. However, do
not try to “comment out” a section by inserting a “; ” in front of the section name; all
settings that follow such a line, up to the next line that starts with a “[”, would be added to
the settings for the preceding section. To comment out a section, see §3.7 Commenting out
configuration sections on page 66.

Boolean values
can be expressed

various ways

For an On/Off value, DITA2Go recognizes “1” (numeral one), “Yes”, and “True” as On,
and “0” (zero), “No”, and “False” as Off.

3.5 Specifying file paths in configuration setting s
Path and file names should conform to the requirements listed in §1.1.2 File, directory, and
path names on page 26, otherwise you risk run-time errors. Additional considerations:

Path separator can be “\ ” or “ / ” (except sometimes!)
Paths that contain spaces must be quoted
Most relative paths relate to the project directory
Paths to configuration templates should be absolute
Some relative paths relate to the configuration file location
Paths to other applications must be absolute.

Path separator
can be “\ ” or “/ ”

(except
sometimes!)

When you specify a file path in a configuration setting, you can use either a backslash “\ ”
or a forward slash “/ ” as a separator character. A forward slash is preferred, except in the
following cases, where you must use a backslash:.

 • Windows system commands; see §43.1 Executing operating-system commands on
page 777

 • Windows command parameters; for example, see §44.11 Archiving deliverables on
page 803.

In Windows API calls, forward slashes work fine, because the original Windows
programmers compiled Windows on VAX/VMS machines.

Note: XML catalog-key path settings must use forward slashes. See §4.1.1 Connecting
to XML catalogs on page 67

Paths that contain
spaces must be

quoted

If a path contains any spaces, enclose the entire path in quotes. See §1.1.2 File, directory,
and path names on page 26.

Most relative
paths relate to the

project directory

Most path settings (other than those listed in Table 3-1 on page 65) can be either relative
or absolute. Relative file paths can make your conversion project portable. Many support
issues arise when a project is moved, after which some buried links stop working.

When you specify a relative file path in a configuration setting, the path is relative to the
project directory, with the following exceptions:

 • settings listed in Table 3-1 on page 65
 • [Automation]ShipPath , which is relative to the wrap directory; see §44.3

Understanding path values for deliverables on page 788.

3 EDITING CONFIGURATION FILES USING WILDCARDS IN CONFIGURATION SETTINGS

ALL RIGHTS RESERVED. MAY 19, 2013 65

Paths to
configuration

templates should
be absolute

Settings that reference configuration templates, or other files in the DITA2Go distribution
directory structure, should use absolute paths that begin with environment variable
%OMSYSHOME%; for example:

Configs = %omsyshome%\d2g\local\config\local_d2htm_ config.ini

See §1.3.1 Set up a framework for Omni Systems applications on page 29.

Some relative
paths relate to the

configuration file
location

If you specify a relative path in any of the settings listed in Table 3-1 on page 65, the path
is considered to be relative to the location of the configuration file in which the setting
occurs. This means that if you move such a setting from one configuration file to another
at a different level in your project directory structure, the path will no longer be correct.

If you want project portability, the price is using a fixed directory structure, where both the
_config directory (see §39.3.2 Deciding where to keep document-specific configuration
files on page 733) and the project directory are immediately below the source directory. If
you have files all over the place, portability becomes impossible.

Paths to other
applications must

be absolute

File paths to non-DITA2Go executables must be absolute. However, a better way would
be to make sure those executables are on your system PATH, so your conversion project is
portable.

3.6 Using wildcards in configuration settings
In a variable-key setting, you can apply the same value to multiple keys by substituting a
wildcard “* ” or “?” for all or part of the key name, as follows:

 • A question mark can appear anywhere in a key name, substituting for any one
character; multiple question marks substitute for the same number of characters.

 • An asterisk can appear only at the end of a key name, substituting for one or more
characters, except in element paths, where it can appear anywhere in the path.

You can use wildcards whenever the key is a format name or an identifier, provided you
have not turned off wildcard usage (see §4.1.10 Specifying how to treat cases, spaces, and
wildcards on page 73). For example, to make all paragraphs whose format names start
with Heading appear bold and centered in HTML output:

[HTMLParaStyles]
Heading*=Bold Center

You can exclude one or more key names from a group by listing the exceptions first:

Table 3-1: Absolute vs. relative file-path settings

Section Setting Absolute or relative file path? Ref.

[Templates] All settings Paths to templates in the DITA2Go
distribution should be absolute and start
with %OMSYSHOME%

39.1

Paths to your own template files should be
relative to the location of the configuration
file in which the setting occurs

39.5

[Setup] DTDPath Absolute path recommended 4.1.3

[Logging] LogFileName Keep setting in project configuration file 4.2

HistoryFileName Keep setting in project configuration file 4.2

EditorFileName Absolute path required 4.2

[ConditionOptions] DitavalFile Absolute path recommended 9.1.1

[OmniHelpOptions] ProjectTemplate Keep setting in project configuration file 19.5.7

COMMENTING OUT CONFIGURATION SECTIONS DITA2GO USER’S GUIDE

66 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[HTMLParaStyles]
Heading4=
Heading3=Bold Left
Heading*=Bold Center
z????title=Bold Right
*=Left

In this example:

 • No HTML style properties would apply to Heading4 paragraphs.
 • Heading3 paragraphs would appear left-aligned and bold in HTML.
 • All remaining Heading* paragraphs would be centered and bold.
 • All paragraphs whose format names start with z, followed by any four characters, and

end with title, would be right-aligned and bold.
 • Paragraphs in all other formats would be left-aligned.

DITA2Go applies the first entry in a section that matches for each key name, so always
put the exceptions before the general case.

3.7 Commenting out configuration sections
If you need to comment out an entire section in your project configuration file, perhaps to
test an alternative approach, you can place a semicolon at the beginning of each setting in
that section. An easier way is to place a semicolon after the opening bracket of the section
head; for example:

[;Templates]

This has the effect of giving that section a name that has no meaning to DITA2Go , so the
settings for that section will be ignored.

Note: If you place the semicolon before the opening bracket, the settings will become
part of the previous configuration section, rarely what you want.

3.8 Ending a configuration file
All configuration files and templates in your DITA2Go distribution end with a dummy
section that signifies no more settings:

[End]

If you create additional configuration files or templates, end them with this section.
(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 67

4 Setting basic conversion options

This section explains how to use basic DITA2Go configuration settings to convert
documents from DITA XML to other representations. Topics include:

§4.1 Specifying operating settings on page 67
§4.2 Logging conversion events on page 74
§4.3 Identifying files and elements on page 76
§4.4 Processing graphics on page 77

Print RTF For additional settings specific to print RTF, see:
§15 Converting to print RTF on page 219

Help systems For additional settings specific to on-line Help, see:
§16 Producing on-line Help on page 243 through
§21 Generating Eclipse Help on page 413

HTML, XML For additional settings specific to HTML and XML, see:
§22 Converting to HTML/XHTML on page 429 through
§36 Marking HTML table cells for WAI on page 667

4.1 Specifying operating settings
In this section:

§4.1.1 Connecting to XML catalogs on page 67
§4.1.2 Accommodating specializations on page 68
§4.1.3 Specifying a DITA XML DTD on page 68
§4.1.4 Generating a map from a DITA topic file on page 69
§4.1.5 Accommodating paths to network drives on page 70
§4.1.6 Checking output type and file extension on page 70
§4.1.7 Producing print output selectively on page 71
§4.1.8 Including element tags and paths in output on page 72
§4.1.9 Reusing or discarding ASCII DCL files on page 73
§4.1.10 Specifying how to treat cases, spaces, and wildcards on page 73

See also:
§3.4 Understanding the rules for configuration settings on page 62

4.1.1 Connecting to XML catalogs

By default, DITA2Go uses XML catalogs to resolve paths to resources. Because DITA 1.2
depends on catalogs so heavily, your DITA document should use XML catalogs to locate
DTD, system entity, or stylesheet files.

To specify keys to each XML catalog:
[Catalogs]
; UseCatalogs = Yes (default, resolve paths to reso urces
; via specified XML catalogs) or No
UseCatalogs = Yes
; CatalogKeys = list of keys to local XML catalogs
CatalogKeys = dita1.2 dita1.1

SPECIFYING OPERATING SETTINGS DITA2GO USER’S GUIDE

68 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Catalog key names are arbitrary. Several catalog keys are already defined in site-wide
system file %OMSYSHOME%\common\system\config\omsys.ini . Put your own
catalog key names in %OMSYSHOME%\common\local\config\local_omsys.ini ,
because the corresponding system file is replaced during updates.

To define each catalog key:
[Catalogs]
catalogkey = path/to/local/catalog.xml
; Use forward slashes, not backslashes in all these paths:
dita1.1 = %omsyshome%/d2g/dtds/dita1.1/catalog-dita .xml
; Use this key instead of dita1.1 if you want 1.2 f eatures:
dita1.2 = %omsyshome%/d2g/dtds/dita1.2/catalog-dita .xml
; This key supports the DITA4Publihers specializati on:
d4pubs = %omsyshome%/d2g/specializations/d4pubs/dtd s/d2g_catalog.xml

Note: Use only forward slashes in catalog paths, not backslashes.

For example, in local_omsys.ini :
[Catalogs]
mydoc = D:/mydtds/mydoctypes/catalog.xml
myxml = D:/mydtds/myxmldomain.doctypes/dtd/catalog. xml

And in your project configuration file:
[Catalogs]
CatalogKeys = mydoc myxml dita1.1

You can define all the catalog keys for any resource you might ever want in top-level
configuration file local_omsys.ini (see §1.3.7 Establish system-wide configuration
settings on page 33), then use whichever keys are appropriate on a per-project basis, in
whatever order you require for each project.

4.1.2 Accommodating specializations

Although you can specify paths to catalogs located anywhere on your local system, if you
are using specializations, you need to create your own XML catalog for each, and put that
catalog where your catalog key says it is; that can be a subdirectory of its own under the
DTDs. In the DITA2Go distribution, the catalogs are located with other DTDs.

DITA2Go does not have any requirements related to specialization. If you specialize the
DTDs, DITA2Go reads your new DTDs and just works. For a tutorial on specialization,
see:

http://xiruss.org/tutorials/dita-specialization/

DITA For
Publishers

If you have already installed the DITA For Publishers plug-in for the DITA Open Toolkit,
as an alternative to the d4pubs key defined in \common\system\config\omsys.ini ,
you can do the following:

 • Copy d2g_catalog.xml into the plugins directory where you unzipped
dita4publishers

 • Define environment variable DITA4PUBS

 • In [Catalogs] specify the following path for the d4pubs key:
d4pubs = %dita4pubs%/d2g_catalog.xml

4.1.3 Specifying a DITA XML DTD

You need to tell DITA2Go where to find the DTD for your document only if you are not
using catalogs, and your document includes specializations. If the SystemID in the

http://xiruss.org/tutorials/dita-specialization/

4 SETTING BASIC CONVERSION OPTIONS SPECIFYING OPERATING SETTINGS

ALL RIGHTS RESERVED. MAY 19, 2013 69

doctype declaration for your DITA XML document does not designate an accessible
local “file: ” URL, you must specify a local path to the DTD.

To tell DITA2Go where to find the DTD for your project:
[Setup]
; DTDPath = local path to use for DITA DTDs if the SystemID in the
; doctype declaration is not an accessible local "f ile:" URL
DTDPath=%OMSYSHOME%\d2g\dtds\dita1.1

A copy of the Oasis DITA 1.1 DTD is included in your DITA2Go distribution, in
directory %omsyshome%\common\dtds\dita1.1 . If you have specializations, you must
use your own DTDs instead. Or if you already have your own copies of the Oasis DTDs
elsewhere for use with other applications, you can use those instead.

See also:
§4.1.1 Connecting to XML catalogs on page 67

4.1.4 Generating a map from a DITA topic file

DITA2Go can work directly on a DITA topic file without a map that references the topic
file. However, output would not include a TOC, and related-links would not be resolved.
Therefore, if a map is not already present, DITA2Go generates a map for your project,
unless you do not want a map.

In this section:
§4.1.4.1 Choosing whether to generate a map on page 69
§4.1.4.2 Specifying options for a generated map on page 69

4.1.4.1 Choosing whether to generate a map

By default, when you specify a DITA topic file as input, if no map that references that
topic file is present, DITA2Go generates a map for your project.

To prevent DITA2Go from generating a map:
[MapGeneration]
; GenerateMapIfMissing = Yes (default, if no map fo und, generate a
; ditamap with the same name and run that instead), or No
GenerateMapIfMissing = No

When GenerateMapIfMissing=Yes , DITA2Go first looks for a map with the same
name as the topic file, in the same directory; if found, DITA2Go processes that map. If the
directory contains both a .ditamap and a .bookmap , DITA2Go uses the .bookmap .
DITA2Go never overwrites an existing map file.

When GenerateMapIfMissing=No , DITA2Go processes the topic file by itself. The
output will not include a TOC, and related-links will not be resolved.

4.1.4.2 Specifying options for a generated map

To specify options for a DITA2Go -generated map:
[MapGeneration]
; MapRootElem = root element to use for map, defaul t "map"
MapRootElem = map
; MapTitleElem = title element to use for map, defa ult "title"
MapTitleElem = title
; MapTitle = title element content for map, default is no title
MapTitle = Title content for map
; UseTopicShortdesc = Yes (default, include shortde scs from topic)
; or No (exclude text in the topics from the map).

SPECIFYING OPERATING SETTINGS DITA2GO USER’S GUIDE

70 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

UseTopicShortdesc = Yes
; MapLanguage = value of xml:lang on map root eleme nt, default en-us
MapLanguage = en-us
; PublicID = PUBLIC ID to use for map DOCTYPE, defa ult as below
PublicID= "-//OASIS//DTD DITA 1.1 Map//EN"
; SystemID = SYSTEM ID to use for map DOCTYPE, defa ult as below
SystemID= "http://docs.oasis-open.org/dita/v1.1/OS /dtd/map.dtd"

You also use these options when you run command-line utility DITA2Map as a stand-
alone program. DITA2Map simply generates a map and stops there, without producing
any further output. See §46 Creating a map with DITA2Map on page 815.

4.1.5 Accommodating paths to network drives

If parts of your DITA source reside on different drives, DITA2Go cannot determine
relative paths from the project directory to those parts, and must use absolute paths
instead.

To direct DITA2Go to use absolute rather than relative paths:
[Options]
; UseFullPath = No (default, use relative paths to project components)
; or Yes (always use absolute paths)
UseFullPath = Yes

When UseFullPath=No , DITA2Go determines the relative path from the project
directory to the top-level map. DITA2Go continues this process, determining the relative
path from the project directory to each component, for essentially every path in the maps
and topics. If the initial map is on a different drive from the drive where the project
directory is located, DITA2Go cannot determine a relative path, and uses no path at all.
This can cause your conversion project to fail.

When UseFullPath=Yes , you get absolute paths to images as well as to map and topic
files; this means that for HTML output, references to graphics might resolve only on the
original system. To get around this problem, you must either remove paths from graphics
references or specify a path explicitly. (This is not an issue for RTF output, where
DITA2Go embeds images in the RTF code itself when possible, or places graphics files in
the same directory as the RTF files.)

To remove path information from references to images for HTML output:
[Graphics]
; StripGraphPath = No (default)
; or Yes (remove path from referenced graphics)
StripGraphPath = Yes

To specify a path to graphics files for HTML output:
[Graphics]
; GraphPath = path to use (replacing any previous) for all graphics
GraphPath = path/to/graphics/files

See §32.1 Locating graphics files for HTML on page 611.

4.1.6 Checking output type and file extension

The project configuration file that DITA2Go Project Manager copied to your output
directory when you set up your conversion project already contains the correct setting for
the output type (which is indicated by the configuration file name). Do not change this
setting.

4 SETTING BASIC CONVERSION OPTIONS SPECIFYING OPERATING SETTINGS

ALL RIGHTS RESERVED. MAY 19, 2013 71

Table 4-1 shows the name of the project configuration file for each output type, and the
preset extension for output files. You can change the setting for the output file extension,
for all output types except WinHelp.

For example, to specify a different file extension for HTML output:
[Setup]
; FileSuffix = suffix used for output file extensio n and in
; cross references
FileSuffix = .html

The leading dot on the extension is optional.

4.1.7 Producing print output selectively

DITA topicref attribute @print (with value yes , no, or printonly) allows you to
specify whether the referenced topic is to be included in print output, excluded from print
output, or included only in print output.

By default, DITA2Go includes topics referenced with @print="printonly" in RTF
output for Word or WordPerfect, but in no other output type. To include topics for which
@print="printonly" in other output types:

[Setup]
; PrintProject = No (default) or Yes (override topi c inclusion
; that is based on value of @print attribute)
PrintProject = Yes

When PrintProject=Yes , topics for which @print=printonly are included in
output.

When PrintProject=No , topics for which @print="printonly" are included only in
Word or WordPerfect output; and topics for which @print="no" are included in all
outputs, except for Word and WordPerfect.

Table 4-2 shows the effect of the PrintProject setting for different values of the
@print attribute.

Table 4-1 Output types, file extensions, project configuration files

Output
category Output type

Preset output
file extension

Project
configuration file Ref.

HTML-based
Help

Eclipse Help .htm _d2eclipse.ini 21

Microsoft HTML Help .htm _d2htmlhelp.ini 18

JavaHelp .htm _d2javahelp.ini 20

OmniHelp .htm _d2omnihelp.ini 19

Oracle Help for Java .htm _d2oraclehelp.ini 20

HTML Standard HTML .htm _d2html.ini 22

XHTML .xhtml _d2xhtml.ini 22

XML DITA XML .dita (not settable) _d2dita.ini 24

Docbook XML .ent _d2docbook.ini 26

Generic XML .xml _d2xml.ini 23

RTF WinHelp .rtf (not settable) _d2winhelp.ini 17

Print RTF .rtf _d2rtf.ini 15

SPECIFYING OPERATING SETTINGS DITA2GO USER’S GUIDE

72 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Note: You do not need to specify a PrintProject setting at all unless you are trying to
override normal expectations for type of output.

Do it with PI
markers

If your DITA maps do not include values for the topicref @print attribute, you can
achieve the same effect with PI markers inserted in the topicrefs, and a ditaval file. For
example:

<?dtall Print="printonly" ?>

In this example the effect on DITA2Go output is the same as if you had included
@print="printonly" in the topicref for each such topic.

4.1.8 Including element tags and paths in output

By default, DITA2Go includes several items from your DITA XML files in ASCII DCL,
the intermediate representation of your document from which the final output is generated.
These items include the original element tags and attributes, and the path used to select an
output type for each element. These settings can be useful for project debugging.

To omit element tags and attributes from DCL output:
[ElementOptions]
; IncludeElementTags = Yes (default, include origin al tags and
; attributes in the DCL, for possible downstream us e) or No
IncludeElementTags = No

To omit format selection paths from DCL output:
[ElementOptions]
; ShowElementPath = Yes (default, include report of element path
; used to select each format in DCL after the forma t call) or No
ShowElementPath = No

When ShowElementPath=Yes , the position of the element from which DITA2Go
derived each paragraph or character span is written to DCL just ahead of the paragraph or
span, enclosed in square brackets. This can be helpful when you specify an element path in
[BlockFormatMaps] or [InlineFormatMaps] , and the setting does not work as
intended. You can see what DITA2Go considered the actual element path to be.

If you plan to keep the intermediate ASCII DCL file for further inspection or processing
you must run dcl.exe twice: first to generate the intermediate ASCII DCL file, and
second to generate the final output; see §2.7 Converting documents from the command
line on page 46. However, you can direct DITA2Go to include the format selection paths
in final output, also.

To include format selection paths in final output:

Table 4-2: Topics included in output based on PrintProject setting

PrintProject @print attribute Include topic in output ?

No not present Yes

yes Yes

no No for print RTF, Yes for all others

printonly Yes for print RTF, No for all others

Yes not present Yes

yes Yes

no No

printonly Yes

4 SETTING BASIC CONVERSION OPTIONS SPECIFYING OPERATING SETTINGS

ALL RIGHTS RESERVED. MAY 19, 2013 73

[ElementOptions]
; DisplayElementPath = No (default) or Yes(display the element path
; used to select each format at the start of the te xt in that format)
DisplayElementPath = Yes

When DisplayElementPath=Yes , any element-path information collected in DCL is
included in final output, just ahead of the paragraph or span. DisplayElementPath is
effective only when ShowElementPath=Yes .

To specify a character format for DisplayElementPath :
[ElementOptions]
; ElementPathFormat = inline format used for elemen t path display
ElementPathFormat = CharFmt

4.1.9 Reusing or discarding ASCII DCL files

You can use DITA2Go to convert the files in your document to ASCII DCL, specifying -
t dcl on the command line (see §45.3 DCL command-line syntax on page 810). Next
time you run the same conversion, you can direct DITA2Go to use those DCL files (and
your altered or replaced graphics files) instead of creating them anew:

[Setup]
; UseExistingDCL = No (default, make .dcb)
; or Yes (use .dcl file if it exists)
UseExistingDCL = Yes

When you specify UseExistingDCL=Yes , instead of creating binary DCL files
(extension .dcb) and then deleting them at the end of the conversion process, DITA2Go
uses the existing ASCII DCL files (extension .dcl), and leaves them in place.

When you are finished with a set of DCL files, to clear them out before you begin a new
conversion from your document:

[Setup]
; DeleteExistingDCL = No (default) or Yes (delete * .dcl from the
; project directory before conversion if UseExistin gDCL is not set.
DeleteExistingDCL = Yes

When DeleteExistingDCL=Yes , DITA2Go deletes both .dcl and .dcb files from
your project directory before conversion.

4.1.10 Specifying how to treat cases, spaces, and wildcards

You can choose how DITA2Go interprets paragraph, character, and table format names, to
match them to settings in the configuration file:

[Options]
; CaselessMatch = Yes (default, ignore upper/lower differences) or No
CaselessMatch = Yes
; SpacelessMatch = Yes (default, ignore embedded sp aces) or No
SpacelessMatch = Yes
; WildcardMatch = Yes (default, allow ? and * in se ttings) or No
WildcardMatch = Yes

The default settings help eliminate hard-to-spot typing errors. However, you might have to
change one or more of these settings if any format names in your document:

 • differ only in case (such as Body and body): set CaselessMatch=No .
 • differ only by spaces (such as Lastbullet and Last bullet): set SpacelessMatch=No .
 • contain asterisks or question marks: set WildcardMatch=No . See §3.6 Using

wildcards in configuration settings on page 65.

LOGGING CONVERSION EVENTS DITA2GO USER’S GUIDE

74 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

4.2 Logging conversion events
Whenever you convert a document, by default DITA2Go records conversion events in a
plain ASCII log file located in the project directory. This event log lists files opened and
any error messages or warnings that are produced during conversion. At the start of the
next conversion run, DITA2Go appends the finished event log to a history file before
starting a new log.

To disable logging, or to change the name or location of the log file, history file, or log text
editor:

[Logging]
; UseLog = Yes (default, log as specified in this s ection) or No
UseLog = No
; LogFileName = name with path (absolute, or relati ve to project dir)
LogFileName = d2g_log.txt
; EditorFileName = text editor executable to displa y log if errors
EditorFileName = notepad.exe
; ShowLog = Yes (default, display log in text edito r if errors or
; warnings) or No
ShowLog = Yes
; HistoryFileName = name with path of cumulative lo g history, to which
; the contents of LogFileName are appended.
HistoryFileName = _d2g_history.txt

The default name of the log file is _d2g_log.txt , and the default name of the history file
is _d2g_history.txt . Unless you specify a different path for LogFileName or for
HistoryFileName , DITA2Go writes the log file and history file to the project directory.
If you specify a relative path, that path is relative to the project directory.

At the start of a conversion DITA2Go appends the contents of any existing log file
(named by LogFileName) to the history file named by HistoryFileName , then deletes
the contents of the old log file. Because the purpose of the log is to make diagnosing
problems easier, the DITA2Go Project Manager appends log entries to the history file for
successive conversions. A key diagnostic approach is to compare entries from successive
conversion runs, and not necessarily just the last two runs.

When ShowLog=Yes , if you are running the conversion from the DITA2Go Project
Manager, if any warnings or errors occur, the Project Manager pops up the log file in the
editor named by EditorFileName . The default editor is notepad.exe . If you specify a
text editor that is not on the system execution path, you must include its full path in the
value for EditorFileName . If you are running DITA2Go from the command line, each
DITA2Go DLL pops up the log file if errors or warnings are encountered.

When UseLog=Yes , you can specify the type and the importance (or level of severity) of
events DITA2Go reports in the log file:

[Logging]
; These take severity values, 1 (greatest) to 9 (le ast),
; or 0 to prevent logging (except for LogInfo)
; LogErrors = 1 (default, log events that terminate a process)
LogErrors = 1
; LogWarnings = 1 (default, log problems with worka rounds that might
; result in undesired output)
LogWarnings = 1
; LogQuerys = 1 (default, log possible ambiguities)
LogQuerys = 1
; LogInfo = 1 (default, log process information; 0 is ignored)
LogInfo = 1
; LogDebug = 0 (default, do not log possible progra mming issues)
LogDebug = 0

4 SETTING BASIC CONVERSION OPTIONS LOGGING CONVERSION EVENTS

ALL RIGHTS RESERVED. MAY 19, 2013 75

Log entry types are as follows:

By default, DITA2Go logs only the most important or severe events (level 1), but not less
important or less severe events (levels 2 through 9). At level 1 only the most important
processing events are logged, such as the start of processing for each DITA file and the
identity of the software module doing the processing. Unless you specify otherwise
DITA2Go does not log events classified as debugging issues.

Note: When UseLog=Yes , process information is always logged, even if you set
LogInfo=0 .

Each log entry appended to the log file includes the following information:

 • timestamp (if different from the previous entry), on a line by itself
 • event type (E, W, Q, I , or D)
 • severity level or importance (from 1 = most severe or important to 9 = least severe or

important)
 • event description.

Flagging
undefined formats

By default, DITA2Go logs a warning about any format that is referenced but not defined.
If you get tired of seeing warnings about undefined formats:

[Logging]
; ShowUndefinedFormats = Yes (default) or No
ShowUndefinedFormats = No

Recording
configuration

chains

In addition to logging conversion events, you can have DITA2Go include in the event log
all the chains of configuration files and templates referenced by your project:

[Logging]
; LogIniChains = No (default) or Yes, list all chai ns
LogIniChains = Yes

When LogIniChains=Yes , before listing events, DITA2Go shows the full path of every
configuration file and template used in processing, in the order they are referenced by
settings in the [Templates] section. For example:

I1: Ini chain for Configs:
I1: _d2omnihelp.ini
I1: .._config\d2gug_htm_document.ini
I1: .._config\d2gug_document.ini
I1: g:\omnisys\d2g\local\config\local_d2omnihelp_ config.ini
I1: g:\omnisys\d2g\system\config\d2omnihelp_confi g.ini
I1: g:\omnisys\d2g\local\config\local_d2help_conf ig.ini
I1: g:\omnisys\d2g\system\config\d2help_config.in i
I1: g:\omnisys\d2g\local\config\local_d2htm_confi g.ini
I1: g:\omnisys\d2g\system\config\d2htm_config.ini
I1: g:\omnisys\d2g\local\config\local_d2g_config. ini
I1: g:\omnisys\d2g\system\config\d2g_config.ini
I1: g:\omnisys\common\local\config\local_omsys.in i
I1: g:\omnisys\common\system\config\omsys.ini
I1: Ini chain for Languages:
I1: g:\omnisys\d2g\local\lang\local_d2g_lang_en.i ni
I1: g:\omnisys\d2g\system\lang\d2g_lang_en.ini
I1: Ini chain for Formats:

E Error: process terminated

W Warning: problem with a workaround

Q Query: possible ambiguity

I Information only

D Debug: possible programming issue

IDENTIFYING FILES AND ELEMENTS DITA2GO USER’S GUIDE

76 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

I1: .._config\d2gug_htm_formats.ini
I1: g:\omnisys\d2g\local\formats\local_d2htm_form ats.ini
I1: g:\omnisys\d2g\system\formats\d2htm_formats.i ni
I1: Ini chain for SubFormats:
I1: .._config\d2gug_htm_subformats.ini
I1: g:\omnisys\d2g\local\formats\local_d2htm_subf ormats.ini
I1: g:\omnisys\d2g\system\formats\d2htm_subformat s.ini

This output shows the chain of general configuration files and templates referenced from
starting configuration file _d2omnihelp.ini , for a project to generate OmniHelp from
DITA.

4.3 Identifying files and elements
To maintain interfile and intrafile references, DITA2Go automatically generates unique
IDs for every element and output file. These generated IDs wind up in the output as the
link targets. You can specify how these IDs are created.

In this section:
§4.3.1 Generating document-wide unique IDs on page 76
§4.3.2 Specifying building blocks for unique IDs on page 76
§4.3.3 Specifying a prefix for bookmarks in RTF output on page 77
§4.3.4 Checking for duplicate IDs on page 77

4.3.1 Generating document-wide unique IDs

By default, DITA2Go augments element IDs with topic, file, and path information. To
omit this optional information and include just the element IDs themselves:

[IDOptions]
; GenerateUIDs = Yes (default, augment element IDs with optional
; topic, file, and path information), or No (use el ement ID as is)
GenerateUIDs=No

When GenerateUIDs=Yes , DITA2Go combines several building blocks to generate a
unique document-wide ID for every element. You can specify the building blocks to use;
see §4.3.2 Specifying building blocks for unique IDs on page 76.

4.3.2 Specifying building blocks for unique IDs

The following three options determine what building blocks are added to an element ID to
create a document-wide unique ID. To omit a building block, set its option to No:

[IDOptions]
; IDTopic = Yes (default, include topic ID in UID) or No
; IDFile = Yes (default, include file name in UID) or No
; IDPath = Yes (default, include path to file in UI D) or No

The default is to include all three in the element ID: path, file name, and topic ID.
Depending on your situation, you may be able to eliminate some building blocks. For
example, if you know your DITA file names are always unique (as when using a CMS),
that alone may be sufficient without paths and IDs.

The following settings determine the separators used between building blocks. To
eliminate use of a separator, set its option to blank.

[IDOptions]
; IDPathSep = string used to replace the "/"s in th e doc path
IDPathSep=P

4 SETTING BASIC CONVERSION OPTIONS PROCESSING GRAPHICS

ALL RIGHTS RESERVED. MAY 19, 2013 77

; IDUpDir = string used to replace any "../"s at st art of path
IDUpDir=U
; IDTopSep = string used to replace the "#" before the topic ID
IDTopSep=T
; IDElemSep = string used to replace the "/" betwee n topic ID and
; element ID
IDElemSep=E

For example, using the default separator characters, this string:
UconceptsPc_methodTmainmethodEfig1

replaces ID fig1 for this element:
../concepts/c_method#mainmethod/fig1

4.3.3 Specifying a prefix for bookmarks in RTF out put

Bookmarks for links in RTF output consist of an element ID with a prefix. To specify a
prefix for RTF bookmarks:

[FileIDs]
; original map name (no extension) = prefix ID for bookmarks
mapname = prefix

The default bookmark prefix is the map name itself.

4.3.4 Checking for duplicate IDs

To be absolutely certain there are no duplicate IDs, by default DITA2Go conducts a
duplicate-name check, and if any duplicates are found, modifies the IDs involved for
uniqueness. To prevent the check for duplicates:

[IDOptions]
; DuplicateNameCheck = Yes (default, check for dupl icate topic and
; output file names, and modify IDs for uniqueness) or No (no check)
DuplicateNameCheck=No

When DuplicateNameCheck=Yes , you can specify the format and length of a sequence
number to be added to IDs as a suffix:

[IDOptions]
; UniqueNameSuffixFormat = Format string used by sp rintf to add a
; unique suffix, where the int argument is a sequen ce number (1-999)
UniqueNameSuffixFormat = X%0.3d
; UniqueNameSuffixLength = length in bytes of the u nique suffix
UniqueNameSuffixLength = 4

Theoretically, just the elements with duplicate IDs get suffixes. In practice, you might see
many other elements with (for example) an X001 ID suffix even though no matching ID
with an X002 suffix is present. That is because DITA2Go has to distinguish duplicates
before determining whether the IDs involved are referenced. If one of them is not
referenced, that ID might not be included in output.

4.4 Processing graphics
This section provides a brief overview of options and methods for getting the graphics
referenced in your DITA document into an appropriate format.

If some graphics referenced by your document are in a format that is not appropriate for
the output type you select (see §40.1 Choosing an appropriate graphics format on
page 745), you have the following options:

PROCESSING GRAPHICS DITA2GO USER’S GUIDE

78 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • Omit the graphics from the output.
 • Recreate the graphics in a different format.
 • Convert the graphics to a different format.

See also:
§40 Working with graphics on page 745

Several graphics programs, such as the following, can convert images from one format to
another:

1. Use a third-party graphics program to alter or replace the graphics; save each using the
same file name as the original (referenced) or exported (embedded) graphic, but with a
different extension.

2. RTF output. Indicate that you want file names to be mapped, and specify both old
and new file extensions (without leading periods):

[Graphics]
FileNames = Map

[GraphFiles]
old_extension = new_extension

3. HTML output . Specify the new extension:
[Graphics]
GraphSuffix = new_extension

(No illustrations)

Graphic Workshop Pro http://www.mindworkshop.com

Adobe Illustrator http://www.adobe.com/products/illustrator/main.html

Corel Paint Shop Pro http://www.jasc.com/ (redirect)

GhostScript/GhostView http://www.cs.wisc.edu/~ghost/ (for EPS graphics)

http://www.mindworkshop.com
http://www.adobe.com/products/illustrator/main.html
http://www.jasc.com/
http://www.cs.wisc.edu/~ghost/

ALL RIGHTS RESERVED. MAY 19, 2013 79

5 Modifying output appearance

This section shows how to find and tweak format settings to get the output appearance you
want. You will need the following:

 • the DITA2Go Project Manager to run conversions
 • a text editor to modify format settings
 • a browser such as Firefox to view results of HTML conversions
 • Microsoft Word (or another RTF-based word processor) to view results of RTF

conversions.

In this section:
§5.1 Understanding where to modify formats on page 79
§5.2 Understanding how to modify formats on page 80
§5.3 Changing how the output looks on page 80
§5.4 Determining how an element is rendered on page 83

5.1 Understanding where to modify formats
The specifications that determine what your output looks like are available in format
configuration files. These files contain default format definitions for nearly all DITA
elements, with variations (such as indentation) for different contexts. DITA2Go reads
these specifications to prepare CSS files that ultimately determine the appearance of
HTML output, or RTF files for RTF output.

Master format configuration files are located in directory
%OMSYSHOME%\d2g\system\formats :

The corresponding user-modifiable format configuration files are located in directory
%OMSYSHOME%\d2g\local\formats :

Text-format configuration files specific to the DITA Test Suite are located in directory
%OMSYSHOME%\demo\DITATestSuite_config :

You will need to inspect the master files, but do not modify them. See §39.4.5 Editing a
format configuration file on page 739.

Default HTML formats Default RTF formats
d2htm_formats.ini d2rtf_formats.ini

d2htm_subformats.ini d2rtf_subformats.ini

d2htm_tables.ini d2rtf_tables.ini

Local HTML formats Local RTF formats
local_d2htm_formats.ini local_d2rtf_formats.ini

local_d2htm_subformats.ini local_d2rtf_subformats.in i

local_d2htm_tables.ini local_d2rtf_tables.ini

DITA Test Suite HTML text formats DITA Test Suite RTF text formats
dts_htm_formats.ini dts_rtf_formats.ini

UNDERSTANDING HOW TO MODIFY FORMATS DITA2GO USER’S GUIDE

80 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

5.2 Understanding how to modify formats
Make changes in appearance, such as font, style, or alignment, in local or document-
specific format configuration files (never in the master format configuration files, nor in
your project configuration file).

For example, in %omsyshome%\d2g\system\formats\d2htm_formats.ini you
will find the following definition of the format for top-level numbered list items:

[Numbered1]
based = Body
margin top = 4pt
margin bottom = 0pt
margin left = 2pt
list style = decimal
list level = 1
number = List1Num
xref = NumXref

If you want more space above each list item in HTML output, you would add the
following setting to
%omsyshome%\d2g\local\formats\local_d2htm_formats.i ni :

[Numbered1]
margin top = 12pt

This setting would override the space above for all HTML outputs from all DITA
documents. (You must include this setting in a format configuration file; it will not take
effect in your project configuration file.)

Formats can inherit properties from other formats, so this change would automatically
carry through to the rest of the numbered formats, because they are based on the definition
of Numbered1 :

[Numbered1First]
based = Numbered1

[Numbered2]
based = Numbered1

However, this change would not affect any added paragraphs under each numbered item,
because their definition overrides the space-above property:

[Unnumbered1]
based = Numbered1
margin top = 2pt

Format definitions form a tree, with inheritance, so you can adjust a particular branch, in
one place. The format configuration files themselves also form trees, where the scope of a
change is determined by which file you modify. See §39.4 Deciding which configuration
file to edit on page 734.

5.3 Changing how the output looks
This section uses the DITA Test Suite project in the DITA2Go distribution as an example.

In this section:
§5.3.1 Producing HTML output from the DITA Test Suite on page 81
§5.3.2 Getting rid of that awful green color on page 81
§5.3.3 Changing the indentation on page 82
§5.3.4 Changing the spacing on page 82

5 MODIFYING OUTPUT APPEARANCE CHANGING HOW THE OUTPUT LOOKS

ALL RIGHTS RESERVED. MAY 19, 2013 81

5.3.1 Producing HTML output from the DITA Test Sui te

To provide some output to work with:

1. Start the DITA2Go Project Manager. If you do not already have a desktop shortcut to
this program, see Step 2 on page 31.

2. On the Run Options tab, make sure both Advanced Options are off.

3. On the Run Project tab, select predefined project DTS HTML Demo.

4. Click Start , and wait for the run to complete. Now you have a collection of HTML
files generated from the DITA files in the DITATestSuite directory.

5. In Windows Explorer, navigate to subdirectory
%OMSYSHOME%\demo\DITATestSuite\html . You can use the HTML output files
in this subdirectory to practice modifying text appearance.

5.3.2 Getting rid of that awful green color

Open file design.htm in a Web browser. You should see an HTML page with the
heading 1.1 Test Suite Design . You will modify the appearance of text on this page.

Suppose you want the paragraph after the first heading to be some color other than green.
For an ad hoc solution, you could simply inspect the HTML to find the name of the CSS
class for this paragraph, then change the color designated for that class in file local.css .
But the next time you generated HTML output, the text would be green again.

Look at the HTML code, and notice that the CSS class for this paragraph is shortdesc .
This is also the name of the format. To see if there is a definition of a format called
Shortdesc for the DITA Test Suite, with a text editor inspect the DITA Test Suite format
configuration file for HTML output:

%OMSYSHOME%\demo\DITATestSuite_config\dts_htm_form ats.ini

(The _config subdirectory holds configuration files specific to the DITA Test Suite, and
dts_htm_formats.ini holds text format definitions specific to the DITA Test Suite.)

The only format definition in dts_htm_formats.ini is this one:
[RevisedConref]
based = Char
color = lime

Therefore, we have to look further for the definition of the Shortdesc format. File
dts_htm_formats.ini references the following format template:

%OMSYSHOME%\d2g\local\formats\local_d2htm_formats.i ni

So that is the next place to look. If you are just starting out with DITA2Go , it is unlikely
you will have put any format definitions in this user-modifiable file, so you will not likely
find a definition of the Shortdesc format there. The next place to look is the format
configuration file referenced by local_d2htm_formats.ini :

%OMSYSHOME%\d2g\system\formats\d2htm_formats.ini

This is the master text-format configuration file for HTML output. And sure enough, this
file contains the definition:

[Shortdesc]
based = Body
font size = 9pt
line height = 10pt
color = green
margin left = 48pt
margin bottom = 2pt

CHANGING HOW THE OUTPUT LOOKS DITA2GO USER’S GUIDE

82 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

You most definitely do not want to change the definition in the master file, because this
file will be overwritten every time you update DITA2Go . So you must override the
definition, in one of the “lower” files in the chain:

 • local_d2htm_formats.ini , if you never want to see the <shortdesc> element
rendered in green again, in any HTML output from any DITA source

 • dts_htm_formats.ini , to get rid of the green only for the DITA Test Suite.

Suppose you choose the second option. Just copying the definition to
dts_htm_formats.ini and deleting the color setting will not change the color,
because the Shortdesc format definition inherits all properties assigned to this format in
any format configuration file up the chain. So what you must do is override the color
setting, for example, by specifying no color.

Add the following format definition to dts_htm_formats.ini :
[Shortdesc]
color =

You do not have to repeat any of the other properties in dts_htm_formats.ini ,
because they will be inherited from the definition at the top of the chain.

Next time you run the DITA Test Suite conversion to any HTML output, text rendered
from the <shortdesc> element will no longer appear green.

5.3.3 Changing the indentation

Suppose you would also like less indentation for the Shortdesc format; after all, 48pt is
a bit extreme. So you could add another override to the definition:

[Shortdesc]
margin left = 24pt
color =

Next time you run the DITA Test Suite conversion to any HTML output, text rendered
from the <shortdesc> element will be indented only 24pt from the left margin.

5.3.4 Changing the spacing

Now suppose you want more space above and below each Shortdesc paragraph. The
master definition of the Shortdesc format includes a setting for margin bottom , but
none for margin top . However, the master Shortdesc definition inherits properties
from format Body, on which it is based:

[Shortdesc]
based = Body
...

So, to find out what else is influencing the appearance of Shortdesc , you need to look at
the definition of the Body format, which is also in d2htm_formats.ini :

[Body]
based = Para
margin top = 4pt
margin bottom = 0pt
margin left = 0pt
font size = 10pt
font family = Verdana, sans-serif

There you see that margin top is 4pt . So, to add 2pt to the space above and 2pt to the
space below each Shortdesc paragraph, in dts_htm_formats.ini :

[Shortdesc]
margin top = 6pt

5 MODIFYING OUTPUT APPEARANCE DETERMINING HOW AN ELEMENT IS RENDERED

ALL RIGHTS RESERVED. MAY 19, 2013 83

margin bottom = 4pt
margin left = 24pt
color =

Next time you run the DITA Test Suite conversion to any HTML output, text rendered
from the <shortdesc> element will be set off from preceding and following text by a
little more space.

To see the rest of the settings that can affect the appearance of a Shortdesc paragraph,
look at the definition of Body again. Body is based on Para , so check the definition of
Para :

[Para]
display = block
inline = Char
line height = 12pt

Para is the end of the line for paragraph formats; but Para uses character formatting from
inline format Char , so check the definition of Char :

[Char]
display = inline
font name = Verdana,serif
font size = 10pt

Since Char is not based on any other format, now you know all the properties that
combine to determine the appearance of text rendered in HTML from the <shortdesc>
element.

See §7.6 Configuring text output formats on page 121.

5.4 Determining how an element is rendered
Suppose your DITA source includes element <example> , and you would like to know
how this element will be rendered in RTF output. For this exercise, you will need to
inspect four different configuration files:

%omsyshome%\d2g\system\config\d2g_config.ini
%omsyshome%\d2g\system\formats\d2rtf_formats.ini
%omsyshome%\d2g\system\formats\d2rtf_subformats.ini
%omsyshome%\d2g\system\lang\d2g_lang_en.ini

In each case, using your text editor to look for “example” will take you to the right place
immediately.

To find out which output format is assigned to element <example> , search for “example”
in the following file:

%omsyshome%\d2g\system\config\d2g_config.ini

Here you will find “example” in a section that assigns formats to elements, according to
the DITA context of each element:

[BlockFormatMaps]
...
prereq/taskbody/*=Prereq
context/taskbody/*=Context
example/taskbody/*=Example <-----
postreq/taskbody/*=Postreq
result/taskbody/*=Result
...

These are all <task> -specific format assignments. If your <example> element is in a
<task> topic, you now know that it will be rendered using output format Example .

DETERMINING HOW AN ELEMENT IS RENDERED DITA2GO USER’S GUIDE

84 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

If your <example> element is not in a <task> topic, you will have to add an assignment
that represents the context in which the element occurs in your DITA source. In your
project configuration file (_d2rtf.ini for RTF output) include a setting such as the
following:

[BlockFormatMaps]
example/$body/*=Example

See §6.4 Mapping element paths to output formats on page 91.

(It is best to start by adding new settings to the bottom-level configuration file. Later you
can move the settings to a configuration file that has a wider scope to include other
projects.)

To find the definition of format Example , search for “Example” in the following format
configuration file:

%omsyshome%\d2g\system\formats\d2rtf_formats.ini

The definition is short, because Example is based on format Body, and inherits all the
properties of the latter:

[Example]
based = Body
runin = ExampleHead

This definition makes Example a plain body paragraph, with a run-in heading; see §6.5.4
Assigning run-in headings to format-name prefixes on page 97.

A run-in heading is a type of subformat; subformats are defined in file:
%omsyshome%\d2g\system\formats\d2rtf_subformats.ini

In this file you will not find a separate definition of the run-in heading for format
Example , because it is identical to another run-in heading, to which it is aliased:

[FormatAliases]
ExampleHead = ItalicHead

See §7.3 Creating aliases to existing format names on page 112.

The definition of ItalicHead makes this heading italic:
[ItalicHead]
form = <i><name/> <spc/></i>

See §8.6 Configuring run-in headings for text formats on page 153.

Subformat component <name/> determines the content of the run-in heading. Content of
each type of run-in heading is specified in language configuration files. For English, look
in the following file:

%omsyshome%\d2g\system\lang\d2g_lang_en.ini

Here you will find text for a variety of run-in headings. For the Example format:
[RuninHeadText]
ExampleHead = For example:

If you want to change the content of the heading, make the change in your project
configuration file. For example:

[RuninHeadText]
ExampleHead = [Example]

For internationalization, if you want headings and labels in French, you could make your
project configuration file reference the French language configuration file instead:

[Templates]
Languages = %omsyshome%\d2g\system\lang\d2g_lang_fr .ini

5 MODIFYING OUTPUT APPEARANCE DETERMINING HOW AN ELEMENT IS RENDERED

ALL RIGHTS RESERVED. MAY 19, 2013 85

Here the setting is a little different:
[RuninHeadText]
ExampleHead = Par exemple:

(No illustrations)

DETERMINING HOW AN ELEMENT IS RENDERED DITA2GO USER’S GUIDE

86 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 87

6 Mapping elements to output formats

This section shows how to map elements and their attributes to output formats. Topics
include:

§6.1 Understanding how to assign formats on page 87
§6.2 Specifying options for naming formats on page 87
§6.3 Mapping outputclass attribute values to formats on page 89
§6.4 Mapping element paths to output formats on page 91
§6.5 Mapping element attributes to output formats on page 95
§6.6 Specifying formats for cross references on page 101
§6.7 Specifying formats for footnotes on page 102
§6.8 Specifying options for figures on page 102
§6.9 Specifying formats and options for tables on page 103
§6.10 Specifying options for special lists on page 104
§6.11 Specifying options for draft comments on page 105
§6.12 Specifying options for maps on page 105
§6.13 Deciding where to display title and shortdesc on page 107

6.1 Understanding how to assign formats
You can assign output formats to elements based on any of the following:

 • @outputclass ; see §6.3 Mapping outputclass attribute values to formats on page 89
 • element position in the DITA topic hierarchy; see §6.4 Mapping element paths to

output formats on page 91
 • attribute values; see §6.5 Mapping element attributes to output formats on page 95.

Failing all of these, DITA2Go takes the element name itself as the format name, unless
you have explicitly disabled this option (see §6.2 Specifying options for naming formats
on page 87). In that event, the element gets the default format for its element type; see
§11.2 Specifying properties of element types on page 179.

DITA2Go looks for a definition of the assigned output format in the Formats template
chain; see §7.2 Working with format configuration files on page 110:

 • To define an output format, see §7 Configuring output formats on page 109.
 • To specify format styling, see §8 Configuring format components on page 141.
 • To change the language of predefined text used in a format, see §8.9 Localizing output

headings, labels, and names on page 157.

6.2 Specifying options for naming formats
By default, wherever possible DITA2Go uses the value of the outputclass attribute as
the name of the output format for a given element; if there is no outputclass attribute,
DITA2Go uses the element mapping, and as a last resort, the element name. You can do
the following:

Prevent outputclass as format name
Prevent border and shading from outputclass
Prevent element name as format name
Specify default format names

SPECIFYING OPTIONS FOR NAMING FORMATS DITA2GO USER’S GUIDE

88 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Specify a format for <steps> headings
Specify a format for links
Specify a continuation format suffix.

Specify a
continuation

format

If your DITA document includes instances of block elements nested inside other block
elements, by default DITA2Go creates a new format for that portion of the containing
block element that follows the nested block. This is because nested formats are not
allowed in certain output types, notably RTF.

Prevent
outputclass as

format name

To prevent automatic use of outputclass values as output format names:
[ElementOptions]
; UseOutputClassForFormat = Yes (default, use whene ver present) or
; No (go on to mappings in [*FormatMaps] as the nex t choice)
UseOutputClassForFormat = No

If your DITA document does not use outputclass attributes consistently, or you do not
want the value of outputclass used as a format name in output, you can do either or
both of the following:

 • map outputclass values to other format names; see §6.3.1 Mapping block and
inline outputclass attributes to formats on page 90

 • map elements to formats explicitly; see §6.4 Mapping element paths to output formats
on page 91.

For any element that has not been mapped to an output format either explicitly or via
outputclass , by default DITA2Go uses the element name as the output format name.

Prevent border
and shading from

outputclass

To keep DITA2Go from rummaging in outputclass attributes for border and shading
subformat names:

[ElementOptions]
; OutputclassHasBorderShadeFormats = Yes (default, look for border and
; shading format specifications in outputclass attr ibutes), or No).
OutputclassHasBorderShadeFormats = No

See §8.4 Overriding border and shading properties on page 145.

Prevent element
name as format

name

To prevent automatic use of element names as output format names for unmapped
elements:

[ElementOptions]
; UseElementNameForFormat = Yes (default, use for u nmapped elements)
; or No (use defaults below if unmapped)
UseElementNameForFormat = No

Specify default
format names

To specify default output format names for block and inline elements:
[ElementOptions]
; DefaultInlineFormat = format to use for unmapped inline elems
DefaultInlineFormat = Char
; DefaultBlockFormat = format to use for unmapped b lock elems
DefaultBlockFormat = Para

If you do not specify a different default, unmapped block element names become format
name para in output, and unmapped inline element names become format name char in
output.

Specify a format
for <steps>

headings

To specify a paragraph format name for a <steps> heading:
[ElementOptions]
; StepsHeadFormat = format to use for StepsHead par a
StepsHeadFormat = Steps

The default name for the paragraph format is Steps.

To omit <steps> headings from output:

6 MAPPING ELEMENTS TO OUTPUT FORMATS MAPPING OUTPUTCLASS ATTRIBUTE VALUES TO FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 89

[ElementOptions]
StepsHeadFormat = Delete

Specify a format
for links

To specify a character format name for unmapped hypertext links that have no
outputclass attribute:

[ElementOptions]
; LinkFormat = char format for unmapped hyperlinks if no outputclass
LinkFormat = Link

See also:
§6.6 Specifying formats for cross references on page 101

Specify a
continuation
format suffix

If your DITA source includes nested block elements, DITA2Go must create a new
paragraph for those portions of the enclosing element that follows the enclosed elements.
This is because some output types do not allow nested paragraphs. The new paragraph
requires its own format, which can be derived from the format assigned to the original
paragraph.

To specify a suffix to add to a format name for continued text:
[ElementOptions]
; ContinuedFormatSuffix = suffix to add to format n ame when
; a block element containing text is interrupted by another
; block element, then resumes with more text after the
; interrupting element(s), default "Cont".
ContinuedFormatSuffix = Cont

For example, with format Body defined (in system d2htm_formats.ini) as:
[Body]
based = Para
margin top = 4pt
margin bottom = 0pt
margin left = 0pt
font size = 10pt
font family = Verdana, sans-serif

you might want to add, in local_d2htm_formats.ini :
[BodyCont]
based = Body
margin top = 2pt

to adjust the spacing after a nested list. If you want the same format, unchanged, instead
set:

[FormatAliases]
BodyCont = Body

Or set:
[ElementOptions]
ContinuedFormatSuffix =

to not use the suffix, just the original format name.

6.3 Mapping outputclass attribute values to format s
For text elements, table elements, and cross references, you can map the outputclass
attribute of the element to an output format. However, mapping outputclass attributes
does not apply to all elements. Among those excluded are typographic elements, such as
 and <i> . Those are treated as properties, rather than as formats. Others excluded are
<ftn> , <image> , <alt> , and <index*> . All undergo special processing of one sort or

MAPPING OUTPUTCLASS ATTRIBUTE VALUES TO FORMATS DITA2GO USER’S GUIDE

90 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

another. For <ftn> , DITA2Go automatically uses the value of the outputclass
attribute as the output format name.

In this section:
§6.3.1 Mapping block and inline outputclass attributes to formats on page 90
§6.3.2 Mapping table outputclass attributes to formats on page 90
§6.3.3 Mapping cross-reference outputclass attributes to formats on page 91
§6.3.4 Mapping wrapper-element outputclass attributes to formats on page 91

6.3.1 Mapping block and inline outputclass attribu tes to formats

To specify an output format with a name that is different from the outputclass attribute
value of a block element (for example):

[BlockOutclassMaps]
; outputclass attribute of block element = paragrap h format to use,
; one of the formats defined in the [Templates]Form ats file.
CellBulleted = Bulleted1

To specify an output format with a name that is different from the outputclass attribute
value of an inline element (for example):

[InlineOutclassMaps]
; outputclass attribute of inline element = charact er format to use,
; one of the formats defined in the [Templates]Form ats file.
MarkerName = Bold

Assignments in these sections map existing outputclass attribute values to the formats
you want to use. If an outputclass value is already the right format name, you do not
need to map it.

When you explicitly assign a format to the outputclass for an element, that format
takes precedence over the default format, and also over any format assigned in
[BlockFormatMaps] or [InlineFormatMaps] ; see §6.4.2 Mapping block and inline
element paths to formats on page 93.

6.3.2 Mapping table outputclass attributes to form ats

To specify a table format with a name that is different from the table outputclass
attribute:

[TableOutclassMaps]
; outputclass attribute of table element = table fo rmat to use.
; one of the formats defined in the [Templates]Tabl es file.
FormatA = TableFormat

When you explicitly assign a table format to the outputclass for that table, that format
takes precedence over the default table format. The assignments in this section map
existing table outputclass attribute values to the table formats you want to use. You
might have six different table formats in your source document, resulting in six different
outputclass values, that should all be rendered using the same table format.

If an outputclass is already the right table format name, you do not need to map it.
However, if you want different table formats in Word and in HTML for the same table,
you would need a different [TableOutclassMaps] list for each output type.

To define output formats for tables, see §7.7 Configuring table output formats on
page 129.

For additional ways to customize tables for specific output types, see:

6 MAPPING ELEMENTS TO OUTPUT FORMATS MAPPING ELEMENT PATHS TO OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 91

§15.6 Converting tables to print RTF on page 232
§33 Converting tables to HTML on page 625.

See also:
§6.9 Specifying formats and options for tables on page 103

6.3.3 Mapping cross-reference outputclass attribut es to formats

If the xref elements in your document have outputclass attributes, you can assign a
cross-reference format name to each different outputclass attribute. For example:

[XrefOutclassMaps]
; outputclass attribute of xref element = xref form at to use
Numeric = NumXref

See also:
§6.6 Specifying formats for cross references on page 101

6.3.4 Mapping wrapper-element outputclass attribut es to formats

If your DITA XML document was created from material authored in a non-DITA
environment such as FrameMaker, it might include <xref> tags automatically wrapped in
<ph> elements, to allow <xref> elements in places where they would not otherwise be
valid in DITA XML.

To map <ph> wrapper elements for cross references, index terms, and footnotes to output
formats:

[InlineOutclassMaps]
; outputclass attribute of block or inline element = format
; For example, for the ph wrapper formats from Mif2 Go:
phxref = PhXref
phindex = PhIndex
phfoot = PhFootnote

These format assignments are effective even if UseOutputClassForFormat=No (see
§6.2 Specifying options for naming formats on page 87), and they override all other
assignments of block and inline element formats.

For HTML output you might want to include the following settings to eliminate style tags
for the wrapper elements:

[CharStyles]
; eliminate wrapper classes
PhXref =
PhIndex =
PhFootnote =

See §30.3 Mapping character formats on page 569.

6.4 Mapping element paths to output formats
Instead of simply mapping each element to a single output format, DITA2Go supports
mapping element paths, so you can choose different output formats for the same block or
inline element where it appears at different levels or in different hierarchies of your DITA
document.

Most of the configuration settings that involve mapping elements to output formats use
element paths as the key, to allow you to differentiate based on document hierarchy.
Configuration template d2g_config.ini contains the full default set of maps that

MAPPING ELEMENT PATHS TO OUTPUT FORMATS DITA2GO USER’S GUIDE

92 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

DITA2Go uses; see §39.1.3 Understanding how templates are chained together on
page 728.

In this section:
§6.4.1 Understanding element paths on page 92
§6.4.2 Mapping block and inline element paths to formats on page 93
§6.4.3 Overriding element paths for default formats on page 93
§6.4.4 Mapping the same element to different formats on page 94
§6.4.5 Filtering out elements via format mapping on page 94

6.4.1 Understanding element paths

When you map DITA elements to output formats, you might have to consider the position
of an element in the document structure before you choose an appropriate output format.
For example, the amount that text should be indented might be a function of the depth of
nesting of the element that contains the text; so the same element at different levels in the
hierarchy might have to be mapped to a different output format with different indentation
properties. For an example, see §6.4.4 Mapping the same element to different formats on
page 94.

You can restrict the mapping of a given inline or block element (or element set; see §11.1
Defining sets of elements on page 179) to a particular position in the hierarchy by
specifying the element path to be considered.

An element path specifies the relationship of an element to the top of the top-level map.
The relationship is expressed as a reversed path starting with the current element, through
the root of the topic, ending with a number representing the topic depth in the current
project, where 1 is the first possible level for topics. This is simply an inverted tree to the
topic root, ending with the depth of the topic in the complete map (treated as though any
nested maps were replaced by their top-level content).

An element path
ends with a level

number

An element path consists of the name of the current element, followed by the names of its
parents in ascending order, up to and including the root XML element, and ending with a
number that represents the nesting level of the root element in its XML file in the final
document structure.

For example:
p/section/conbody/concept/3

This is the element path for a <p> body element in any <section> of a <concept> topic
that is two levels down from the top-level topics.

When the level number of an element path is greater than 1, meaning that it is referenced
from a map below the top level, DITA2Go generates a second path, the extended element
path. This extended path continues up to the top level, and is normalized by omitting any
topicref/map/ pairs that are below the top level. DITA2Go checks the extended path
first, and uses the shorter path only if the extended path has no match.

Element path
syntax

Element names in an element path are separated by forward slashes. To specify that an
element must be first under its parent, use a ^ instead of / . Wildcards ? and * are allowed
at any point.

For example:
li^ol/* First item in any ordered list at any level
li/ol/* Any non-first item in any ordered list at any level
li/ul/* Any item in any unordered list at any level

6 MAPPING ELEMENTS TO OUTPUT FORMATS MAPPING ELEMENT PATHS TO OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 93

6.4.2 Mapping block and inline element paths to fo rmats

To map element paths of block elements to output formats (for example):
[BlockFormatMaps]
; block element path = paragraph format name
title/concept/1 = ChapTitle
p/conbody/concept/1 = Body
li^ol/* = NumberedFirst
li/ol/* = Numbered
li/ul/* = Bulleted

These settings prescribe the following formats:

 • ChapTitle for every title in a concept topic that occurs at the highest topic level.
 • Body for every <p> element in the <conbody> of a concept topic, at the highest

topic level.
 • NumberedFirst for every first in anywhere in the document.
 • Numbered for all other elements in anywhere in the document.
 • Bulleted for any in a anywhere in the document.

To map element paths of inline elements to output formats (for example):
[InlineFormatMaps]
; inline element path = character format name
b/p/conbody/concept/1 = Bold
i/p/conbody/concept/1 = Italic

These settings indicate that elements should be mapped to a format named Bold
wherever those elements occur in the DITA document; and that <i> elements should be
mapped to a format named Italic, wherever they occur.

Note: If you explicitly assign a format to the outputclass for an element in
[BlockOutclassMaps] or [InlineOutclassMaps] , that format takes
precedence over any format assigned to the element in [BlockFormatMaps] or
[InlineFormatMaps] . See §6.2 Specifying options for naming formats on
page 87.

Configuration template d2g_config.ini , located in %omsyshome%\d2g\configs ,
includes elephant paths for all default formats included in the DITA2Go distribution.

6.4.3 Overriding element paths for default formats

DITA maps and projects can be set up many different ways. The default output formats
(and their mappings from elements) included in the DITA2Go distribution reflect only
one possible configuration. You can find and inspect the default element paths in
distribution file %omsyshome%\d2g\configs\system\d2g_config.ini .

For example, for glossary content for Help systems, DITA2Go covers the bookmap case.
In d2g_config.ini :

[BlockFormatMaps]
title/$topic/glossarylist/booklists/backmatter/$map /1=GlossaryTitle
glossterm/*=Heading1
glossdef/*=Abstract

And in d2help_config , Heading1 is one level under GlossaryTitle:
[HelpContentsLevels]
GlossaryTitle=2
Heading1*=3

so the glossary terms nest under the glossary title.

MAPPING ELEMENT PATHS TO OUTPUT FORMATS DITA2GO USER’S GUIDE

94 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

However, if you have the glossary nested under a top-level topic, the glossary terms are at
the same level. The fix is to override the default mapping and lower the glossary terns one
level:

[BlockFormatMaps]
glossterm/*=Heading2

That way the glossary terms nest under the title topic.

6.4.4 Mapping the same element to different format s

Suppose you want to eliminate an indent from the format for a given block element when
that element occurs within a table. For example, when a simple list is nested in a <table>
cell or even a <simpletable> cell, you might want to override the indent for the
SimpleListItem format. This format is assigned by default to <sli> via an element
path defined in file %OMSYSHOME%\d2g\system\config\d2g_config.ini :

[BlockFormatMaps]
sli/sl/* = SimpleListItem

For HTML output, format SimpleListItem is defined in
%OMSYSHOME%\d2g\system\formats\d2htm_formats.ini :

[SimpleListItem]
based = Body
margin top = 2pt
margin bottom = 0pt
margin left = 12pt
list style = none
list level = 1

In %OMSYSHOME%\d2g\local\formats\local_d2htm_formats.i ni you can
define an alternate format, based on [SimpleListItem] :

[SimpleTableListItem]
based = SimpleListItem
margin left = 0pt

Then in your project configuration file you can include alternate element paths for <sli> :
[BlockFormatMaps]
; This mapping handles a simple list in a table cel l:
sli/sl/entry/* = SimpleTableListItem
; This mapping handles a simple list in a simpletab le cell:
sli/sl/stentry/* = SimpleTableListItem

Depending on the complexity of nested lists in your document, you might need to provide
additional override formats for alternate element paths that start with <sli> .

6.4.5 Filtering out elements via format mapping

As an adjunct or alternative to ditaval filtering (see §9 Specifying conditional processing
on page 161), you can exclude specific elements from output by mapping them to format
property Delete . For example:

[BlockFormatMaps]
context/* = Delete
stepresult/* = Delete
info/* = Delete

[InlineFormatMaps]
draft-comment/* = Delete

6 MAPPING ELEMENTS TO OUTPUT FORMATS MAPPING ELEMENT ATTRIBUTES TO OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 95

6.5 Mapping element attributes to output formats
For some kinds of elements, such as <note> , you might want to vary the output format
based on one or more attributes other than the outputclass attribute (see §6.3 Mapping
outputclass attribute values to formats on page 89). You can specify that the values of
certain attributes should modify the output format that DITA2Go uses for a block or inline
element, and you can also specify a run-in heading to be included on output.

In this section:
§6.5.1 Listing elements whose attributes can affect output formats on page 95
§6.5.2 Listing attributes whose values can affect output formats on page 95
§6.5.3 Assigning format-name prefixes to attribute values on page 96
§6.5.4 Assigning run-in headings to format-name prefixes on page 97
§6.5.5 Deciding which formats need a run-in heading property on page 99
§6.5.6 Understanding the order of prefixes for multiple attributes on page 100
§6.5.7 Understanding how prefixes modify output formats on page 100
§6.5.8 Understanding default attribute-based prefixes and headings on page 100

6.5.1 Listing elements whose attributes can affect output formats

To specify that DITA2Go should apply a prefix to the name of the output format assigned
to an element, based on one or more attributes of that element:

[ElementAttrPrefixes]
; element name = section with list of attrs for whi ch
; prefixes should possibly be applied to the format name
element = ElemSectionName

By default:
[ElementAttrPrefixes]
note = NoteAttrPrefixes
step = StepAttrPrefixes
* = AttributePrefixes

The element name can include wildcards. These default settings are located in
configuration template %omsyshome%\d2g\system\config\d2g_config.ini ; see
§39.1.3 Understanding how templates are chained together on page 728.

The setting for <note> directs DITA2Go to look up the attributes listed in configuration
section [NoteAttrPrefixes] , and to use those attributes to determine which Note
format to apply to a given instance of <note> ; or, in effect, how to modify the base
[Note] format. And similarly for <step> .

The last setting above directs DITA2Go to look up the attributes listed in configuration
section [AttributePrefixes] for all elements. (The importance attribute is
included there by default; see §6.5.2 Listing attributes whose values can affect output
formats on page 95.)

6.5.2 Listing attributes whose values can affect o utput formats

To list the attributes that DITA2Go should use to add format-name prefixes for a given
element, in the section assigned to that element in [ElementAttrPrefixes] (see §6.5.1
Listing elements whose attributes can affect output formats on page 95):

[ElemSectionName]
; attribute name = section with list of values, or
; attribute name = * to use the value itself as a p refix

MAPPING ELEMENT ATTRIBUTES TO OUTPUT FORMATS DITA2GO USER’S GUIDE

96 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

attributename = AttrSectionName

The attribute name cannot include wildcards.

When attributename=* , DITA2Go prefixes the format name for the element with the
value of the attribute.

When attributename=AttrSectionName, DITA2Go looks up the attribute in
[AttrSectionName] to determine what prefix to apply.

By default:
[NoteAttrPrefixes]
type = *

[StepAttrPrefixes]
importance = StepImportancePrefixes

[AttributePrefixes]
importance = ElemImportancePrefixes

These default settings are located in configuration template
%omsyshome%\d2g\system\config\d2g_config.ini ; see §39.1.3 Understanding
how templates are chained together on page 728.

In the first setting, for each <note> element, DITA2Go prefixes the name of the Note
format with the value of the type attribute.

In the second setting, for each <step> element, DITA2Go looks up the value of the
importance attribute in configuration section [StepImportancePrefixes] , to
determine what prefix to use for that instance of <step> . See §6.5.3 Assigning format-
name prefixes to attribute values on page 96.

In the third setting, for every element that includes an importance attribute, DITA2Go
looks up its value in configuration section [ElemImportancePrefixes] , to determine
what prefix to use for the format name.

6.5.3 Assigning format-name prefixes to attribute values

To specify what to do with each value of each attribute to which AttrSectionName is
assigned in [ElemSectionName] (see §6.5.2 Listing attributes whose values can affect
output formats on page 95):

[AttrSectionName]
; attribute value = prefix
value1 = prefix1
value2 = prefix2
. . .

The attribute value can include wildcards. DITA2Go considers attribute values in the
order they are listed in [AttrSectionName]; the first attribute value in the list that
matches the value for a given instance of an element determines the prefix applied to the
format name for that instance of that element. If the prefix assigned to a value is “* ”, the
attribute value itself becomes the prefix. If the prefix is blank, no prefix is applied for that
value.

By default:
[StepImportancePrefixes]
required = ReqStep
optional = OptStep

[ImportancePrefixes]
required = Req

6 MAPPING ELEMENTS TO OUTPUT FORMATS MAPPING ELEMENT ATTRIBUTES TO OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 97

optional = Opt
* = *

These default settings for required and optional values of the step element
importance value are located in configuration template
%omsyshome%\d2g\system\config\d2g_config.ini ; see §39.1.3 Understanding
how templates are chained together on page 728.

For example:
[NoteTypePrefixes]
note =
warning = warn
* = *

In this last example, a given <note> element would be mapped to a format name prefixed
according to the value of the type element:

 • If @type=note , DITA2Go would not apply a prefix to the format name.
 • If @type=warning , the prefix warn would be applied to the format name; for

example, warnNote .
 • For any other value of the type attribute, DITA2Go would apply the attribute value

itself as a prefix to the format name; for example, cautionNote .

6.5.4 Assigning run-in headings to format-name pre fixes

For block and inline elements, you can use the prefixes that are to be tacked onto format
names to specify the text and format of a run-in heading that will precede the content of
the element itself on output. For example:

Required: Churzen the framble with the supplied grappitz.

In this example, Required: is a run-in heading, with a character format different from that
of the content.

DITA2Go supplies default formats and text for <note> and <step> run-in headings.
These default formats are included in the following subformat configuration files:

%omsyshome%\d2g\system\formats\d2*_subformats.ini

The text for the default run-in headings comes from a language configuration file:
%omsyshome%\d2g\system\lang\d2g_lang_en.ini

In other words, the text is not taken from the attribute value; the latter only determines the
name of the output format for the element in question.

To associate a run-in heading with a format-name prefix:
Assign a run-in heading format name to the prefix
Define the run-in heading format
Provide content for the run-in heading.

Assign a run-in
heading format

name to the prefix

To assign the name of a character format to a run-in heading for a prefix:
[BlockFormatPrefixRunins]
; prefix = default runin format to be used if no pr efixed
; format exists and if base format has no runin its elf
prefix = PrefixFormatHead

For example:
[BlockFormatPrefixRunins]
ReqStep = ReqStepHead
OptStep = OptStepHead
Req = RequiredHead

MAPPING ELEMENT ATTRIBUTES TO OUTPUT FORMATS DITA2GO USER’S GUIDE

98 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Opt = OptionalHead
warning = WarningHead

You can also assign a character format to a run-in heading for a prefix to the content of an
inline element:

[InlineFormatPrefixRunins]
; prefix = default runin format to be used if no pr efixed
; format exists and if base format has no runin its elf
prefix = PrefixFormatHead

Default assignments of run-in headings to prefixes are located in the following
configuration file:

%omsyshome%\d2g\system\config\d2g_config.ini

See §39.1.3 Understanding how templates are chained together on page 728.

Define the run-in
heading format

To specify the style for a run-in heading:
[PrefixHead]
form = format components

For example:
[ReqStepHead]
form = [<name/>]

[OptStepHead]
form = <i>[<name/>] </i>

[RequiredHead]
form = <name/>:

[OptionalHead]
form = <i><name/>: </i>

[WarningHead]
form = <name/>!

Define run-in heading formats in a Subformats configuration file, see §8.6 Configuring
run-in headings for text formats on page 153.

Provide content
for the run-in

heading

In place of the <name/> building block, you can include fixed text for a run-in heading.
For example:

[DangerHead]
form = <i>!! DANGER !!</i>\\n

However, the <name/> building block allows you to specify alternate text in different
languages.

To specify text for the <name/> building block of a run-in heading, in a language
configuration file:

[RuninHeadText]
; used as the <name/> content in the matching subfo rmat
PrefixHead = Text of heading

To cancel run-in headings individually, set them to nothing (empty).

Run-in headings for notes are based on the type attribute of the <note> element:
[RuninHeadText]
NoteHead = Note:
AttentionHead = Attention:
CautionHead = Caution:
WarningHead = Warning:
DangerHead = Danger:
FastpathHead = Fastpath:
ImportantHead = Important:

6 MAPPING ELEMENTS TO OUTPUT FORMATS MAPPING ELEMENT ATTRIBUTES TO OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 99

RememberHead = Remember:
RestrictionHead = Restriction:
TipHead = Tip:
OtherHead = Note:

Importance run-in headings are based on the importance attribute value:
[RuninHeadText]
optional = Optional:
required = Required:
urgent = Urgent!
obsolete = [obsolete]
deprecated = [deprecated]
default =
low =
medium =
high =
recommended =

Run-in headings for task elements:
[RuninHeadText]
; ReqStepHead = at start of step with importance=re quired
ReqStepHead = [Required step]
; OptStepHead = at start of step with importance=op tional
OptStepHead = [Optional step]
; StepsHead = at start of steps, in its own para wi th StepsFormat
StepsHead = Procedure:
; PrereqHead = at start of prereq element
PrereqHead = Before you start:
; ContextHead = at start of context element
ContextHead = Purpose:
; ExampleHead = at start of example element
ExampleHead = For example:
; ResultHead = at start of result element
ResultHead = Results:
; PostreqHead = at start of postreq element
PostreqHead = After you finish:
; StepxmpHead = at start of stepxmp element
StepxmpHead = Example:
; StepresultHead = at start of stepresult element
StepresultHead = Result:

The ExampleHead text also applies to <example> in other topic types. StepsHead is a
separate paragraph.

Specify run-in heading content for the <name/> building block in a Languages
configuration file; see §8.9 Localizing output headings, labels, and names on page 157.
The default settings above are in the following file:

%omsyshome%\d2g\system\lang\d2g_lang_en.ini

6.5.5 Deciding which formats need a run-in heading property

Instead of considering only the current element to determine prefixes and formatting,
DITA2Go also looks up one level in the current topic in your DITA document. If the
parent element does not have text of its own, and if the current element is the first child of
that parent, DITA2Go processes the parent to determine what its format would be if it did
have text. This process also identifies any applicable prefix. Then DITA2Go processes the
current element, and determines its format; however, a prefix has already been identified
from the parent. That parent prefix becomes the first prefix for the current element.

MAPPING ELEMENT ATTRIBUTES TO OUTPUT FORMATS DITA2GO USER’S GUIDE

100 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

For example, if your document uses the <note> element as a wrapper for other text
elements, <note> itself might have no text content, and therefore DITA2Go would not
automatically look for an output format for <note> . However, if another text element is
nested in <note> , DITA2Go checks <note> for possible format prefixes to apply to the
nested element.

6.5.6 Understanding the order of prefixes for mult iple attributes

If you specify more than one attribute whose values should be considered for prefixing the
format name for a given element <elem>, the order in which you list the attributes to be
considered in [ElemSectionName] (see §6.5.2 Listing attributes whose values can
affect output formats on page 95) determines the order in which the prefixes will be
applied:

[ElemAttrPrefixes]
attrx = *
attry = *

If the default format name for <elem> is Elem , for each instance of <elem> that includes
values for both @attrx and @attry, their values will be prefixed to the format name in
the order the attributes are listed in this section (not the order they are listed in the element
itself), and the name of the format DITA2Go looks for would be xvalueyvalueElem .

6.5.7 Understanding how prefixes modify output for mats

You do not have to define a different format for every possible combination of attribute
values for which you specify format-name prefixes, unless you want an effect different
from what you would get when content rendered using the base format is prefixed by any
run-in heading(s) assigned to the prefix(es). Most often you will not have to define any
prefixed formats at all; the presence of a candidate attribute effectively includes the
assigned run-in heading in the output for an instance of a given element.

If you have not defined formats named for all the candidate attribute-value combinations
for elements listed in [ElementAttrPrefixes] (see §6.5.1 Listing elements whose
attributes can affect output formats on page 95), DITA2Go uses the base format name,
and modifies the output by prefixing content with the run-in headings (if any) assigned to
the candidate attribute values for that instance of the element (see §6.5.4 Assigning run-in
headings to format-name prefixes on page 97). If the base format itself includes the runin
property (see §7.6.2 Specifying default properties for character formats on page 121 and
§7.6.3 Specifying default properties for paragraph formats on page 122), its run-in
heading follows the attribute run-in heading(s).

If a base format for the element is neither defined nor listed in [FormatAliases] (see
§7.3.2 Mapping legacy names to defined formats on page 113), the output for that element
will have only the default format properties for block or inline elements.

6.5.8 Understanding default attribute-based prefix es and headings

Your DITA2Go distribution includes default attribute-based format-name prefixes for
<note> elements, and default prefixes based on the importance attribute for all
elements, in system configuration file d2g_config.ini . If you want run-in headings
different from those determined by these attributes, or no run-in headings at all, you must
override the default configuration settings with your own.

The default for a <note> element is to use a run-in format (in system format configuration
file d2htm_subformats.ini), which has a <name/> component. The actual name

6 MAPPING ELEMENTS TO OUTPUT FORMATS SPECIFYING FORMATS FOR CROSS REFERENCES

ALL RIGHTS RESERVED. MAY 19, 2013 101

comes from system language configuration file d2g_lang_en.ini . The name does not
come from the attribute value.

Type attribute for
<note> elements

For <note> , the value of the type attribute (if any) determines which run-in heading will
be prefixed to the text. The name of the format of the run-in heading consists of the value
of the type attribute prefixed to Head. The content of the run-in heading consists of the
text assigned to the name of the run-in heading format, in the [RuninHeadText] section
of whichever language configuration template is in force. If a particular <note> element
has no type attribute, DITA2Go does not include a run-in heading for that instance,
unless you specify a default value for @type .

To specify a default type for any <note> element that lacks a type attribute; for example,
note :

[ElementOptions]
; DefaultNoteType = value to use for @type if it is omitted;
; default is nothing, per the DITA spec.
DefaultNoteType = note

If you do not specify a value for DefaultNoteType , no run-in heading is included in the
output for any instance of <note> that does not contain a type attribute.

Note: The DITA Open Toolkit assumes the value note when @type is missing.

Importance
attribute for all
text elements

For all text elements, the value of the importance attribute (if any) determines a format-
name prefix, and the content of the associated run-in heading is specified by the run-in
heading format assigned to each importance value. For <step> , importance attribute
values required and optional specify a special run-in heading for the Step format.

6.6 Specifying formats for cross references
Cross references (empty xref elements) need different output formats depending on the
type of element referenced. Numbered elements, such as list items and footnotes, need the
number included in cross references to those elements; headings typically need the title
included in the cross reference.

If the <xref> elements in your document include an outputclass attribute, you can
map outputclass values to formats; see §6.3.3 Mapping cross-reference outputclass
attributes to formats on page 91.

If there is no outputclass attribute, DITA2Go uses the xref property of the element to
which the cross reference refers (see §7.6.6 Specifying block properties for paragraph
formats on page 124). Failing that, DITA2Go assigns a default cross-reference format
based on the xref element type attribute:

To specify a cross-reference format name for each type of cross reference:
[ElementOptions]
; XrefTextFormat = name for xrefs to text elements
XrefTextFormat = TextXref
; XrefTitleFormat = name for xrefs to elements with titles
XrefTitleFormat = TitleXref
; XrefNumFormat = name for xrefs to li elements
XrefNumFormat = NumXref
; XrefFtnFormat = name for xrefs to footnotes,

NumXref for li (default format = <numonly/>)
FtnXref for fn (default format = <sup><numonly/>)
TextXref for other (default format = <paratext/>)
TitleXref for the rest (default format= <autonum/> <paratext/>)

SPECIFYING FORMATS FOR FOOTNOTES DITA2GO USER’S GUIDE

102 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

XrefFtnFormat = FtnXref
; GenListXrefFormat = name for xrefs used in genera ted list items
GenListXrefFormat = TitleXref

These are the default names for cross-reference formats. You can specify different names;
however, if you do, you must change the default names wherever they occur, notably in
subformats configuration templates; see §8.1.1 Understanding where to define format
components on page 141.

To configure the formats for each of these cross-reference types, see §8.7 Defining cross-
reference output formats on page 155.

6.7 Specifying formats for footnotes
To specify the names of output formats for footnotes in text and in tables:

[Footnotes]
; FootnoteFormat = format to use for footnote eleme nts in text
FootnoteFormat = Footnote
; TblFootFormat = format to use for footnote elemen ts in tables
TblFootFormat = TblFootnote

These are the default names for footnote formats. If you change the names, you must
change them wherever they are referenced, notably in format configuration templates; see
§39.1.5 Understanding how format templates are organized on page 730.

To define formats for footnote text, see §7.6 Configuring text output formats on page 121.
To define formats for footnote references, see §8.5.4 Defining footnote numbering on
page 150.

Note: Footnotes with IDs use cross references only.

6.8 Specifying options for figures
You can specify options that affect title placement, use of anchors, some aspects of
alignment, and numbering of figures.

Title placement By default, DITA2Go puts figure titles below images on output, but puts the IDs for figure
titles above the images, so that links to an image in HTML show the whole image and the
title, not just the title.

To keep the figure title above the image:
[FigureOptions]
; FigTitleAboveImage = No (default, links moved so browsers show the
; figure, not just the title), or Yes (DITA style, title above image)
FigTitleAboveImage = Yes

If you use a fig element to hold a simpletable (so the simpletable can have a title;
see §14.6 Treating figure titles as table titles on page 203), by default DITA2Go puts the
title above the table on output, which generally looks better.

To keep the figure title below the table:
[FigureOptions]
; FigTitleAboveTable = Yes (default, figure titles look better above
; a table) or No (normal figure style, title below table)
FigTitleAboveTable = No

Anchor Some output types might require figures to be anchored in paragraphs.

To specify a format for figure-anchor paragraphs:

6 MAPPING ELEMENTS TO OUTPUT FORMATS SPECIFYING FORMATS AND OPTIONS FOR TABLES

ALL RIGHTS RESERVED. MAY 19, 2013 103

[FigureOptions]
; UseFigureAnchor = Yes (default, use anchor para) or No (for special
; cases, will break many normal use cases)
UseFigureAnchor = Yes
; FigureAnchorFormat = name of format to use for fi gure anchor para
; when TitleAboveImage = No
FigureAnchorFormat = FigurePara

Anchor paragraphs in table cells should contain at least one character in addition to the
image, even if the character is just a nonbreaking space, to keep the image inline.

Alignment To specify alignment on output for any image with attribute @placement="break" :
[FigureOptions]
; GraphicAlignment = image alignment when placement ="break": left,
; right, or center, default left
GraphicAlignment = left

Note: DITA2Go ignores all special <fig> attributes except for @placement , @width ,
@height , and @alt .

Numbering To specify numbering and a label for figure titles, see §8.5.3 Defining number format
components on page 148.

6.9 Specifying formats and options for tables
To specify a default format for each DITA table type:

[TableOptions]
; NormalTableFormat = format for normal tables with out outputclass
NormalTableFormat = NormalTable
; SimpleTableFormat = format for simpletables witho ut outputclass
SimpleTableFormat = SimpleTable
; ChoiceTableFormat = format for choicetables witho ut outputclass
ChoiceTableFormat = ChoiceTable
; PropertiesTableFormat = format for properties wit hout outputclass
PropertiesTableFormat = PropTable

To specify a different format for selected tables, you must give those tables an
outputclass attribute; see §6.3.2 Mapping table outputclass attributes to formats on
page 90.

If a table in your DITA document already has an outputclass attribute, and a table
format of the same name is defined in your project configuration file or in a Tables
configuration file, DITA2Go uses that format for the table in question, instead of the
default format.

To specify a format for a paragraph used in output to contain a table:
[TableOptions]
; UseTableAnchor = Yes (default, use anchor para) o r No
UseTableAnchor=Yes
; TableAnchorFormat = name of para fmt used to cont ain tables
TableAnchorFormat = TableAnchorPara

The default value of TableAnchorFormat is TableAnchor ; this format is defined in the
formats configuration files in %OMSYSHOME%\d2g\system\formats .

For selected table formats you can override use of the anchor format named by
TableAnchorFormat :

[TableAnchorFormats]
ThisTableFormat = OtherAnchorPara

To assign an @outputclass to table footer rows:

SPECIFYING OPTIONS FOR SPECIAL LISTS DITA2GO USER’S GUIDE

104 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[TableOptions]
; TableFooterClass = @outputclass used in <row> to identify a row
; that should be processed as a table footer; case- insensitive.
TableFooterClass = FooterClass

The default value of TableFooterClass is footer .

Although DITA tables do not include the notion of a footer row, you can designate <row>
elements to be treated as footer rows on output. Any <row> element that contains an
outputclass attribute with the value assigned to TableFooterClass will get the
format defined for that value, provided UseOutputClassForFormat=Yes ; see §6.2
Specifying options for naming formats on page 87.

To define output formats for tables, see §7.7 Configuring table output formats on
page 129.

For additional ways to customize tables for specific output types, see:
§15.6 Converting tables to print RTF on page 232
§33 Converting tables to HTML on page 625.

6.10 Specifying options for special lists
By default, DITA2Go renders definition lists and parameter lists as tables rather than as
lists. You can have them rendered as text lists instead, except when they occur inside
tables. This means you can, for example, use a list format for ePub output and a table
format for HTML or PDF output, without involving conditions or making any change in
the source topics or maps.

To render definition or parameter lists as lists, not tables:
[TableOptions]
; DefinitionListTables = Yes (default, render defin ition lists as
; tables) or No (render them as text lists).
DefinitionListTables = No
; ParameterListTables = Yes (default, render parame ter lists as
; tables) or No (render them as text lists).
ParameterListTables = No

To specify table formats for definition lists and parameter lists when they are rendered as
tables:

[TableOptions]
; DefListTableFormat = table format when Definition ListTables=Yes
DefListTableFormat = DefListTable
; ParamListTableFormat = table format when Paramete rListTables=Yes
ParamListTableFormat = ParamListTable

These are the default table formats for definition lists and parameter lists; you can find
them in %OMSYSHOME%\d2g\system\formats\d2htm_tables.ini and
%OMSYSHOME%\d2g\system\formats\d2rtf_tables.ini . Copy the format
definitions to the corresponding local format configuration files to modify them.

Note: Formats for list items that occur in tables converted from special lists always have
names that end in Tbl .

To override the default relative column widths (25% and 75%) for definition and
parameter lists when they are rendered as tables:

[TableOptions]
DefListTableColWidths = leftcolwidth rightcolwidth
ParamListTableColWidths = leftcolwidth rightcolwidth

6 MAPPING ELEMENTS TO OUTPUT FORMATS SPECIFYING OPTIONS FOR DRAFT COMMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 105

These settings take the standard DITA column width syntax, overriding the built-in 25*
75* setting.

6.11 Specifying options for draft comments
By default, DITA2Go includes the content of <draft-comment> elements in output.

To exclude <draft-comment> content from output:
[ElementOptions]
; KeepDraftComments = Yes (default, include draft-c omment content
; in output) or No (exclude draft-comment from outp ut)
KeepDraftComments = No

When KeepDraftComments=Yes (the default), DITA2Go treats <draft-comment> as
an inline element; however, it is one of those elements that can contain “pernicious mixed
content”: both block and inline elements, and also text.

By default, DITA2Go maps <draft-comment> content to a format that makes it easy to
spot in the output:

[InlineFormatMaps]
draft-comment/* = DraftComment

And in system format configuration files, DITA2Go defines this format as follows:
[DraftComment]
display = inline
color = red

You can override this definition in a local format configuration file.

However, if there are any other block or inline formats within <draft-comment> , they
will override its format, unless you assign a format for each; for example:

[BlockFormatMaps]
p/draft-comment/* = DraftPara

and:
[DraftPara]
based = Body
color = red

See §7 Configuring output formats on page 109.

6.12 Specifying options for maps
In this section:

§6.12.1 Providing default output formats for map content on page 105
§6.12.2 Including shortdesc content in the title attribute on page 106
§6.12.3 Including title-only topics in output on page 106
§6.12.4 Including children of topic headings on page 107

6.12.1 Providing default output formats for map co ntent

To specify a base name to use in default format names for ditamap and bookmap elements:
[ElementOptions]
; BaseMapFormat = base format name to use for ditam ap elements
BaseMapFormat = Map

SPECIFYING OPTIONS FOR MAPS DITA2GO USER’S GUIDE

106 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

DITA2Go appends a two-digit document level number to the base format name for each
map level, such as Map02. The default base name is Map.

DITA2Go treats the value of BaseMapFormat as the default format name for map
elements for which the [BlockFormatMaps] section does not contain a contextual
mapping. The main use of BaseMapFormat is to help identify such omissions, so you can
map those elements to new or existing formats. An exhaustive [BlockFormatMaps]
section would be very large, and pretty unmanageable.

See also:
§14.3 Generating a table of contents on page 198

6.12.2 Including shortdesc content in the title at tribute

To include shortdesc content in the title attribute of the heading it applies to, instead
of as a paragraph following the heading:

[MapOptions]
; UseMapDescAsTitle = No (default, treat descriptio ns as text if used)
; or Yes (use descriptions without formatting as ti tle attributes)
UseMapDescAsTitle = Yes

When UseMapDescAsTitle=Yes , the shortdesc text appears with a mouseover in
HTML output. However, for the topic text itself, the shortdesc always appears after the
title, unless you map it to one of the following:

 • [BlockFormatMaps]None (see §6.4.2 Mapping block and inline element paths to
formats on page 93)

 • [HTMLParaStyles]Delete (see §30.2.6 Eliminating unwanted paragraphs on
page 569)

 • [WordStyles]Delete (see §15.4.4 Omitting content from RTF output on
page 228).

See also:
§6.13 Deciding where to display title and shortdesc on page 107
§13.4 Including descriptions with related links on page 191
§22.9 Providing hover text for links in HTML on page 441

6.12.3 Including title-only topics in output

By default, DITA2Go treats all <topichead> elements as title-only topics, so they
behave the same in generating content (their navtitle) in both HTML and print (RTF)
output. This is also true for other topic heads derived from <topicref> that do not have
an href attribute, where the title is the <navtitle> and the <shortdesc> element is in
<topicmeta> .

To turn this behavior off and include such topic titles only in the TOC:
[TopicHeads]
; TreatTopicheadsAsTopics = Yes (default, treat top icheads as topics
; or No (include them in the TOC only).
TreatTopicheadsAsTopics = No

To specify a root element and ID base name for title-only topics:
[TopicHeads]
; TitleOnlyTopicType = root element to use for virt ual topics that are
; generated from topicheads, any topic root; defaul t "topic"
TitleOnlyTopicType = topic
; TitleOnlyTopicID = base name for @id for virtual generated topics,

6 MAPPING ELEMENTS TO OUTPUT FORMATS DECIDING WHERE TO DISPLAY TITLE AND SHORTDESC

ALL RIGHTS RESERVED. MAY 19, 2013 107

; to which a sequence number 1..n is added; default "head"
TitleOnlyTopicID = head

6.12.4 Including children of topic headings

If your document has a bookmap that includes part elements, by default their titles appear
in output only with related topics, mainly siblings. You can direct DITA2Go to include the
titles of their child topics as well.

To include titles of topic-heading children:
[TopicHeads]
; AddTopicHeadChildren = No (default) or Yes
AddTopicHeadChildren = Yes
; TopicHeadChildHeadFormat = format for topic head children heading;
; the children themselves use the [RelatedLinks]Top icTitleFormat.
TopicHeadChildHeadFormat = TopicHeadChildHead

When AddTopicHeadChildren=Yes , DITA2Go adds related child links to topic-
heading topic content, provided the following is true:

[RelatedLinks]
GenerateParentChild = Yes

Setting AddTopicHeadChildren=Yes overrides the value of UseChildren (see §13.2
Generating and including related links on page 189). The added items use the same
formats as other related links.

To specify the text of an introductory heading for a list of child topics, in a language
configuration file:

[TopicHeadText]
TopicHeadChildHead = In this section:

See §8.9 Localizing output headings, labels, and names on page 157. The text shown here
is the default value specified in d2g_lang_en.ini , located in directory
%OMSYSHOME%\d2g\system\lang .

See also:
§13.2 Generating and including related links on page 189

6.13 Deciding where to display title and shortdesc
For Help output, the TOC that appears in the tripane is generated by a process that does
not permit adding shortdesc text. Otherwise, text of title and shortdesc elements
can appear in three different places:

1. Always at the beginning of the topic itself (unless you deliberately skip the
shortdesc element by mapping it out).

2. In the TOC (but only for HTML, XHTML, and RTF outputs in the case of
shortdesc); see §14.3 Generating a table of contents on page 198.

3. In related links to the topic, which appear at the bottom of the referencing topics, but
only if [RelatedLinks]UseRelDescription=Yes ; the default is No. See §13.4
Including descriptions with related links on page 191.

In places 2 and 3 (but not 1), if you have chosen to use shortdesc , you have a further
choice to make. The default is to have shortdesc appear as text in a paragraph after the
text of the title element. You can change that:

 • for the TOC, with UseMapDescAsTitle=Yes ; see §6.12.2 Including shortdesc
content in the title attribute on page 106

DECIDING WHERE TO DISPLAY TITLE AND SHORTDESC DITA2GO USER’S GUIDE

108 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • for related links, with UseRelDescAsTitle=Yes ; see §13.4 Including descriptions
with related links on page 191

in which case shortdesc does not appear as text, but displays when you mouse over the
title (in HTML output); this is because it is instead in the title attribute of the title in the
TOC or the related link.

DITA2Go uses the map shortdesc in the links if possible, otherwise the shortdesc in
the reltable , or the linktext or desc in the related-links section, or finally the
shortdesc of the referenced topic itself.

(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 109

7 Configuring output formats

This section shows how to specify output styles and display characteristics for all
paragraph, character, and table output formats assigned to elements in your DITA
document, as well as to page layouts for RTF output. Topics include:

§7.1 Understanding the purpose of output formats on page 109
§7.2 Working with format configuration files on page 110
§7.3 Creating aliases to existing format names on page 112
§7.4 Understanding how to define output formats on page 114
§7.5 Understanding text output formats on page 119
§7.6 Configuring text output formats on page 121
§7.7 Configuring table output formats on page 129
§7.8 Configuring page layouts for RTF output on page 134
§7.9 Inserting line, column, and page breaks in output on page 138

7.1 Understanding the purpose of output formats
DITA2Go uses output formats, or styles, as a “presentational vocabulary” for the DITA
elements that form the “semantic vocabulary” of your document. Using formats as
identifiers is a key part of DITA2Go architecture. Mechanisms for combining element
names, element context, outputclass, PI markers, and configuration settings are already in
place for formats. A format is more descriptive than any of its sources.

Output formats provide the “glue” between your DITA elements and the resulting output.
Many settings in your project configuration file consist of a format name assigned to a
particular element or group of elements; subsequent settings assign actions or
consequences to those format names. Output format definitions assign style properties to
those format names, to determine how content will look.

To get you started, DITA2Go provides format configuration templates that define a set of
default output formats and specify their style properties; see §39.1.5 Understanding how
format templates are organized on page 730. Your project configuration file references
these through a chain of configuration templates; see §39.2 Referencing configuration
files and templates on page 731. The default format names are those shown in §6 Mapping
elements to output formats on page 87.

Format definitions make understanding a particular format simpler, remove the possibility
of misspelling the format name in one of many places, and make it possible to clone a
format to make a variant with just a single copy/paste action.

You can specify properties for each format assigned to an element in your DITA
document, in a format configuration file. DITA2Go uses the specifications in format
configuration files to generate a Word stylesheet, CSS for HTML, or whatever other
stylesheet is required by the output type. If you include a setting that is not used by the
current output type, DITA2Go ignores that setting. Therefore you can have both RTF-
specific and HTML-specific settings in the same format configuration section, and only
the appropriate settings will be used. That should make coordinating formats for different
outputs fairly easy.

WORKING WITH FORMAT CONFIGURATION FILES DITA2GO USER’S GUIDE

110 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

7.2 Working with format configuration files
Specifications for output formats must be included in separate format configuration files,
not in your project configuration file.

In this section:
§7.2.1 Understanding where to define output formats on page 110
§7.2.2 Specifying paths to your own format configuration files on page 110
§7.2.3 Understanding how DITA2Go builds format chains on page 111
§7.2.4 Understanding how DITA2Go processes format chains on page 112

7.2.1 Understanding where to define output formats

Your DITA2Go distribution includes a full set of format configuration templates and
editable format configuration files, organized in side chains referenced from the general
configuration chain; see §39.1.3 Understanding how templates are chained together on
page 728.

You can override the default format definitions, and define additional formats, in the
provided editable format configuration files paired with the templates. Or, you can set up
your own configuration template chain for format definitions, and reference that chain
from your project configuration file. See §7.2.3 Understanding how DITA2Go builds
format chains on page 111.

Your project configuration file can reference templates for any or all of the following
kinds of formats:

 • text formats (paragraph and character)
 • table formats
 • format components: number streams, cross references, borders, and shading
 • page layouts for RTF output.

The text-format template is the main template in this collection; it can reference the other
templates, but not vice versa. See §39.5.3 Chaining configuration templates on page 743.

7.2.2 Specifying paths to your own format configur ation files

To specify the names and locations of format configuration files:
[Templates]
; Formats = path to file containing properties for text formats.
Formats = path/to/mytextformats.ini
; Tables = path to file containing properties for t able formats.
Tables = path/to/mytableformats.ini
; Pages = path to file containing properties for RT F page layouts.
Pages = path/to/mypagelayouts.ini
; SubFormats = path to .ini file containing propert ies for subformats.
SubFormats = path/to/mysubformats.ini

Your project configuration file should already reference a DITA2Go -supplied chain of
general configuration templates; see §39.1.3 Understanding how templates are chained
together on page 728. That chain already references the appropriate format template chain.
For example, in d2rtf_config.ini :

[Templates]
Formats=%OMSYSHOME%\d2g\local\formats\local_d2rtf_f ormats.ini

The supplied text-format template in turn references a table-format template, and a
format-component template. For RTF output, the text-format template also references a

7 CONFIGURING OUTPUT FORMATS WORKING WITH FORMAT CONFIGURATION FILES

ALL RIGHTS RESERVED. MAY 19, 2013 111

page-layout template; see §39.1.5 Understanding how format templates are organized on
page 730.

If you want to use any of the supplied format definitions, and you have your own text
format template (which you reference directly from your project configuration file), that
template must reference the supplied chain of format templates. This is because it is an
either/or situation: DITA2Go builds one format chain or the other, but not both; see §7.2.3
Understanding how DITA2Go builds format chains on page 111.

In other words: the way you reference your own format templates from your project
configuration file is with a [Templates]Formats setting. Once you make that setting,
any [Templates]Formats setting in the general-configuration template chain is null
and void. You overrode it. Therefore you must put a reference to the supplied text-format
template into your own text-format configuration file, so you still get the supplied settings
(except where settings in your own text-format file override them, of course).

If you do not reference format template files of your own, you still have access to the
supplied templates, as long as your project configuration file references the chain of
general configuration templates.

7.2.3 Understanding how DITA2Go builds format chai ns

When DITA2Go opens your project configuration file, DITA2Go starts with any
[Templates]Configs= setting, and builds the entire general-configuration template
chain before doing anything else. All other template references follow the rules of
inheritance for the general configuration chain; see §39.1.3 Understanding how templates
are chained together on page 728.

Next DITA2Go looks up the template referenced by [Templates]Formats : whichever
template is so referenced either in your project configuration file, or failing that, in the
configuration template next closest in the general-configuration chain. From this reference
DITA2Go builds a chain of text-format templates. Not table formats, not page layouts,
just text formats.

Next DITA2Go looks for references to table-format, format-component, and page-layout
templates. DITA2Go looks first in the general-configuration template chain, then in the
text-format template chain. If a table-format, format-component, or page-layout template
is referenced in your project configuration file, or in any general-configuration template of
your own, that reference takes precedence over any reference in a text-format template,
even if the text-format template is referenced in your own project configuration file.

Finally DITA2Go builds the chains for table-format, format-component, and page-layout
templates. Each such chain consists of only one kind of template; for example, if you try to
reference page layouts from a format-component template, DITA2Go never sees the
reference.

Suppose you use DITA2Go to produce Word RTF. In the supplied set of templates,
d2rtf_config.ini references local_d2rtf_formats.ini , but not
local_d2rtf_pages.ini . Then local_d2rtf_formats.ini references
d2rtf_formats.ini , and the latter references local_d2rtf_pages.ini .

This means that if you provide your own text-format configuration file, but you want to
use the supplied page-format template, you have the following options:

 • If you have some use for the supplied text-format template, just link to its editable
counterpart from your own new text-format file; the supplied page formats will come
along.

CREATING ALIASES TO EXISTING FORMAT NAMES DITA2GO USER’S GUIDE

112 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • Reference the editable page-format configuration file from your text-format file or
from your project configuration file; if you reference it from both, DITA2Go uses the
reference in your project configuration file.

 • Provide your own page-format configuration file and link from it to the supplied
editable page-format configuration file.

But if you neither reference the supplied page-format file yourself, nor reference the
supplied text-format file that references the page formats, your project will not have
access to the supplied page layouts.

7.2.4 Understanding how DITA2Go processes format c hains

When DITA2Go reads the properties of a format, DITA2Go does not just read the chain
for the configuration section where the format is defined; DITA2Go reads the chain for
each individual property of that format, across all format files in the chain. This ensures
that settings that change defaults for other settings are always processed in the right order,
regardless of how you listed them in the format section, thus eliminating one possible
source of unexpected results.

When DITA2Go reads a format, you can think of it as combining all the sections with that
format name, at every template level, with the settings for the lowest level first, then the
settings for the next level up, and so on.

If a based property (see §7.4.5 Basing format properties on other formats on page 116) is
anywhere in the combined list, DITA2Go takes it into consideration; if the same based
property occurs more than once, DITA2Go sees just the first instance. Next, DITA2Go
follows the same process for the format on which the current format is based. Next, if the
format is a text format, DITA2Go looks for an inline property (see §7.6.4
Understanding based vs. inline properties for paragraph formats on page 122), and carries
out the same recursive process again.

For any given format property setting, you can think of the “search order” like this:

1. The lowest-level instance of the format.

2. The higher-level instances, bottom to top.

3. The inline instances, bottom to top.

4. The based instances, bottom to top.

This can result in quite a few places to look. But it also means that you have a single point
of change for common settings, such as font.

If you are in doubt, you can always add the specific property to the lowest-level instance
of the format. That overrides any others. But it also means that if you change the value of
that property higher in the chain, the change will not propagate to the lower instances.

7.3 Creating aliases to existing format names
To use output format names other than the DITA2Go default names could require
specifying many settings that otherwise you would not have to include in your project
configuration file. You can avoid this chore by mapping your preferred names to the
DITA2Go names.

In this section:
§7.3.1 Understanding reasons for aliasing format names on page 113
§7.3.2 Mapping legacy names to defined formats on page 113

7 CONFIGURING OUTPUT FORMATS CREATING ALIASES TO EXISTING FORMAT NAMES

ALL RIGHTS RESERVED. MAY 19, 2013 113

See also:
§6.3.4 Mapping wrapper-element outputclass attributes to formats on page 91
§8.1.3 Assigning additional names to format components on page 142

7.3.1 Understanding reasons for aliasing format na mes

Some of the reasons you might want DITA2Go to use output format names other than the
default names, or in addition to names of formats you have already defined:

Legacy format names in outputclass attributes
Existing CSS classes
Existing Word template styles
Non-English input or output.

Legacy format
names in

outputclass
attributes

If your DITA document was created from material authored in a non-DITA environment
such as FrameMaker, elements might include outputclass attribute values that
correspond to the format names from the source environment. Rather than substitute those
names in many settings, or suppress the use of those names for output formats, you can
map the names to DITA2Go default format names.

Existing CSS
classes

Suppose you wish to produce HTML output, and you already have a CSS file with classes
defined for class names that are different from the DITA2Go default output format names.
Rather than substitute one of your CSS class names in each of the many settings that
assign a format name to an element path, you can prepare a list of aliases that match your
class names to those format names.

Existing Word
template styles

If you wish to produce RTF output and you already have a Word template with styles
named differently from the DITA2Go default format names, you can map those style
names to the DITA2Go format names.

Non-English input
or output

Another reason to use format names other than the DITA2Go default names might be
localization; see §8.9 Localizing output headings, labels, and names on page 157.

7.3.2 Mapping legacy names to defined formats

Create a format definition for each of the output format names your project might need.
Then you can manage their output appearance in a format template that is integral to your
DITA2Go project, and that can be shared across many such projects.

To map your names to DITA2Go default format names:
[FormatAliases]
; format name = another format name; for example:
CellHeading = CellHead

You can use this section to specify properties for the format named on the left as though
[FirstFormat]based= SecondFormat (see §7.4.5 Basing format properties on other
formats on page 116). Make sure that SecondFormat is defined somewhere in the format
template chain.

When DITA2Go looks up format definitions, DITA2Go replaces each format name listed
on the left with the name assigned to it on the right. This process is not recursive; if you
assign format names a=b and b=c , when DITA2Go needs a definition for a, instead
DITA2Go looks for a definition of b, not c .

UNDERSTANDING HOW TO DEFINE OUTPUT FORMATS DITA2GO USER’S GUIDE

114 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

7.4 Understanding how to define output formats
You define new formats, and override the definitions of default formats, in local or
document-specific format configuration files; see §7.2.1 Understanding where to define
output formats on page 110.

In this section:
§7.4.1 Naming output formats on page 114
§7.4.2 Assigning values to format properties on page 115
§7.4.3 Documenting output formats on page 115
§7.4.4 Understanding the basis of format properties on page 115
§7.4.5 Basing format properties on other formats on page 116
§7.4.6 Modifying DITA2Go default output formats on page 116
§7.4.7 Applying CSS and RTF code to output formats on page 118
§7.4.8 Assigning content-adding properties to formats on page 118

7.4.1 Naming output formats

A format name must end in a suffix that indicates the type of format (except for the names
of paragraph formats, which do not require a suffix). How a format configuration file is
referenced in [Templates] settings determines which types of formats are valid in the
referenced file, and thus the valid suffixes for the names of formats defined in that file; see
§7.2 Working with format configuration files on page 110. Table 7-1 shows valid suffixes
for format names, depending on the [Templates] reference.

DITA2Go validates formats partly by suffix. A wrong type could result in very odd
output, plus a warning in the log file.

Table 7-1 Valid suffixes for names of formats and format components

In files referenced via
[Templates] setting: Type of format or component

Format name
suffix Ref.

Formats Paragraph (block) Para (optional) 7.6.3

Character (inline) Char 7.6.2

Tables Table Table 7.7.2

Table row Row 7.7.3

Table cell Cell 7.7.4

Pages (RTF only) Section Section 7.8.2

Page header Header 7.8.3

Page footer Footer 7.8.3

Subformats Border Border 8.2

Shading Shade 8.3

Index Index 14.8.3

Trademark Mark 8.8

Cross reference Xref 8.7

Run-in heading Head 8.6

Numbering Num 8.5.3

Number stream Stream 8.5.2

7 CONFIGURING OUTPUT FORMATS UNDERSTANDING HOW TO DEFINE OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 115

7.4.2 Assigning values to format properties

To define an output format, create a section named for the format in the appropriate format
configuration file. The settings in this section are all of the form property = value :

[FormatName]
property1 = value1
property2 = value2a value2b value2c ...
. . .

The collection of properties you can specify depends on which kind of format you are
defining: paragraph, character, component, table, or page. For example, for a paragraph
format named Heading1 you might specify the following properties:

[Heading1]
based = Body
section = Section
keep = next
break = page
font size = 20pt
font weight = bold
margin top = 18pt
margin bottom = 6pt

You can use macros in output-format settings. However, you cannot define macros in a
format configuration file; you must define them in macro libraries. See §37.2.4 Including
macro definitions in your own macro library on page 685.

7.4.3 Documenting output formats

To make it easy to identify and locate format definitions, you can assign values to two
format meta properties:

[FormatName]
category = CategoryName
help = Any text to remind you of the nature and purpose of the format

The value for category must be the name of one of the format subcategories defined in
the Configuration Manager. See §3.2.5 Choosing a configuration category or file type on
page 54. However, if you have named your format according to the suffix requirements
described in §7.4.1 Naming output formats on page 114, you do not need to include a
category setting in the definition; the Configuration Manager will deduce the category
from the suffix.

The value for help can be any text that will help you remember what the format is for.
The Configuration Manager displays help text for every format.

7.4.4 Understanding the basis of format properties

The properties you can specify for output formats are based on CSS rules, even if you are
generating RTF output. If you are not familiar with CSS (Cascading Style Sheets), see
§31.2 Understanding how to use CSS on page 591.

DITA2Go augments CSS rules with the following features:
Number streams (allowing more complexity than CSS permits)
Based formats, for incorporating properties of another format
Output-type-specific properties such as CSS and RTF
Content-adding properties such as Start, End, Before, After, Replace.

UNDERSTANDING HOW TO DEFINE OUTPUT FORMATS DITA2GO USER’S GUIDE

116 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Number streams Format numbering is handled in the SubFormat templates. The idea is to provide building
blocks, so you do not have to repeat the numbering properties in every block format that
uses them.

Based Format property based allows you to base a format on the properties already defined for
another format. See §7.4.5 Basing format properties on other formats on page 116.

CSS Format property css allows you to assign any CSS to a format, for HTML output.

RTF Format property rtf allows you to assign any RTF control words to a format, for RTF
output. See §7.4.7 Applying CSS and RTF code to output formats on page 118.

Start, End,
Before, After,

Replace

Format properties start , end , before , and after add text or code around every
instance of a format, and replace substitutes text or code for every instance. See §7.4.8
Assigning content-adding properties to formats on page 118.

7.4.5 Basing format properties on other formats

Format property based confers all the properties of the referenced format on the current
format.

Suppose you have based a given format on some other format:
[FormatName]
based = OtherFormat

This setting says: if a property is not specified in [FormatName] , DITA2Go should get it
from the properties of OtherFormat. However, before doing so, DITA2Go first looks for
higher-level (farther along the template chain) instances of FormatName ; and if found, if
the property in question is defined there, uses that value for the property. The implication
is that if you are going to base a format on another one, there should be no higher-level
instances of the basing format.

You can chain based formats. When based= parent DITA2Go goes through the based
chain to the end, or to the first instance of a format already seen (to break circularity), just
as with configuration templates.

Note: If you override a property of a format that other formats are based on, and it is a
property that those other formats do not override, the change propagates to all
those basing formats.

Because format properties are assigned in fixed-key configuration sections (see §42.2.7
Understanding fixed-key vs. variable-key settings on page 769), they inherit from higher-
level (farther away in the chain of templates) sections of the same name. For example, if
you override a property that sets margin left = 6pt , and you want no left margin, you
have to specify margin left = 0 explicitly, just as you would have to do to override a
property of the format on which you based a new format.

However, if the overridden format at the higher level is itself based on yet another format,
and the new format is also based, the new format does not inherit the properties of the
format the higher-level format is based on, just the properties set in the overridden format.

7.4.6 Modifying DITA2Go default output formats

To change the definition of a format supplied in the DITA2Go format templates, include a
section for that format in the corresponding local_ format configuration file or your own
format configuration file, and override the default values of any properties you wish to
change. Your version of the format will inherit all the properties that you do not redefine.
Because many of the supplied formats also inherit from other formats, you will have to

7 CONFIGURING OUTPUT FORMATS UNDERSTANDING HOW TO DEFINE OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 117

follow the chain for each inherited property of interest until you find its actual value, then
decide how to override that value.

For example, suppose you want to change the vertical alignment of text in header cells in
tables that you have assigned format SeaTable , for RTF output. You would look in
format configuration template d2rtf_tables.ini for the default definition:

[SeaTable]
based = NormalTable
border top = NoBorder
border bottom = NoBorder
header rows = SeaHeaderRow
body rows = SeaBodyRow

This definition tells you that header rows are in format SeaHeaderRow ; so you look for
that definition:

[SeaHeaderRow]
based = HeaderRow
body cells = SeaColHeadCell
border bottom = NoBorder
shading = SeaHeadShade

Now you see that the cells of the header row are defined in format SeaColHeadCell , so
you look for that definition:

[SeaColHeadCell]
based = ColHeadCell
border bottom = NoBorder
shading = SeaHeadShade

Now you find that SeaColHeadCell does not have any alignment properties defined, but
instead is based on ColHeadCell , so you look there:

[ColHeadCell]
based = BodyCell
margin top = 1pt
margin bottom = 3pt
border bottom = LightBorder
vertical align = Bottom

Finally you have found the properties that govern vertical alignment of text in header
cells! You might not want to change the definition of ColHeadCell , because that
definition might be inherited by table formats other than SeaTable . But you can be fairly
sure that SeaColHeadCell is specific to SeaTable , just based on its name. To be
absolutely sure, you would check for any inheritance of SeaColHeadCell by any other
table or row format in the current template or in any table format configuration file
“downstream” of that template.

Now you can redefine SeaColHeadCell as you wish, overriding only those properties
you want changed: namely, vertical align (and possibly margin top and margin
bottom), inherited from ColHeadCell :

[SeaColHeadCell]
vertical align = top

Any tables in your document that are assigned format SeaTable will now have header
cells with text alignment toward the top of the cell instead of the bottom, within the
confines of the relevant margin settings.

In this particular example, all the inherited properties are defined in the same format
configuration template. However, to modify some formats you might have to look further
“upstream” in other templates to find the properties you want to change. You would start

UNDERSTANDING HOW TO DEFINE OUTPUT FORMATS DITA2GO USER’S GUIDE

118 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

looking in the format configuration file referenced by your project configuration file, and
work back from there.

7.4.7 Applying CSS and RTF code to output formats

You can apply CSS code or RTF control words to all instances of a text or table format:.
Apply CSS code with property css
Apply RTF code with property rtf.

You can even assign both properties css and rtf to the same format.

Apply CSS code
with property css

Values for property css take the usual CSS form, and must follow the usual CSS rules.
Each css setting must either fit on a single line or reference a macro. Within a css value,
observe the following:

 • To include a line break, use \n . For example:
[FormatName]
css = padding: 2 6 4 0;\n width: 80%;

 • To retain a backslash in CSS, double it.
 • To add a leading or trailing space, use \~. Normal leading and trailing spaces are

removed.

Apply RTF code
with property rtf

Values for property rtf use the usual RTF control words. Each rtf setting must either fit
on a single line, or reference a macro. Within an rtf value, observe the following:

 • To retain a backslash in an rtf setting, double the backslash. For example:
[FormatName]
rtf = \\lang1033 \\widctlpar\\noproof

 • To add a leading or trailing space, use \~. Normal leading and trailing spaces are
removed.

7.4.8 Assigning content-adding properties to forma ts

You can use properties start , end , before , and after to add text or code around every
instance of a format; and property replace to substitute text or code for each instance.
All five apply to text formats; before , after , and replace apply to table formats also.

These properties are not based on CSS, because many current browsers (notably Internet
Explorer) do not support the CSS settings required. Therefore, DITA2Go adds the code
for these properties directly to HTML output.

The content-adding properties provide alternatives to the corresponding [StyleCode*]
sections in your project configuration file. For example:

With a [StyleCode*] section:
[WordStyles]
isbn = CodeStart

[StyleCodeStart]
isbn = ISBN:

With format properties:
[isbn]
start = ISBN:

You can include macros in the content-adding settings; see §37.9.3 Surrounding or
replacing text with code or macros on page 711. Each setting must either fit all on one line,
or reference a macro. Any regular configuration settings in [StyleCode*] sections in

7 CONFIGURING OUTPUT FORMATS UNDERSTANDING TEXT OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 119

your project configuration file, or in a general configuration template, override content-
adding properties.

Table 37-10 on page 712 shows exactly where each added content is placed in output.

Some examples for HTML output:
[FormatName]
before = <h3 class="caution">Caution!</h3>
start = <i>For example: </i>
end = <$MyEndingMacro>
after = <hr style="width:50%;"/>

Some examples for RTF output:
[FormatName]
before = \\pard \\s<$_stylenum("CautionFormat")> Ca ution!\\par
start = {\\i For example:\\~ }
end = <$MyEndingMacro>
after = \\pard\\li2880\\ri2880\\brdrb\\brdrw20\\brd rsp120\\par

For RTF content, you can also use the following predefined macros:

For example:
[TOC]
based = Heading2
font size = 13pt
line height = 16pt
margin top = 8pt
section = FrontSection
tabs = dot R3in
end = \\tab \\~<$_PageRef>

7.5 Understanding text output formats
Text output formats include block (paragraph) and inline (character) formats. DITA2Go
provides two sets of properties for output paragraph and character formats:

 • Inline properties that apply to both character and paragraph formats
 • Block properties that apply only to paragraph formats.

In this section:
§7.5.1 Understanding where to define text output formats on page 120
§7.5.2 Providing padding around the text body area for HTML on page 120
§7.5.3 Establishing base values and units of measurement on page 120
§7.5.4 Including formats for features not present in body content on page 120

<$_style(stylename)> RTF start code for the paragraph or character
format; mainly for setting up title pages with a
macro used after the title itself

<$_colornum(colorref)> Just the color number, used after \\cf or \\cb
(foreground or background)

<$_fontnum(fontname)> Just the font number, used after \\f

<$_stylenum(stylename)> Just the style number; use it after \\s in your own
RTF code

<$_styleref(stylename)> STYLEREF field with the named style, useful in
headers and footers (only)

<$_pageref> PAGEREF field referencing last bookmark used, for
after TOC formats

UNDERSTANDING TEXT OUTPUT FORMATS DITA2GO USER’S GUIDE

120 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

7.5.1 Understanding where to define text output fo rmats

Define text formats in a format configuration file, referenced from your project
configuration file (or from another template) as follows:

[Templates]
; Formats = path to file containing properties for text formats.
Formats = path/to/mytextformats.ini

See §7.2 Working with format configuration files on page 110.

7.5.2 Providing padding around the text body area for HTML

To specify padding around text in HTML output:
[BodyElement]
css= padding: 6pt;

This implied format for the HTML <body> element (not the Body format) sets the
padding inside the display window.

7.5.3 Establishing base values and units of measur ement

The numerical properties of a given text format can be expressed relative to a base value.
You can establish base values for calculating relative sizes of properties with units of em,
en, or percent . These base values must be specified with one of the following fixed
units:

To specify a base size for text formats:
[BaseValues]
; BodyBaseHeight = size to use as basis for calcula ting relative
; values for font size, line height, and all values using units
; of em or ex. If not set, 10pt is used.
BodyBaseHeight=10pt

To specify a base size of the containing element (usually body) for margins, padding, and
indentation:

[BaseValues]
; BodyBaseWidth = width to use as basis for calcula ting percent
; values for margins, padding, and text-indent. If not set, 6in
; is used.
BodyBaseWidth=6in

Percent values are tricky; you might want to avoid their use unless you are very familiar
with advanced CSS.

7.5.4 Including formats for features not present i n body content

You can force inclusion of formats that are not actually used in the body content of the
source, such as those employed only for headers and footers. For example:

[Required]
; format name = format type, block or inline

px (pixels)
pt (points)
pc (picas)
cm (centimeters)
mm (millimeters)
in (inches)

7 CONFIGURING OUTPUT FORMATS CONFIGURING TEXT OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 121

Author = block
Header = block
Footer = block

For HTML output, this forces inclusion of formats that are not defined in the source file,
such as those used in macros. Because content in these formats is added at the end of
processing, formats listed here cannot contribute any before , after , start , or end
content to HTML output.

For RTF output, if you do not specify a format type the correct properties are still used, but
they appear as overrides to format Normal .

7.6 Configuring text output formats
The DITA2Go -supplied format templates include basic default properties for character
and paragraph formats. If your project configuration file references the chain of format
templates, these properties will be in effect for any text formats you define. You can
change the defaults by including your own default values in your own format
configuration file, referenced via [Templates]Formats ; see.§7.2 Working with format
configuration files on page 110.

In this section:
§7.6.1 Naming and defining text formats on page 121
§7.6.2 Specifying default properties for character formats on page 121
§7.6.3 Specifying default properties for paragraph formats on page 122
§7.6.4 Understanding based vs. inline properties for paragraph formats on page 122
§7.6.5 Specifying inline properties for paragraph and character formats on page 123
§7.6.6 Specifying block properties for paragraph formats on page 124
§7.6.7 Configuring list formats on page 125
§7.6.8 Assigning border properties to paragraph formats on page 128
§7.6.9 Configuring character formats for HTML links on page 128
§7.6.10 Specifying tab positions for RTF paragraph styles on page 129

7.6.1 Naming and defining text formats

Define text formats in a text-format configuration file referenced from your project
configuration file (or from another text-format template) as follows:

[Templates]
; Formats = path to file specifying properties of t ext formats.
Formats = path/to/mytextformats.ini

See §7.2 Working with format configuration files on page 110.

When you define a new character format, give it a name that ends in Char . The Char
suffix is required for character format names. Any format defined in a configuration file
accessed via [Templates]Formats is considered to be a paragraph format unless the
name ends in Char .

The conventional suffix for paragraph format names is Para ; however, paragraph format
names do not require a suffix.

7.6.2 Specifying default properties for character formats

You can establish default properties for character formats, and then use the based
property to apply those properties to other character formats.

CONFIGURING TEXT OUTPUT FORMATS DITA2GO USER’S GUIDE

122 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To specify default properties for character output formats (for example):
[Char]
help = Default character format for an inline eleme nt
category = CharacterFormats
display = inline
; Use Verdana; if not available, use another sans s erif font:
font name = Verdana, sans serif
; Make the characters 10 points in size:
font size = 10pt

Character format Char is the default format for any inline element to which a format name
has not been assigned. The property values listed here for Char are the default values.
Unless you want to specify a different value for a particular property, you do not have to
include these property settings for a character format you define.

7.6.3 Specifying default properties for paragraph formats

The DITA2Go -supplied format templates include basic default properties for character
and paragraph formats. If your project configuration file references the chain of format
templates, these properties will be in effect for any text formats you define. You can
change the defaults by including your own settings in the corresponding local_ format
configuration file or in your own format configuration file, referenced via
[Templates]Formats ; see.§7.2 Working with format configuration files on page 110.

To specify default properties for paragraph formats (for example):
[Para]
help = Default paragraph format for a block element
category = ParagraphFormats Configuration Manager text-format category
display = block This is a block format.
inline = Char Use the character properties of format Char.
line height = 11pt Make leading 11 points.

Paragraph format Para is the default format for any block element to which you have not
assigned a format name.

DITA2Go applies each of the values specified for Para , and also for default character
format Char (because Para references Char via property inline), to any paragraph
format for which you do not specify a different value for the property in question.

The property values listed in [Char] and [Para] for inline and block properties,
respectively, are the default values. Unless you want to specify a different value for a
particular property, you do not have to include any of these property settings for a text
format.

7.6.4 Understanding based vs. inline properties fo r paragraph formats

Properties inline and based are almost the same; however, inline is a property only
of paragraph formats, and its value must be the name of a character format. DITA2Go
processes based first, then inline . Therefore you can use the based property to base
one paragraph format on another, then change just the character properties of the first
paragraph by applying the inline property. For example:

[SomePara]
display = block
based = OtherPara
inline = SomeChar

With these settings, SomePara would have all the characteristics of OtherPara, except
for the character properties of character format SomeChar.

7 CONFIGURING OUTPUT FORMATS CONFIGURING TEXT OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 123

7.6.5 Specifying inline properties for paragraph a nd character formats

The properties listed in Table 7-2 define the appearance of text formats in both HTML and
RTF output.

For example:
[Bold]
based = Char
font weight = bold

[Italic]
based = Char
font style = italic

Bold and Italic both incorporate the properties of character format Char ; see §7.6.2
Specifying default properties for character formats on page 121.

To specify text color for a heading (for example):
[MySubHeading]
based = Heading2
color = rgb(42,96,148)

To show a horizontal line above the heading, you could use either a block-property fixed-
length line in any color, or an inline-property overline in the same color as the text. For the
inline property you would add:

text decoration = overline

For the block property, you would instead specify a top border for the paragraph:
border top = MyBorder

And then define the border format:
[MyBorder]
color = rgb(42,96,148)
type = single

Table 7-2 Inline properties for text formats

Property name Valid property values

based Name of another character format

font family One or more font names per CSS rules. For outputs which allow only single
fonts, such as RTF, the first font name is used. For RTF output, do not
enclose the font name in quotes

font name Synonym for font family

font size Size; see §7.5.3 Establishing base values and units of measurement on
page 120

font style normal , italic , or oblique

font variant normal or small-caps

font weight normal or bold

font kern Percent or points or other units: positive number to expand text, negative
number to compress text

text decoration none , or a combination of underline , overline , and strike-through

text transform none , uppercase , lowercase , or capitalize

color CSS color designation

background color CSS color designation

selector (HTML output only) Format name preceded by a dot, for CSS use;
overrides the default .class

CONFIGURING TEXT OUTPUT FORMATS DITA2GO USER’S GUIDE

124 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

thick = 1pt
space = 6pt

See §8.2 Defining border format components on page 144.

To compress text in a paragraph format using a percent value for font kern :
[CellCodePara]
based = CodePara
font size = 9pt
font kern = -5%

7.6.6 Specifying block properties for paragraph fo rmats

Paragraph formats can reference character formats for their inline properties, using
property inline , and can also specify inline properties explicitly. For paragraph formats,
use the properties listed in Table 7-3, in addition to those listed in Table 7-2.

Table 7-3 Block properties for output paragraph formats

Type of property Property name Valid property values

Inherited inline Name of a character format

based Name of another paragraph format

Code rtf (RTF only) Any valid RTF control sequence; see §7.4.7
Applying CSS and RTF code to output formats on
page 118

css (HTML only) Any applicable CSS code; see §7.4.7
Applying CSS and RTF code to output formats on
page 118

Lists: sequential
numbering or
bulleting

list level An integer to indicate the nesting or indentation level; 0
means no indentation

list style (HTML only) See §7.6.7.1 Assigning properties to list
formats for HTML list styles on page 125

number Name of a number or symbol format component to
apply; see §8.5.3 Defining number format components
on page 148; or None.

numref (Footnote formats only) Name of a number format
component to use for footnote references; see §8.5.3
Defining number format components on page 148

Run-in heading runin Name of a format component that defines text to
precede the paragraph; see §8.6 Configuring run-in
headings for text formats on page 153; or None.

Cross reference xref Name of a cross-reference format to use for references
to text in this paragraph format; see §8.7 Defining cross-
reference output formats on page 155

Positioning relative
to other blocks (RTF
output only)

section Name of section format in page template file to be used
whenever this paragraph style appears; see §7.8.2
Configuring output section formats on page 135.

section start No (default, start section only if not already in it), or Yes
(always restart section)

section break none , column , page , left , right

break none , column , page , left (page), or right (page)

keep none , or together and/or next

Alignment text align left , center , right , or justify

vertical align top , middle , or bottom

7 CONFIGURING OUTPUT FORMATS CONFIGURING TEXT OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 125

7.6.7 Configuring list formats

DITA2Go provides two ways to configure block formats for paragraphs that form lists,
such as a series of numbered steps or a series of bulleted items. For HTML-based output,
you can use CSS/HTML list styles (the default); or, for any type of output, you can roll
your own using DITA2Go list properties. Or you can configure both ways, and choose
which to use later for a given output.

In this section:
§7.6.7.1 Assigning properties to list formats for HTML list styles on page 125
§7.6.7.2 Assigning properties to list formats for DITA2Go list styles on page 127
§7.6.7.3 Having the best of both worlds on page 127

7.6.7.1 Assigning properties to list formats for H TML list styles

For HTML-based output, DITA2Go uses HTML list styles by default; see §30.11.2
Converting list formats to HTML list styles on page 585. If you are using CSS, in a
formats configuration file you can assign any or all of three list-style properties to a
paragraph format that begins a list:

[FormatName]
list style = type image position

Line and margin
dimensions

line height Size can be absolute or relative; see §7.5.3 Establishing
base values and units of measurement on page 120.margin left

margin right

margin top

margin bottom

text indent

padding left

padding right

padding top

padding bottom

Tab positioning
(RTF output only)

tabs Tab definitions; see §7.6.10 Specifying tab positions for
RTF paragraph styles on page 129.

Border around text border position Names of border formats; see.§7.6.8 Assigning border
properties to paragraph formats on page 128

Background color shading Name of a shade format; see §8.3 Defining shading
format components on page 145

CSS (HTML output
only)

selector Format name preceded by a dot, for CSS use; overrides
the default .class

Table 7-3 Block properties for output paragraph formats (continued)

Type of property Property name Valid property values

CONFIGURING TEXT OUTPUT FORMATS DITA2GO USER’S GUIDE

126 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

where:

For example:
[Numbered1First]
based = Numbered
list style = decimal

[Bulleted]
list style = circle mybullet.gif

If you specify values for both type and image, but the browser cannot locate the image,
the type value is displayed instead. It is a good idea always to include a value for the
type property, even if you really want image.

If you omit a list style property, you get the browser defaults for the list type (ol or
ul). If you set list style=none , any list keywords you assigned to the format in
[HTMLParaStyles] are disabled; see §30.11.2.1 Specifying HTML list styles
(deprecated) on page 585. Use list style=none for continuation paragraphs that
should be included in the same element.

Padding and
margins

To achieve some degree of cross-browser indentation consistency, you can adjust padding
and margins for list elements, by redefining the following predefined formats:

[OrderedListElement]
margin left = 18pt
padding left = 12pt

[UnorderedListElement]
margin left = 18pt
padding left = 12pt

These formats are for the <body> element, not the Body format. They affect all the
elements of their CSS selectors regardless of class, thus providing a kind of baseline rule.
This rule overrides the built-in CSS rule in a browser.

Indentation To specify indentation for list formats:
[FormatName]
list level = N

The value N is an integer from 0 to however deep you nest lists. When list level=0 ,
the number or symbol that marks the list item is not indented except for a small amount to
keep it within the page margin, and the text of the list item is indented the amount

type can be one of the following:

disc (a filled-in circle; standard bullet)
circle
square
decimal
decimal-leading-zero
upper-alpha (upper-latin)
lower-alpha (lower-latin)
upper-roman
lower-roman
lower-greek
armenian
georgian
none (no number, letter, or symbol)

image is a URL, such as graphic.gif

position can be one of the following:

outside (default)
inside (within the same indent as the text)

7 CONFIGURING OUTPUT FORMATS CONFIGURING TEXT OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 127

specified for margin left in [OrderedListElement] or in
[UnorderedListElement] . For each successive value of list level , the list item is
indented a similar (cumulative) amount relative to the page margin.

For example:
[Numbered2]
based = Numbered1
list style = lower-alpha
list level = 2

Indentation using CSS is not just a matter of specifying distance from the left margin. It is
more like Petroushka dolls: one element fits inside another. If you do not use lists, you can
overlook that, because all the block elements are in the same “box”: the <body> element.
With lists, you have an ordered-list or unordered-list box inside the <body>
box, with list-item boxes inside that; all the list content is in the boxes. This
means that for list content, all margins are relative to Numbered or Bulleted in the
current list, so most of them will have margin left = 0 to align with the numbered or
bulleted text (not the number or bullet).

We find that Bulleted formats need margin left = 0 at all levels; Numbered formats
need margin left = 2pt at all levels. The 2pt is needed to make the number align
with the item above it; bullets are closer to the text, and do not need the extra indent.

For a detailed explanation of CSS list properties, see Chapter 12 of the O'Reilly book
“CSS: The Definitive Guide”, 3rd Edition, by Eric Meyer. For cautionary statements about
the pitfalls of using list styles for HTML output, see §30.11 Converting list formats to
HTML (deprecated) on page 584.

7.6.7.2 Assigning properties to list formats for D ITA2Go list styles

The main benefit of DITA2Go list styles is the ability to use any characters as bullets,
rather than the limited assortment supported by CSS; see §7.6.7.1 Assigning properties to
list formats for HTML list styles on page 125.

DITA2Go list styles are the default for RTF output. For HTML-based output, specify the
appropriate settings described in §30.11.2 Converting list formats to HTML list styles on
page 585.

To specify margins and indentation for DITA2Go list styles:
[ListOptions]
LevelMargin = 12pt
NumberOutdent = 8pt
BulletOutdent = 6pt

To specify numbering for ordered lists, see §8.5 Configuring output numbering properties
on page 146. To specify bullets for unordered lists, define number formats with
stream=none and form= a Unicode value; see§8.5.5.4 Specifying symbols for bulleted
lists on page 152.

7.6.7.3 Having the best of both worlds

For HTML-based output, if you are not using CSS, the list style property does not
apply. Instead, DITA2Go uses the format component assigned to property number ; see
Table 7-3 on page 124. The list style property is for CSS, and determines what an
ordered or unordered list looks like. List styles do not produce anything in RTF output.

CONFIGURING TEXT OUTPUT FORMATS DITA2GO USER’S GUIDE

128 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The number property, in contrast, produces an autonumber. Autonumbers work in Word
and also in HTML, outside of lists; within HTML list styles, DITA2Go turns off
autonumbers by default.

It is a good idea to set both number and list style , so that your formats are covered
whichever way you go. You will not get duplicate numbering if you specify values for
both list style and counter types . For example:

[Numbered2]
based = Numbered
list style = lower-alpha
number = List2Num

[List2Num]
stream = ListStream
counter = 2
form = <tab/><counter2/>.<tab/>

[ListStream]
counters = 3
counter types = Num LCAlpha LCRom

See also §8.5.5 Considering examples of numbering schemes on page 150.

7.6.8 Assigning border properties to paragraph for mats

To provide a border around output text, assign one or more border properties to the
paragraph format of the text, and assign the name of a border format component to each
property. Table 7-4 lists the border properties you can assign to a paragraph format.

Each border property setting specifies the name of a border format component to use for
that property for that paragraph format; for example:

[StandOutPara]
border box = HeavyBorder

Border format components are defined in Subformats configuration files; see §8.2
Defining border format components on page 144.

7.6.9 Configuring character formats for HTML links

In addition to formats you can name and define, DITA2Go provides three predefined
character formats to use for HTML links. You can redefine these formats:

[AElement]
; Turn off link underlining:
text decoration = none

Table 7-4 Border properties for paragraph formats

Border property Position relative to text

border top Above the paragraph

border bottom Below the paragraph

border left To the left of the paragraph

border right To the right of the paragraph

border outer (RTF only) Toward the outer edge (like change bars)

border box (RTF only) All the way around a paragraph

border between (RTF only) Where multiple paragraphs have borders; by default, there are
no borders between adjacent bordered paragraphs, unless you specify this
border format for those paragraphs

7 CONFIGURING OUTPUT FORMATS CONFIGURING TABLE OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 129

[AUnvisitedElement]
; Make unvisited links blue:
color = blue

[AVisitedElement]
; Make visted links purple:
color = purple

These formats affect all the elements of their CSS selectors regardless of class, thus
providing a kind of baseline rule. This rule overrides the built-in CSS rule in a browser.

7.6.10 Specifying tab positions for RTF paragraph styles

A value for the tabs setting consists of the following:

 • an optional leader, one of: dot , hyph , ul (underline), th (thick), or eq (equals),
followed by a space

 • a letter for the tab type (if other than left): R (right), C (center), D (decimal), or B (bar)
 • a numerical value followed by the units for the distance of the tab from the left

margin.

For example, you would specify tabs=dot R6.75in for a flush-right tab with a dotted
leader in a body frame 6.75 inches wide. If you do not include a letter, a left tab is
assumed. You can specify as many space-delimited tabs as you want, but all must either fit
on a single line, or be included in a referenced macro.

7.7 Configuring table output formats
To configure the appearance of tables in output, you can define individual table formats,
row formats, and cell formats. Table format properties can reference row formats and cell
formats. Row format properties can reference cell formats. This arrangement allows for
maximum flexibility and excruciating complexity in the display properties of tables.

In this section:
§7.7.1 Naming and defining table, row, and cell formats on page 129
§7.7.2 Configuring table format properties on page 130
§7.7.3 Configuring row format properties on page 131
§7.7.4 Configuring cell format properties on page 132

See also:
§6.9 Specifying formats and options for tables on page 103
§6.3.2 Mapping table outputclass attributes to formats on page 90
§15.6 Converting tables to print RTF on page 232
§17.5 Converting tables to WinHelp RTF on page 290
§33 Converting tables to HTML on page 625.

7.7.1 Naming and defining table, row, and cell for mats

Define output formats for tables in a table-format configuration file referenced from your
project configuration file (or from another table or text format template) as follows:

[Templates]
; Tables = path to file specifying properties of ta ble formats.
Tables = path/to/mytableformats.ini

See §7.2 Working with format configuration files on page 110.

CONFIGURING TABLE OUTPUT FORMATS DITA2GO USER’S GUIDE

130 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Note: Table specifications in a format configuration file can be overridden by other
settings for tables in general configuration files.

When you define a new table format, give it a name that ends in Table . The Table suffix
is required for table format names. Names of table row formats must end in Row. Names of
table cell formats must end in Cell .

Any format defined in a configuration file accessed via [Templates]Tables is
considered to be a table format unless the name ends in Row or Cell .

7.7.2 Configuring table format properties

As a convention, the name of any table format should end in Table . The default table
format is named Table . Table format Table has no default properties; however, you can
define a format for Table :

[Table]
property1 = value1
property2 = value2a value2b value2c ...
. . .

For HTML output, table format names are used in the class attribute of table elements,
and result in CSS that implements their properties. Table 7-5 lists the properties you can
define for tables.

Table 7-5 Table output format properties

Table property Valid table property values

category TableFormats

help Any text to describe purpose or use of format

table align left , center , or right

border model collapse or separate

border spacing (separate model only) horizontal then vertical number and units

empty cells (separate model only) show or hide borders and background

table layout auto or fixed

margin top Space above the table top border

margin bottom Space below the table bottom border

margin left Distance from the page margin to the left edge of the first column

table width Number and units of the size on which percent column widths are based

column widths List of column widths from left to right; if the column count exceeds the
list length, the last value is reused; if the width is in percent, the table
width must be specified

column border left
column border right

Border format names for left and right borders of columns; default left
and right borders for cells in each column; overridden by cell borders and
table borders

cell margin left
cell margin right
cell margin top
cell margin bottom

(RTF only) Number and units; default values for all cells; can be
overridden by cell format properties

cell padding left
cell padding right
cell padding top
cell padding bottom

(HTML only) Number and units; default values for all cells; can be
overridden by cell format properties

header rows List of names of header row formats, in top-down order of header rows; if
the number of header rows exceeds the list length, the last format is
reused

7 CONFIGURING OUTPUT FORMATS CONFIGURING TABLE OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 131

Some examples:
[Table]
table align = left
margin left = 0
cell margin left = 1pt
cell margin right = 1pt
cell margin top = 1pt
cell margin bottom = 1pt
header rows = HeaderRow
body rows = Row

[NormalTable]
based = Table
margin top = 3pt
margin bottom = 6pt
table width = 7in
column widths = 3in 2in 2in
column border left = LightBorder
column border right = LightBorder
header rows = HeaderRow
body rows = BodyRow BodyRow ShadedRow
border top = LightBorder
border bottom = LightBorder
border left = NoBorder
border right = NoBorder

7.7.3 Configuring row format properties

The names of table row formats must end in Row. The default row format is named Row.
Row format Row has no default properties; however, you can define a format for Row:

[Row]
property1 = value1
property2 = value2a value2b value2c ...
. . .

For HTML output, row format names are used in the class attribute of row elements, and
result in CSS that implements their properties. Table 7-6 lists the properties you can define
for rows.

Columns are handled by cell lists in row formats. You must keep those lists synchronized
for all row formats referenced in a table format, or it gets ugly. For example, you must

body rows List of names of body row formats, in top-down order of body rows; if the
number of body rows exceeds the list length, the whole list is restarted

footer rows List of names of footer row formats; if the number of footer rows exceeds
the list length, the last format is reused

border left
border right
border top
border bottom

Names of border formats; properties of these formats override row and
cell border properties

shading Shading format, overridden by row and cell shading

css (HTML only) Adds information to the table format CSS code

rtf (RTF only) Adds information to the table format (at the start of each row)

before Adds content before the table

after Adds content after the table

Table 7-5 Table output format properties (continued)

Table property Valid table property values

CONFIGURING TABLE OUTPUT FORMATS DITA2GO USER’S GUIDE

132 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

have the same count of row header cells in all of the row formats referenced by the table
format.

Some examples:
[Row]
; These are the default row properties:
row type = body
body cells = Cell
border bottom = LightBorder

[BodyRow]
based = Row
body cells = BodyCell BodyCell ShadedCell
border top = LightBorder
border bottom = LightBorder
border left = LightBorder
border right = LightBorder

[HeaderRow]
based = BodyRow
row type = header
body cells = ColHeadCell
border bottom = HeavyBorder
border sep = DoubleBorder

[ShadedRow]
based = BodyRow
body cells = ShadedCell ShadedCell XtraShadedCell
shading = LightGreyShade

7.7.4 Configuring cell format properties

The names of cell formats must end in Cell . The default cell format is named Cell . Cell
format Cell has no default properties; however, you can define a format for Cell :

Table 7-6 Format properties of table rows

Row format property Valid format property values

category TableRowFormats

help Any text to describe purpose or use of format

row type body , header , or footer ; overrides the row type specificied in the source
document

row height adapt (to text, default), or minimum (adapts to text, but has the minimum
size given)

keep none (allow page break in row) or together ; RTF output only

header cells List of names of cell formats for row header cells; the number of formats
in the list is the number of cells used as row headers

body cells List of names of cell formats for body cells, forming a column pattern; if
the number of body cells exceeds the list length, the list is restarted

border left
border right
border top
border bottom
border sep

Names of border formats; table and cell border properties override row
border properties; when two row borders conflict, the heavier border
prevails; border sep is used between header and body rows, and
between footer and body rows, overriding top or bottom borders.

shading List of shading formats; overrides table shading; overridden by cell
shading

css (HTML only) Adds information to the row-format CSS code

rtf (RTF only) Adds information to the row-format RTF code

7 CONFIGURING OUTPUT FORMATS CONFIGURING TABLE OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 133

[Cell]
property1 = value1
property2 = value2a value2b value2c ...
. . .

For HTML output, cell format names are used in the class attribute of cell elements, and
result in CSS that implements their properties. Table 7-7 lists the properties you can define
for cells.

Some examples:
[Cell]
; These are the default RTF cell properties:
margin left = 6pt
margin right = 6pt
margin top = 6pt
margin bottom = 6pt
border left = LightBorder
border right = LightBorder

[EmptyCell]
border left = NoBorder
border top = NoBorder

[BodyCell]
based = Cell

[ShadedCell]
based = BodyCell
shading = LightGreyShade

[XtraShadedCell]
based = BodyCell
shading = DarkGreyShade

[RowHeadCell]
based = BodyCell

Table 7-7 Format properties of table cells

Cell format property Valid cell property values

category TableCellFormats

help Any text to describe purpose or use of format

vertical align top , middle , or bottom

margin left
margin right
margin top
margin bottom

(RTF only) Number and units; values override corresponding cell
margin settings in table formats

padding left
padding right
padding top
padding bottom

(HTML only) Number and units; values override corresponding cell
padding settings in table formats

border left
border right
border top
border bottom

Names of border formats; override row but not table borders

shading Shading format; overrides table and row shading;

css (HTML only) Adds information to the cell-format CSS code

rtf (RTF only) Adds information to the cell-format RTF code

start Inserts content at the top of the cell

end Adds content at the bottom of the cell

CONFIGURING PAGE LAYOUTS FOR RTF OUTPUT DITA2GO USER’S GUIDE

134 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

shading = LightGreyShade
border right = HeavyBorder

[ColHeadCell]
based = BodyCell
shading = LightGreyShade
border bottom = HeavyBorder

7.8 Configuring page layouts for RTF output
Define page layouts in a page-format template file referenced from your project
configuration file (or from another format template) as follows:

[Templates]
; Pages = path to file containing properties for pa ge layouts.
Pages = path/to/mypagelayouts.ini

See §7.2 Working with format configuration files on page 110.

In this section:
§7.8.1 Establishing default properties for output pages on page 134
§7.8.2 Configuring output section formats on page 135
§7.8.3 Configuring page header and footer formats on page 136
§7.8.4 Forcing page and column breaks on page 137
§7.8.5 Configuring border formats for output pages on page 137
§7.8.6 Configuring a title page (an example) on page 138

7.8.1 Establishing default properties for output p ages

Document properties include the following:

These are the default document properties:
[Document]
category = Pages
help = This is the default page layout for RTF outp ut
two sided = yes
start right = yes
start section = Section

Document properties include defaults for most section properties; see §7.8.2 Configuring
output section formats on page 135:

[Document]
; defaults for sections:
mirror margins = yes
page number type = Num
page number start = 1
orient = portrait
page wide = 8.5in
page high = 11in
margin left = 1in
margin right = 0.75in
margin top = 1in
margin bottom = 0.75in
gutter = 0
column count = 1

two sided Yes (Word “facing pages”) or No (single sided)
start right Yes if the first two-sided page is always a right page
start section Section format name for the starting section

7 CONFIGURING OUTPUT FORMATS CONFIGURING PAGE LAYOUTS FOR RTF OUTPUT

ALL RIGHTS RESERVED. MAY 19, 2013 135

column gap = 0
column rule = no
border top = None
border bottom = None
border left = None
border right = None
border header = yes
border footer = yes
header top = 0.25in
footer bottom = 0.25in

7.8.2 Configuring output section formats

The names of section formats must end in Section . The default section format is named
Section . Table 7-8 lists the properties you can define for sections.

Table 7-8 RTF output section properties

Section property Valid property values

help Any text to describe purpose or use of format

start side right , left , or page (default); indicates which page type starts the
section; page means the section starts on the next page, regardless of
page type; and if first page=Yes , applies first-page headers and
footers, regardless of page type

mirror margins Yes or No; if Yes, and if document property two sided is Yes, left and
right margins of each left page are exchanged, so that inner margins of
both left and right pages are equal to the right page's left margin, and
outer margins of both pages are equal to the right page's right margin

page number type Num (default), UCAlpha , LCAlpha , UCRom, or LCRom; see Table 8-2 on
page 147

page number start First value to use, a digit regardless of type; 1 could indicate 1, A, a, I , or
i . depending on the value of page number type .

orient portrait (default) or landscape

page wide
page high

Any CSS units for the physical page dimensions, such as in or mm.

margin left
margin right
margin top
margin bottom

Distances from the edge of the paper to the edge of the body area (which
may have multiple columns), ignoring any header or footer

first space above Distance from the normal top margin of the body area to the top margin
for the first page

gutter Width; if document property two sided =Yes, adds to the right page's left
margin and the left page's right margin; if not two sided, adds to the left
margin of every page;

column count Number of columns; if more than one, columns are snaking, top to
bottom, left to right

column rule Yes or No (default); if Yes, and column count > 1 , adds a single thin
balck line between columns, that is just long enough to reach the bottom
of the longest column content (not the bottom of the body area)

border left
border right
border top
border bottom

Names of border formats that surround the body area (see §8.2 Defining
border format components on page 144) or None

border header
border footer

Yes or No; if Yes, the page border also surrounds the header and footer,
not just the body area

header top Distance from top edge of page to top of header

CONFIGURING PAGE LAYOUTS FOR RTF OUTPUT DITA2GO USER’S GUIDE

136 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

These are the default section properties:
[Section]
start side = right
mirror margins = yes
page number type = Num
page number start = 1
orient = portrait
page wide = 8.5in
page high = 11in
margin left = 1in
margin right = 0.75in
margin top = 1in
margin bottom = 0.75in
gutter = 0
column count = 1
column gap = 0
column rule = no
border top = None
border bottom = None
border left = None
border right = None
border header = yes
border footer = yes
header top = 0.25in
footer bottom = 0.25in
first page = yes
first space above = 1in
header first = FirstHeader
footer first = FirstFooter
header left = LeftHeader
footer left = LeftFooter
header right = Header
footer right = Footer

7.8.3 Configuring page header and footer formats

The names of header formats must end in Header , and the names of footer formats must
end in Footer . The default header and footer formats are named Header and Footer .

The properties you can specify for header and footer formats are as follows:

footer bottom Distance from bottom edge to bottom of footer

first page Yes or No; if Yes, use the first-page header and footer, if any

header first
footer first

Names of header and footer formats for first pages (see §7.8.3
Configuring page header and footer formats on page 136) or None; used
only if first page=Yes

header left
footer left

Names of header and footer formats for even pages, if document
property two sided =Yes, or None

header right
footer right

Names of header and footer formats for odd pages, if document property
two sided =Yes, or for all pages if two sided =No, or None

Table 7-8 RTF output section properties (continued)

Section property Valid property values

format Name of a block format defined in the formats file; see §7.6.5
Specifying inline properties for paragraph and character formats on
page 123. Specify any desired borders and shading in the format
definition.

7 CONFIGURING OUTPUT FORMATS CONFIGURING PAGE LAYOUTS FOR RTF OUTPUT

ALL RIGHTS RESERVED. MAY 19, 2013 137

To define header and footer formats:
[Header]
help = Page header for RTF output
format = Header
content = <$$_basename> \\tab <$_Styleref(Heading2) >

[Footer]
help = Page footer for RTF output
format = Footer
content = \\chdate \\tab \\chpgn

[LeftHeader]
format = Header
content = <$_Styleref(Heading2)> \\tab <$$_basename >

[LeftFooter]
format = Footer
content = \\chpgn \\tab \\chdate

[FirstHeader]
format = Header
content = \~

[FirstFooter]
format = Footer
content= Copyright \\'A9 2009 Your Company \\tab \\ chpgn

7.8.4 Forcing page and column breaks

To force a page or column break at a place in your DITA document where one would not
occur based on topic boundaries or configuration settings, you can insert a PI marker, one
of the following:

<?dtrtf Break="column" ?>

<?dtrtf Break="page" ?>

See also:
§7.9 Inserting line, column, and page breaks in output on page 138
§38.1 Understanding DITA2Go PI markers on page 717.

7.8.5 Configuring border formats for output pages

Border formats defined in a pages file apply to page borders only. Border format names
should end in Border as a convention. The default border format is no border at all. The
properties you can specify are the same as those available for border formats you can
define in the formats file; see §8.2 Defining border format components on page 144.

To specify properties for page borders:
[LightBorder]
type = single
color = black
thick = 1pt
space = 6pt

[HeavyBorder]
based = LightBorder
thick = 2pt

content Can contain text and macros; follows the same rules as for macro
content (such as start and end) in other formats. Macros must be defined
in a macro library, or in a configuration file, not in a formats file.

INSERTING LINE, COLUMN, AND PAGE BREAKS IN OUTPUT DITA2GO USER’S GUIDE

138 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[DoubleBorder]
based = LightBorder
type = double

7.8.6 Configuring a title page (an example)

These are macros to be invoked from the format properties; the macros would be defined
in a macro library, not in the formats file:

[AuthorPub]
; this is for the title page below the mainbooktitl e
<$_style(Heading2)> \\qc <$Author> \\par \n
<$_style(Heading3)> \\qc <$URL> \\par \n
<$_style(Heading2)> \\sb3600 \\qc <$Converter> \\pa r \n
<$_style(Heading3)> \\qc <$Date> \\par

[Author]
DITA Test Suite Project, Sourceforge

[URL]
<https://sourceforge.net/projects/ditatestsuite/>

[Converter]
RTF Produced by DITA2Go\\'99\~

[Date]
\\chdpl\~

Macro AuthorPub is invoked from the document properties:
[BookTitle]
based = Heading1
keep = none
section = TitleSection
text align = center
font size = 36pt
margin bottom = 1in
start = \\line \\line \\line \\line \~
after = <$AuthorPub>

Document properties use this section:
[TitleSection]
based = Section
vertical align = middle

border top = DoubleBorder
border bottom = DoubleBorder
border left = HeavyBorder
border right = HeavyBorder
border header = no
border footer = no

header first = None
footer first = None
header left = None
footer left = None
header right = None
footer right = None

7.9 Inserting line, column, and page breaks in out put
You can insert line breaks with the following processing instructions:

<?dthtm Break="line" ?> for HTML output

7 CONFIGURING OUTPUT FORMATS INSERTING LINE, COLUMN, AND PAGE BREAKS IN OUTPUT

ALL RIGHTS RESERVED. MAY 19, 2013 139

Unlike adding
 , using a PI for a line break in HTML output will not make your
DITA document invalid.

For RTF output, you can also insert column and page breaks with PIs:

See §7.8.4 Forcing page and column breaks on page 137.

<?dtrtf Break="line" ?> for RTF output

<?dtrtf Break="column" ?>

<?dtrtf Break="page" ?>

INSERTING LINE, COLUMN, AND PAGE BREAKS IN OUTPUT DITA2GO USER’S GUIDE

140 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 141

8 Configuring format components

This section shows how to define components of output formats: numbering, borders,
shading, and cross references; and also how to customize headings and labels, and supply
values for output text strings. Topics include:

§8.1 Managing format components on page 141
§8.2 Defining border format components on page 144
§8.3 Defining shading format components on page 145
§8.4 Overriding border and shading properties on page 145
§8.5 Configuring output numbering properties on page 146
§8.6 Configuring run-in headings for text formats on page 153
§8.7 Defining cross-reference output formats on page 155
§8.8 Configuring trademark formats on page 157
§8.9 Localizing output headings, labels, and names on page 157

8.1 Managing format components
DITA2Go uses format components as building blocks for numbering, cross references,
borders, and shading. These building blocks are referenced by paragraph, character, table,
row, cell, section, or page format definitions in their respective format configuration files.

In this section:
§8.1.1 Understanding where to define format components on page 141
§8.1.2 Basing format component properties on other components on page 142
§8.1.3 Assigning additional names to format components on page 142
§8.1.4 Understanding format-component name lookups on page 142
§8.1.5 Including typographic tags and character formats on page 143

8.1.1 Understanding where to define format compone nts

Unlike other format types, you can reference format components even if they are not
defined in the same format-file chain as the referencing format. For example, if you
reference LightBorder in a table format, but LightBorder is defined only in your
page-layout file, DITA2Go can find the definition. However, any definition in the file that
contains the reference overrides definitions of the same format component in other format
configuration files.

You define format components in a format configuration file referenced either from
another format template file or from your project configuration file; see §7.2 Working with
format configuration files on page 110.

To reference a format component configuration file:
[Templates]
; Subformats = path to a file where format componen ts are defined
Subformats=%omsyshome%\d2g\formats\d2g_subformats.i ni

Subformats specifies a path to a general format component file, for use when a format
component is missing in the present format or general configuration file. If a format
component is defined in both the referenced and the referencing file, DITA2Go uses the
definition in the referencing file; the definitions are not merged.

MANAGING FORMAT COMPONENTS DITA2GO USER’S GUIDE

142 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Associated with certain format components are labels, headings, and other fixed text
components. The default settings for these text values are located in language
configuration files; see §8.9 Localizing output headings, labels, and names on page 157.
You can override the default values in your project configuration file, or anywhere in the
chain of general configuration templates; but not in a format component or format
configuration file.

8.1.2 Basing format component properties on other components

All format components can have a based property, which includes the properties of a
referenced format component of the same type. Basing properties works the same way for
format components as for formats; see §7.4.5 Basing format properties on other formats
on page 116.

8.1.3 Assigning additional names to format compone nts

To map additional format component names to existing format component definitions (for
example):

[FormatAliases]
; format component name = another format component name
DividerBorder = ThickBorder

You can use this section to specify properties for the format component named on the left
as though [FirstSubformat]based= SecondSubformat (see §7.4.5 Basing format
properties on other formats on page 116). Make sure that SecondSubformat is defined
somewhere in the format component template chain.

When DITA2Go looks up format component definitions, DITA2Go replaces each format
component name listed on the left with the name assigned to it on the right. This process is
not recursive; if you assign format component names a=b and b=c , when DITA2Go needs
a definition for a, instead DITA2Go looks for a definition of b, not c .

8.1.4 Understanding format-component name lookups

If DITA2Go fails to find a definition for an assigned format component name in the
current format component template file, DITA2Go looks for the definition in any
configuration files assigned in [Templates] to Formats , Tables , Pages , and
Subformats , in that order.

For example, if a border format is based , DITA2Go looks for the base definition using
the same process, but starting with the file that contains the sought format component
definition, not the original file. For example:

In formats.ini :
[MyPara]
border bottom = MyBorder

[OtherBorder]
color = blue

In tables.ini :
[MyBorder]
based = OtherBorder

[OtherBorder]
color = red

The border under each MyPara paragraph will be red, not blue.

8 CONFIGURING FORMAT COMPONENTS MANAGING FORMAT COMPONENTS

ALL RIGHTS RESERVED. MAY 19, 2013 143

8.1.5 Including typographic tags and character for mats

Many configuration settings allow you to specify text values that will appear in output.
You can surround the text with any character format (including formats not defined
elsewhere; DITA2Go defines them), or with one or more of the following typographic
tags:

You can use typographic tags in the definitions of format components, and also in settings
in the Languages configuration files. Most text-value configuration settings are included
in each of the language configuration files, where they have default values appropriate to
the language in question; see §8.9 Localizing output headings, labels, and names on
page 157.

And you can nest tags. For example:
[StopHead]
form = <i>Stop!</i>

DITA2Go automatically terminates any typographic tag at the end of the text, unless you
terminate it earlier with a closing tag.

You can also define a character format and use its name in the definition of a format
component. For example, in a Formats configuration file:

[Attention]
based = char
font weight = bold
font style = italic

And in a Subformats configuration file:
[StopHead]
form = <Attention>Stop!</Attention>

You can mix format tags and typographic tags in the same format component definition;
however, best practice is to assign the typographic tags to the format itself.

Note: Do not try to assign more than one <format> tag to a format component.

Quote styles To specify quote styles for the <q> typographic element, in a language configuration file:
[ElementText]
; Quotes = left double, right double, left single, and right single,
; in a space-delimited list, for <q> element, neste d alternately.
Quotes= “ ” ‘ ’

DITA2Go recognizes either the Windows code page or the UTF-8 characters. Quote
characters are inserted literally in the encoding specified for the output type. Default
values for quote characters are provided in each of the language configuration files; see
§8.5 Configuring output numbering properties on page 146. The values shown here are the
default values specified in d2g_lang_en.ini . You can override the default values in a
general configuration file.

b Bold

i Italic

q Quote

u Underline

tt Monospace

sup Superscript

sub Subscript

DEFINING BORDER FORMAT COMPONENTS DITA2GO USER’S GUIDE

144 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

8.2 Defining border format components
Border format components apply to paragraph, table, row, and cell formats. When you
want borders around text, parts of a table, or components of a page (RTF only), you assign
the name of a border component to the item to be bordered. The default is no border.

As a convention, the name of any border component should end in Border . If you give a
border format component a name that does not end in Border , if the definition is in a file
different from the file where it is referenced, DITA2Go will not be able to find the format
component. (But see §8.9 Localizing output headings, labels, and names on page 157.)
Table 8-1 lists the border properties and the values you can assign to them.

Border format component properties can be based on the properties of other border format
components. For example:

[LightBorder]
type = single
color = black
thick = 1pt
space = 6pt

[HeavyBorder]
based = LightBorder
thick = 2pt

[DoubleBorder]
based = LightBorder
type = double

To override border properties for a particular instance of an element, you can specify a
different property in the outputclass attribute for that instance. See §8.4 Overriding
border and shading properties on page 145.

Table 8-1 Properties of border format components

Property Description

help Any text to describe purpose or use of format

type Names in parentheses are synonyms; hidden overrides all other properties:

single (solid)

double

dot (dotted)

dash (dashed)

hidden

(HTML only) transparent

(HTML only) inset

(HTML only) outset

(HTML only) ridge

(HTML only) groove

(RTF only) shadow

(RTF only) hairline

color CSS color name; for HTML, this is the fill color in CSS terms

thick Thickness of border; number and units

space (RTF only) distance from content

8 CONFIGURING FORMAT COMPONENTS DEFINING SHADING FORMAT COMPONENTS

ALL RIGHTS RESERVED. MAY 19, 2013 145

8.3 Defining shading format components
Shading format components apply to paragraph, character, table, row, and cell formats.
When you want shading applied to text, to parts of a table, or to components of a page
(RTF only), assign the name of a shading format component to the item to be shaded. The
default is no shading.

As a convention, the name of any shading format component should end in Shade . If you
give a shading format component a name that does not end in Shade , if the definition is in
a file different from the file where it is referenced, DITA2Go will not be able to find the
format component. (But see §8.9 Localizing output headings, labels, and names on
page 157.)

Shading properties are as follows:

Properties type and background color apply only to RTF output.

For example:
[DangerShade]
type = dcross
color = orange

[CautionShade]
color = yellow
tint = 80%

[WarningShade]
color = red
tint = 10%

To override shading properties for a particular instance of an element, you can specify a
different property in the outputclass attribute for that instance. See §8.4 Overriding
border and shading properties on page 145.

8.4 Overriding border and shading properties
By default, DITA2Go checks the outputclass attribute of each element for a format
name, and also for possible border and shading format component names; see §6.2
Specifying options for naming formats on page 87:

[ElementOptions]
; UseOutputClassForFormat = Yes (default, use whene ver present) or
; No (go on to mappings in [*FormatMaps] as the nex t choice)
UseOutputClassForFormat = Yes
; OutputclassHasBorderShadeFormats = Yes (default, look for border and
; shading format specifications in outputclass attr ibutes), or No.
OutputclassHasBorderShadeFormats = Yes

To override border or shading properties for a particular instance of an element, you can
specify different properties in the outputclass attribute for that instance.

help Any text to describe purpose or use of format

type (RTF only) horiz , vert , fdiag , bdiag , cross , dcross , or dk
followed by any of the other patterns (as in dkcross)

color Color of the pattern, or of the fill if no type specified
background
color

(RTF only) pattern background, ignored if no type specified

tint Percent of color if no pattern, ignored if there is a pattern

CONFIGURING OUTPUT NUMBERING PROPERTIES DITA2GO USER’S GUIDE

146 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

When UseOutputClassForFormat=Yes and
OutputclassHasBorderShadeFormats=Yes , DITA2Go checks outputclass
attributes for multiple classes and separates them. If there are multiple classes, DITA2Go
uses the first as the real outputclass (usually a block or inline format), the second as the
border format, and the third as the shading format.

As an alternative, you can insert a BorderType or ShadeType PI marker in the element;
see §38.1 Understanding DITA2Go PI markers on page 717.

8.5 Configuring output numbering properties
Some forms of output require more than simply mapping an element to an output format
or style. For example, ordered lists, footnotes, and headings typically need series numerals
or symbols, and possibly prefixes and punctuation, in addition to text content. DITA2Go
provides numbering streams and assorted building blocks you can define for each output
format, to achieve the desired presentational effect.

In this section:
§8.5.1 Understanding numbering properties on page 146
§8.5.2 Defining number streams on page 147
§8.5.3 Defining number format components on page 148
§8.5.4 Defining footnote numbering on page 150
§8.5.5 Considering examples of numbering schemes on page 150

See also:
§8.6 Configuring run-in headings for text formats on page 153

8.5.1 Understanding numbering properties

Your document might include more than one type of element whose output format should
be numbered sequentially. Ordered lists are one example; footnotes are another. Chapters,
figures, and tables might also be numbered.

Streams and
counters

If several sequential-number series depend on other series (such as figure or table
numbering restarting with each chapter), each such series requires a separate counter in
the same numbering stream. For example, the numbers on ordered lists might form one
stream. Numbers on chapter, figure, and table titles might each need a counter in a
different stream, numbered independently of the ordered-list stream.

To organize streams and their counters:

1. Name each number stream, and assign properties to its counters; see §8.5.2 Defining
number streams on page 147.

2. Define number format components (see §8.5.3 Defining number format components
on page 148) in terms of streams and counters.

3. Assign a number format component to each paragraph format that needs numbering;
see §7.6.6 Specifying block properties for paragraph formats on page 124.

Keep a counter
from resetting

You can specify whether other counters should be left alone when a given counter is
incremented. For example, if FigureTitle has counter 2 and TableTitle has counter 3, and
both are in the same stream, you would not want each instance of FigureTitle to reset the
TableTitle counter. To prevent unwanted resets, you assign a keep property to the counters
that should be left alone for each format.

8 CONFIGURING FORMAT COMPONENTS CONFIGURING OUTPUT NUMBERING PROPERTIES

ALL RIGHTS RESERVED. MAY 19, 2013 147

Restart stream
numbering

To restart numbering for ordered lists, you must assign a different format to the first item
in the list, so you have a way to trigger the restart. For example, assign NumberedFirst to
each first item, and Numbered to all the other items; see §6.4 Mapping element paths to
output formats on page 91. Both formats must be in the same stream. To force every
instance of NumberedFirst to begin the numbering over again, you assign a Start
property to NumberedFirst.

Cross references
to numbered

formats

For cross references to items in numbered formats, you can specify whether the cross
reference should include a prefix (such as “Chapter”) before the number, a suffix (such as
a period) after the number, and maybe a tab (for vertical alignment in RTF) or a space (for
HTML). By default, DITA2Go includes only the number itself in cross references to a
numbered item. You can add embellishments such as a prefix, a suffix, and tabs. See §8.7
Defining cross-reference output formats on page 155.

8.5.2 Defining number streams

You use number streams to coordinate numbering for those elements whose occurrences in
your document should be numbered sequentially, or should appear with a constant prefix
or suffix (or both). As a convention, the name of any number stream should end in
Stream ; the DITA2Go Configuration Manager relies on this convention.

These are the default stream names defined in format components configuration
templates:

You can add names for other number streams of your own, and you can change the default
names. However, if you change a default name, you must change it in every place the
name is referenced.

If you add your own number streams, you must define their properties. Table 8-2 lists the
available properties and the values you can assign to those properties.

PartStream Part numbers, like volume numbers

ChapterStream Chapter title, all numbered subheads in chapter

AppendixStream Appendix title, all numbered subheads in appendix

ListStream Ordered lists, and ordered lists nested within them

FootnoteStream Footnotes referenced in text

TblFootnoteStream Footnotes referenced in table cells

Table 8-2 Properties of number streams

Property Default Description

id X (RTF only) Stream ID to use in Word SEQ fields, preferably a single
alphabetic character

counters 1 Maximum number of counters available in stream

counter types Num Space-delimited list of types, one for each counter, from the
following list:

Num Arabic numeral

UCRom Uppercase Roman numeral

LCRom Lowercase Roman numeral

UCAlpha Uppercase letter

LCAlpha Lowercase letter

Sym Symbol

CONFIGURING OUTPUT NUMBERING PROPERTIES DITA2GO USER’S GUIDE

148 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The value for symbols can consist of more than one character. If more are needed than
are listed here, they continue with an increasing number of the last symbol listed. So if you
use the default, a single asterisk, the sequence is * , ** , *** , **** , and so forth. Symbols
can be <u+NNNN/> for a Unicode character, where NNNN is the hexadecimal code point, as
in <u+2020/> for a dagger.

For example (these are default definitions):
[ChapterStream]
help = Number stream for chapters
id = C
counters = 10
counter types = Num

[AppendixStream]
help = Number stream for appendixes
id = A
counters = 10
counter types = UCAlpha Num
repeat = last

[List1Stream]
help = Number stream for tier 1 ordered lists
id = L
counters = 3
counter types = Num LCAlpha LCRom

8.5.3 Defining number format components

To apply number streams, numeric or alphabetic counters, prefixes, suffixes, and other
repeating properties to output formats, you must define number format components in
terms of these properties. As a convention, the name of any number format component
should end in Num. Table 8-3 lists the properties and the values you can assign to number
format components.

repeat last Which counter types to repeat, if there are more counters than
counter types:

last Repeat only the last counter type

all Repeat the entire sequence of types, from the
beginning

reset none When to restart footnote numbering:

topic (HTML only) At the start of each topic, for all footnotes
(RTF only) At each page boundary, for all footnotes

table At the start of each table, for table footnotes

none Footnote numbers continue through entire document;
for example, for endnotes

symbols * Space-delimited list of symbols to use when counter type is Sym

Table 8-2 Properties of number streams

Property Default Description

Table 8-3 Properties of number format components

Property Description

stream Name of number stream to use (see §8.5.2 Defining number streams on page 147),
or none for no stream (for example, for bulleted lists)

counter Numeric ID of counter to increment, 0 to not increment any counters

8 CONFIGURING FORMAT COMPONENTS CONFIGURING OUTPUT NUMBERING PROPERTIES

ALL RIGHTS RESERVED. MAY 19, 2013 149

The <name/> building block is for a text label that becomes part of the output number
string. Text labels are defined in each of the language configuration files; see §8.9
Localizing output headings, labels, and names on page 157. For example, in
d2g_lang_en.ini , the default labels are as follows:

[NumberFormatsText]
; number format name = text to use in numbering str ing for <name/>
ChapterNum = Chapter
TableNum = Table
FigureNum = Figure
EquationNum = Equation

If you use different format names, the default text values do not apply, and you must
specify those values explicitly. Or change the format names in the language configuration
file; see §8.9 Localizing output headings, labels, and names on page 157.

You can mix format tags and typographic tags in the same format component definition;
however, best practice is to assign the typographic tags to the format itself. See §8.1.5
Including typographic tags and character formats on page 143.

Note: Do not try to assign more than one <format> tag to a format component.

position Where to display the number in relation to the text:

start As a prefix to the text (default)

end As a suffix to the text (usually for equations)

start Value to restart counter with (usually 0 or 1), default is to continue numbering

keep Space-delimited list of counters to leave alone; default is to reset all higher-
numbered counters in the stream

name Name to use in <name/> token, if not defined in [NumberFormatsText] in the
language file; see §8.5 Configuring output numbering properties on page 146

form Text plus any or all of the following building blocks:

<name/> For the text name associated with the format in
[NumberFormatsText] in a language file; see §39.1.6
Understanding how language templates are organized on
page 730

<counter1/> ,
<counter2/> ,
...

To Identify which of the counters to display

<tab/> (RTF only) Each tab advances by the amount in
[WordOptions]AnumTabWidth (see §15.3.3 Converting
autonumbered formats on page 226)
(HTML only) Adds a space

<spc/> For a space, used to preserve trailing spaces; for HTML, becomes

<format> For a character format, reset at the end of the autonumber or earlier
by a </ format>; typographic tags are valid; see §8.1.5 Including
typographic tags and character formats on page 143

<u+NNNN/> For a Unicode character, where NNNN is the hexadecimal code point,
as in <u+2020/> for a dagger

Table 8-3 Properties of number format components

Property Description

CONFIGURING OUTPUT NUMBERING PROPERTIES DITA2GO USER’S GUIDE

150 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

8.5.4 Defining footnote numbering

Footnote numbering can use any of the counter type values listed in Table 8-2 on
page 147 (default Num), followed by a reset value of None or Topic (default Topic), to
specify what restarts the footnote numbering stream.

By default, text footnotes are in one stream, and table footnotes are in another stream. If
you want table footnotes numbered in the same stream as text footnotes, change the stream
named in both [TblFootnoteNum] and [TblFootnoteRefNum] , in format
configuration template %omsyshome%\d2g\formats\d2g_subformats.ini ; or
override the stream name in your own version of these number format components.

8.5.5 Considering examples of numbering schemes

In this section:
§8.5.5.1 Numbering ordered lists on page 150
§8.5.5.2 Modifying the appearance of numbers on page 151
§8.5.5.3 Numbering chapters, figures, and tables on page 152
§8.5.5.4 Specifying symbols for bulleted lists on page 152

8.5.5.1 Numbering ordered lists

The following settings handle the items in two-level ordered lists.

Paragraph format definitions:
[Numbered]
number = ListNum
xref = NumXref

[NumberedFirst]
based = Numbered
number = ListFirstNum

[Numbered2]
based = Numbered
number = List2Num

[Numbered2First]
based = Numbered2
number = List2FirstNum

Number format component definitions:
[ListStream]
counters = 2
counter types = Num LCAlpha

[ListNum]
stream = ListStream
counter = 1
form = <counter1/>.<tab/>

[ListFirstNum]
based = ListNum
start = 1

[List2Num]
stream = ListStream
counter = 2
form = <tab/><counter2/>.<tab/>

8 CONFIGURING FORMAT COMPONENTS CONFIGURING OUTPUT NUMBERING PROPERTIES

ALL RIGHTS RESERVED. MAY 19, 2013 151

[List2FirstNum]
based = List2Num
start = 1

In this example, format NumberedFirst starts a list at number 1, using Arabic numerals, and
resets the following (higher-numbered) counter; format Numbered continues the same list.
Format Numbered2 starts or continues a subordinate list, using lowercase letters instead of
numerals.

Note: For ordered lists, these settings take effect in HTML only if you do not specify
HTML list styles; see §30.11.2 Converting list formats to HTML list styles on
page 585.

8.5.5.2 Modifying the appearance of numbers

Suppose that for RTF output you want to make numbers on procedure steps and substeps
bold, and give them a color different from the text; for example, RGB 42-96-248. To do
this, in local_d2rtf_formats.ini you would modify the inline format used in the
numbering formats for steps and substeps.

These are the format definitions in system d2rtf_formats.ini :
[StepNumbered]
based=Numbered1
xref=StepXref

[StepNumberedFirst]
based=Numbered1First
xref=StepXref

Look at the format on which they are based:
[Numbered1]
based=Body
margin left=0.25in
text indent=-0.25in
margin top=2pt
margin bottom=2pt
tabs=0.25in
number=List1Num
xref=NumXref

You see that the number format is List1Num . That is defined (in system
d2rtf_subformats.ini) as:

[List1Num]
stream = List1Stream
counter = 1
form = <counter1/>.<tab/>

You need to override the form value. Add a section for the inline format in
local_d2rtf_formats.ini , specifying a different number format; for example:

[StepNumbered]
number=MyList1Num

and define that number format in local_d2rtf_subformats.ini :
[MyList1Num]
based=List1Num
form=<BlueBold><counter1/>.<tab/>

[BlueBold]
color=rgb(42,96,148)
based=Bold

Now the numbers on steps and substeps will be bold and blue in RTF output.

CONFIGURING OUTPUT NUMBERING PROPERTIES DITA2GO USER’S GUIDE

152 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

8.5.5.3 Numbering chapters, figures, and tables

The following settings configure the numbering properties of chapter, figure, and table
titles.

Paragraph format definitions:
[ChapterTitle]
number = ChapterNum

[FigureTitle]
number = FigureNum

[TableTitle]
number = TableNum

Number format component definitions:
[ChapterStream]
counters = 8
counter types = Num

[ChapterNum]
stream = ChapterStream
counter = 1
position = start
form = <name/> <counter1/>.<tab/>

[FigureNum]
stream = ChapterStream
counter = 6
keep = 7 8
form = <i><name/> <counter1/>-<counter6/> <tab/>

[TableNum]
stream = ChapterStream
counter = 7
keep = 8
form = <i><name/> <counter1/>-<counter7/> <tab/>

In this example, all three formats are assigned to the same stream, and all three number
series use Arabic numerals:

 • ChapterNum has counter number 1. Because FigureNum and TableNum have
counters with higher numbers, by default the numbering of FirgureTitle and TableTitle
will be reset every time a new instance of ChapterTitle appears in the output.

 • FigureNum has counter number 6. To prevent the numbering of TableTitle from being
reset every time FigureTitle appears, FigureNum assigns the keep property to counter
7.

 • TableNum has counter 7. To prevent the numbering of whatever format has counter 8
from being reset every time TableTitle appears, TableNum assigns the keep property
to counter 8.

8.5.5.4 Specifying symbols for bulleted lists

Bullet symbols are specified by their Unicode values for both HTML and RTF output, but
the way you express those Unicode values is somewhat different.

Bullet symbols for
HTML output

For example, to specify different bullets for bulleted lists at different levels in HTML, you
assign a Unicode hexadecimal value to the form property of a format component:

[Bullet1Num]
stream = none
form = <U+2022/><tab/>

8 CONFIGURING FORMAT COMPONENTS CONFIGURING RUN-IN HEADINGS FOR TEXT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 153

[Bullet2Num]
stream = none
form = <U+25E6/><tab/>

[Bullet3Num]
stream = none
form = <U+25AA/><tab/>

There is no color property for bullets in CSS. To change the color of the bullet for HTML
output, you would have to use a graphic that has the color and shape you want.

Bullet symbols for
RTF output

To change the bullet style for RTF output, you assign a Unicode decimal value to the
start property of the bulleted format itself (rather than a format component). For
example the system definition of Bulleted1 specifies the following start property for
RTF:

start = {\\uc1\\u8226*}\\tab\~

This is the RTF code to put a Unicode bullet (or asterisk, if the specified bullet is not in the
font), then a tab, then a fixed space.You can change the Unicode number to the number for
the bullet style you want (in decimal!). For example, for a square bullet, you would use
\\u9724* . The asterisk at the end of the Unicode number is the character to use if the
font does not include the designated Unicode glyph.

To change the color of the bullet you must add \\cf codes, one before the bullet to add
the color, and one after it to set the color back to black. To specify the color, you need the
Word index number, which you can insert with a predefined macro; for example:

<$_colornum("rgb(42,96,148")>

See Table 37-2 Predefined macros for RTF output on page 684. So the value of the start
property for your modified bulleted format would be as follows:

start={\\cf<$colornum("rgb(42,96,148")>\\uc1\\u9724 *}\\tab\~

See Table 8-3 Properties of number format components on page 148.

8.6 Configuring run-in headings for text formats
You can precede paragraphs or character spans in a given format with predefined text that
may have a character format different from that of the paragraph or span itself. This fixed
text constitutes a run-in heading. For example:

Note: The framble must be glommered before you can dechurf it.

In this example, Note: is a run-in heading, with a character format different from that of
the main paragraph content. As a convention, the name of any run-in heading should end
in Head.

Run-in headings are assigned to text formats with property runin ; see §7.6.6 Specifying
block properties for paragraph formats on page 124. Run-in headings are often used for
block elements for which you have specified that the values of one or more element
attributes should determine the output format in each case; see §6.5 Mapping element
attributes to output formats on page 95.

Run-in headings have only one property: form . Table 8-4 lists the building blocks you can
use for the form property of a run-in heading.

CONFIGURING RUN-IN HEADINGS FOR TEXT FORMATS DITA2GO USER’S GUIDE

154 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

You can mix format tags and typographic tags in the same run-in heading definition;
however, best practice is to assign the typographic tags to the format itself. See §8.1.5
Including typographic tags and character formats on page 143.

Note: Do not assign more than one <format> tag to a run-in heading.

For example:
[MethodHead]
form = <i>Method:</i><spc/>

[WarningHead]
form = <i><name/>!</i>

In the last example,
 causes the content of the main paragraph or character span to
start on the next line after the heading; otherwise, the run-in heading becomes the start of
the first line of content.

To create a hanging indent for a paragraph format that has property runin , you might
have to fiddle with properties margin left and text indent until everything lines up
the way you want; see §7.6.6 Specifying block properties for paragraph formats on
page 124. However, you will not be able to produce a perfect left margin for the text this
way, and you will most likely have to use a different combination for every possible
heading content in every supported language.

You can include any fixed text content as part of the form property for a run-in heading, as
in the first example above. However, if you want to be able to substitute text in other
languages, use the <name/> building block and create an entry for the run-in heading
format in the appropriate language configuration file; see §8.9 Localizing output headings,
labels, and names on page 157.

To specify text for the <name/> building block of a run-in heading, in a language
configuration file or a general configuration file assign the text to the run-in heading
format name:

[RuninHeadText]
; use this for runin head format components
NameOfHead = Text of heading

For example, in d2g_lang_de.ini :
[RuninHeadText]
WarnHead = Achtung

You can include punctuation with the text, but you cannot use any <tags> in language
configuration settings.

Table 8-4 Building blocks for run-in heading formats

Building block Description

<name/> For the text of the heading in [RuninHeadText] in a language file; see §8.9
Localizing output headings, labels, and names on page 157

<tab/> (RTF only) Each tab advances by the amount in
[WordOptions]AnumTabWidth (see §15.3.3 Converting autonumbered
formats on page 226)
(HTML only) Adds a space

<spc/> For a space, used to preserve trailing spaces; for HTML, becomes

<format> For a character format, reset at the end of the run-in heading or earlier by a
</ format>; typographic tags are valid; see §8.1.5 Including typographic tags
and character formats on page 143

8 CONFIGURING FORMAT COMPONENTS DEFINING CROSS-REFERENCE OUTPUT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 155

8.7 Defining cross-reference output formats
Cross-reference formats are associated with cross-reference links to different types of text
formats in your document. The name of every cross-reference format must end in Xref .

The following cross-reference formats are defined in format component configuration
files:

These are the default cross-reference formats. You can add other cross-reference formats
of your own, and you can change the default names. However, if you change a default
name, you must change it in every place that name is referenced; notably in general
configuration section [ElementOptions] ; see §6.3.3 Mapping cross-reference
outputclass attributes to formats on page 91.

You define properties of cross-reference formats by assigning building blocks to form , the
sole cross-reference format property:

[TypeOfXref]
form = < building-block1> < building-block2> ...

Table 8-5 lists the building blocks you can assign to property form to define a cross-
reference format. Table 8-6 shows the default values for the form property that are
assigned to the default cross-reference format names.

Referenced content Cross-reference format With page number (RTF only)
Numbered list item NumXref NumPageXref

Unnumbered item TextXref TextPageXref

Footnote FtnXref FtnPageXref

Heading TitleXref TitlePageXref

Figure number FigureXref FigurePageXref

Table number TableXref TablePageXref

Figure title FigureTitleXref FigureTitlePageXref

Table title TableTitleXref TableTitlePageXref

Equation EquationXref EquationPageXref

Step StepXref StepPageXref

TOC item TOCTitleXref

Topic title, from index (compact) IndexIconXref IndexPageXref

Topic title, from index (full) IndexTitleXref

Table 8-5 Building blocks for cross-reference formats

Building block Description

<paratext/> Paragraph content, usually of the following title element

<autonum/> Entire autonumber of the referenced item, except for any tabs

<numonly/> Just the number part of the autonumber, without anything before the first
counter or after the last counter

<tab/> (RTF only) Each tab advances by the amount in
[WordOptions]AnumTabWidth (see §15.3.3 Converting autonumbered
formats on page 226)
(HTML only) Adds a space
Any tab present in the referenced autonumber is dropped

<format> Character format, reset at the end of the cross reference, or earlier by a
</ format>; typographic element names valid; any character format in the
referenced autonumber format is dropped
Note: if the format is for footnote references, do not close it, or the tag will be
ignored

DEFINING CROSS-REFERENCE OUTPUT FORMATS DITA2GO USER’S GUIDE

156 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

You can use character format tags and typographic tags around the format definitions;
however, do not use tags that have the same names as building blocks: paratext ,
autonum , numonly , or tab . See §8.1.5 Including typographic tags and character formats
on page 143.

Note: Do not try to assign more than one <format> tag to a cross-reference format
component.

Some default cross-reference formats are defined as follows:
[TitleXref]
form = <autonum/> <paratext/>

[NumXref]
form = <autonum/>

[FtnXref]
form = <sup><numonly/>

[TextXref]
form = <paratext/>

To apply these cross-reference formats to the paragraph formats they reference (see §7.6.6
Specifying block properties for paragraph formats on page 124):

[Heading1]
number = Head1Num
xref = TitleXref

[NumberedFirst]
number = ListFirstNum
xref = NumXref

[Numbered]
number = ListNum
xref = NumXref

[Footnote]
number = FootnoteNum
xref = FtnXref

The default cross-reference format names listed in Table 8-6 are used only when no cross-
reference format name is specified in the xref element outputclass attribute.

<u+NNNN/> Unicode character, where NNNN is the hexadecimal code point, as in
<u+2020/> for a dagger

<spc/> A fixed-width nonbreaking space

<page/> (RTF only) The target page number

<tag/> (HTML only) The tag to get text from

Table 8-5 Building blocks for cross-reference formats (continued)

Building block Description

8 CONFIGURING FORMAT COMPONENTS CONFIGURING TRADEMARK FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 157

8.8 Configuring trademark formats
DITA2Go provides three default format components for the <tm> element, based on the
value of the tmtype attribute:

[TradeMark]
; tmtype=tm
form = <U+2122/>

[RegMark]
; tmtype=reg
form = ^{<U+00AE/>}

[ServiceMark]
; tmtype=service
form = <U+2120/>

You can edit these definitions. If you include a <name/> building block, DITA2Go looks
up the name in section [MarkText] in a language configuration file; see §8.9 Localizing
output headings, labels, and names on page 157. No other settings are required.

8.9 Localizing output headings, labels, and names
Your DITA2Go distribution includes several configuration templates with names of the
form d2g_lang_ LL.ini . These language configuration templates contain settings that
specify the content of text items such as headings, labels, and file names that will appear in
output. Collecting these settings in separate configuration templates gives you a
convenient place to localize all such values for your project.

In this section:
§8.9.1 Specifying an output language for your project on page 158
§8.9.2 Overriding language settings on page 158

Table 8-6 Default cross-reference format names and definitions

Format name Cross reference to: Default format (form property)

TitleXref Numbered formats; typically includes
the title of the referenced item;
default for formats assigned to
topic , section , fig , and table
elements

<autonum/> <paratext/>

NumXref Items in ordered lists; typically
includes only the number; default for
formats assigned to li elements

<autonum/>

FtnXref Footnotes, that typically include only
the superscript number; default for
formats assigned to fn elements

<sup><numonly/>

FigureXref Figures, using only the figure number Figure <numonly/>

TableXref Tables, using only the table number Table <numonly/>

FigureTitleXref Figures, using the figure title <autonum/> <i><paratext/></i>

TableTitleXref Tables, using the table title <autonum/> <i><paratext/></i>

StepXref Steps Step <numonly/>

MapTitleXref TOC items <autonum/> <paratext/>

TextXref Text elements without numbers or
titles; default for anything else

<paratext/>

LOCALIZING OUTPUT HEADINGS, LABELS, AND NAMES DITA2GO USER’S GUIDE

158 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§8.9.3 Specifying language-specific text values on page 158

8.9.1 Specifying an output language for your proje ct

To specify which language configuration template to use for your DITA2Go project, in
your project configuration file:

[Templates]
; Languages = path to language-specific .ini file
Languages = %OMSYSHOME%\d2g\local\lang\local_d2g_la ng_en.ini

DITA2Go checks the referenced language template whenever a text setting does not
appear in your project configuration file or in a document-specific configuration file.

The default language is English, and the default language template is d2g_lang_en.ini .
To use a different language, reference one of the other language configuration files in
\d2g\local\lang , or insert a language configuration file of your own in the template
chain. See §39.1.6 Understanding how language templates are organized on page 730.

8.9.2 Overriding language settings

You can override the [Templates]Languages setting in your project configuration file
or in a document-specific configuration file by specifying a different value of @xml:lang
for an element. If @xml:lang calls for a language different from the one the configuration
setting specifies, DITA2Go switches to the indicated language file for that element and its
children.

Omni Systems supplies language files for English, French, Spanish, German, Czech, and
Russian. You can make your own language files for whatever languages you want, and
reference them, chained together, from your project configuration file or from a document-
specific configuration file. See §39.1.6 Understanding how language templates are
organized on page 730.

To generate text within the content of an element where @xml:lang="" , DITA2Go uses
the default language, rather than omit the text. If you really want the text omitted, use your
own language (for example, enx), and make a language configuration file for it with
empty values for the text strings.

8.9.3 Specifying language-specific text values

All configuration sections in DITA2Go language files have names that end in Text . This
suffix is required for reference by the Configuration Manager.

Text settings
depend on format

component
names

Many of the settings in language configuration files assign text to the name of a format
component. If you use format component names that are different from those specified in
the language configuration templates, you must assign each of your preferred names to the
corresponding DITA2Go format component name; see §8.1.3 Assigning additional names
to format components on page 142.

Several sections in the language configuration files provide text for the <name/> building
block of the format-component form property. For example:

[RuninHeadText]
NoteHead = Note:
AttentionHead = Attention:
CautionHead = Caution:

See §8.6 Configuring run-in headings for text formats on page 153.

8 CONFIGURING FORMAT COMPONENTS LOCALIZING OUTPUT HEADINGS, LABELS, AND NAMES

ALL RIGHTS RESERVED. MAY 19, 2013 159

One language configuration section contains typographic and other miscellaneous text
assignments:

[ElementText]
; Quotes = left double, right double, left single, and right single,
; in a space-delimited list, for <q> element, neste d alternately.
Quotes = “ ” ‘ ’
; CascadeSeparator = text to use beteen items in <m enucascade>
CascadeSeparator = \~|\~

Quotes specifies the delimiters to be used around text converted from <q> elements; see
§8.1.5 Including typographic tags and character formats on page 143.

CascadeSeparator specifies the separator character(s) to be inserted between items
converted from <uicontrol> elements; the default is “ | ”, a vertical bar with a space
on either side. The separator does not appear if the <uicontrol> elements are not in a
<menucascade> . However, it does appear for any elements derived from those two.

(No illustrations)

LOCALIZING OUTPUT HEADINGS, LABELS, AND NAMES DITA2GO USER’S GUIDE

160 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 161

9 Specifying conditional processing

DITA2Go allows you to filter on any value of any DITA attribute, not just the official
props -derived attributes. This section shows how to direct DITA2Go to handle
conditional processing attributes and other kinds of selective processing in your DITA
documents. Topics include:

§9.1 Extracting conditions from ditaval files on page 161
§9.2 Defining conditional actions on page 162
§9.3 Including flags for ditaval conditions on page 165
§9.4 Configuring conditional flags on page 166
§9.5 Assigning attributes with conditional flags on page 169
§9.6 Scoping and filtering within maps on page 169

9.1 Extracting conditions from ditaval files
If your DITA2Go project includes one or more ditaval files, DITA2Go can use the
content of these files to modify or annotate conversion output. In other words, if you have
an existing project, perhaps using the DITA Open Toolkit, you are not forced to change to
DITA2Go proprietary settings. As an alternative, DITA2Go provides configuration
settings that replace and extend the functionality of ditaval files; see §9.2 Defining
conditional actions on page 162.

If you do not have an existing project, you can go either way, depending on familiarity and
specific project needs. If you are still using the Open Toolkit to generate PDF output, for
example, you might need ditaval files for that, and you may find it easier to tweak a ditaval
file for HTML than to redo its provisions the DITA2Go way.

In this section:
§9.1.1 Specifying a single ditaval file on page 161
§9.1.2 Including wildcards in ditaval statements on page 161
§9.1.3 Processing complex otherprops settings on page 162

9.1.1 Specifying a single ditaval file

To specify a single .ditaval file that applies to your entire DITA document:
[ConditionOptions]
; DitavalFile = path to ditaval file to read.
DitavalFile = d:\path\to\my.ditaval

When you specify a value for DitavalFile in your project configuration file, for HTML
output DITA2Go combines each attribute name and value to form a class name for use in
the file designated by CSSFlagsFile (see §9.3 Including flags for ditaval conditions on
page 165); for example, platformlinux . This setting is ignored for RTF output.

If your project configuration file does not specify a value for DitavalFile , instead
DITA2Go uses values specified in the [Conditional*] sections described in §9.3
Including flags for ditaval conditions on page 165.

9.1.2 Including wildcards in ditaval statements

You can use wildcards ? and * in attribute @val settings in <prop> . For example:
<prop att="platform" val="win*" action="exclude" />

DEFINING CONDITIONAL ACTIONS DITA2GO USER’S GUIDE

162 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

to exclude elephants where platform="win2k winxp win7" in one statement instead
of three. This ensures that when someone adds win8 later, that too will be excluded.

9.1.3 Processing complex otherprops settings

If your DITA files contain complex otherprops values, you might want DITA2Go to
include these values in output. The default is to ignore complex otherprops values:

[ConditionOptions]
; ComplexOtherprops = No (default, ignore complex s ettings because
; they were deprecated in DITA 1.1), or Yes
ComplexOtherprops = Yes

When ComplexOtherprops=Yes , DITA2Go processes any complex otherprops
values as though the group name is a distinct attribute name. For example:

otherprops="proglang(java cpp) commentformat(javado c html)"

DITA2Go treats this example as exactly equivalent to:
proglang="java cpp" commentformat="javadoc html"

and processes it as:
proglang="java cpp"

and:
commentformat="javadoc html"

You can also have simple otherprops values:
otherprops="whatever"

But you cannot mix both in the same attribute:
INVALID: otherprops="proglang(java cpp) whatever"

For use in ditaval files, otherprops is always simple:
<prop att="otherprops" val="whatever" action="exclu de">

For complex otherprops in ditaval files, you would use:
<prop att="proglang" val="cpp" action="exclude">
<prop att="commentformat" val="html" action="exclud e">

without mentioning they were packaged in otherprops .

Complex otherprops values were “deprecated in favor of attribute specialization” in
DITA version 1.1, and are still listed that way in version 1.2; therefore the default value of
ComplexOtherprops is No.

9.2 Defining conditional actions
The settings in this section replace and extend the functionality of ditaval files. However,
if conditional processing for your DITA document is specified in one or more ditaval files,
DITA2Go ignores the settings in this section.

In this section:
§9.2.1 Understanding the syntax of conditional action settings on page 163
§9.2.2 Flagging content for special treatment in output on page 163
§9.2.3 Specifying default conditions for inclusion or exclusion on page 163
§9.2.4 Including or excluding content based on attribute values on page 164
§9.2.5 Passing attribute values through in output on page 165

9 SPECIFYING CONDITIONAL PROCESSING DEFINING CONDITIONAL ACTIONS

ALL RIGHTS RESERVED. MAY 19, 2013 163

9.2.1 Understanding the syntax of conditional acti on settings

Conditional action settings take the form:
attribute = value1 value2 ...

For each type of conditional action, the attribute name in the configuration setting
should be one of the following:

props
audience
platform
product
otherprops

a specialization of props

The value list, if there is more than one value, must be space delimited. Values can
include wildcards ? and * ; for example:

platform = win*

instead of:
platform = win2k winxp win7

9.2.2 Flagging content for special treatment in ou tput

To flag certain attribute values for differential treatment of content:
[ConditionalFlagging]
; attribute name = list of value=flag pairs.
attrname = value1=flag1 value2=flag2 ...

For each value listed, for HTML output the associated flag is used as the class name for
inclusion in the CSS flags file (see §9.3 Including flags for ditaval conditions on
page 165), with the properties defined in [ConditionalFlags] ; see §9.4 Configuring
conditional flags on page 166.

For example:
[ConditionalFlagging]
platform= mac=blueback win=greenback

Content with attribute platform=mac would be rendered with a blue background, while
content with attributed platform=win would be rendered with a green background,
provided you have defined flags blueback and greenback to produce this effect; see
§9.4 Configuring conditional flags on page 166.

Note: Flag name conflict is reserved for disallowed combinations of flag properties;
see §9.4 Configuring conditional flags on page 166.

9.2.3 Specifying default conditions for inclusion or exclusion

By default, all content is included in DITA2Go output, unless the action conditional
processing attribute in a ditaval file for the content specifies exclude , or a corresponding
setting in your configuration file specifies the attribute value(s) required to trigger
exclusion.

To specify the default action for all attributes:
[ConditionOptions]
; ConditionalDefaults = include (default) or exclud e, for all
; attributes unless overridden in the [ConditionalD efaults] section.
ConditionalDefaults = include

DEFINING CONDITIONAL ACTIONS DITA2GO USER’S GUIDE

164 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To specify a different default action for individual attributes (for example):
[ConditionalDefaults]
; attribute name = actions to use for any props not set explicitly,
; can be include (default) or exclude.
audience = exclude

In this example, all values for audience would be excluded by default.

9.2.4 Including or excluding content based on attr ibute values

For any of the attributes listed in §9.2.1 Understanding the syntax of conditional action
settings on page 163, you can override the default conditional action for specified values,
to include or exclude content.

Overriding
excluded attribute

values

To specify a list of attribute values that should cause an element to be included when the
conditional default for the attribute is exclude (see §9.2.3 Specifying default conditions
for inclusion or exclusion on page 163):

[ConditionalInclude]
; attribute name = list of values to include, effec tive when the
; conditional default for the attribute is exclude.
attribute = value1 value2 ...

If no value for an attribute on an element is included, the element is excluded; otherwise, it
is included.

For example:
[ConditionalDefaults]
audience = exclude

[ConditionalInclude]
audience = beginner

In this example, of those elements that have an audience attribute, only those with the
value beginner would be included, because the default action for audience is to
exclude. The result would be output oriented for beginners.

Overriding
included attribute

values

To specify a list of attribute values that should cause an element to be excluded when the
conditional default for the attribute is include (continuing the same example):

[ConditionalExclude]
; attribute name = list of values to exclude, effec tive when the
; conditional default for the attribute is include.
attribute = value1 value2 ...

If all values for any attribute on an element are excluded, the element is excluded;
otherwise, it is included.

For example:
[ConditionalDefaults]
audience = exclude

[ConditionalExclude]
audience = advanced
platform = linux

Elements with audience="advanced" would be excluded (redundant, because the
default action for audience is to exclude) and so would elements with platform=
"linux" . The result would be output oriented to all but advanced audiences, working on
any platform except Linux. Because the default is include for platform , only elements
that have the single value linux for platform would be excluded; an element with
platform="linux mac" would be included.

9 SPECIFYING CONDITIONAL PROCESSING INCLUDING FLAGS FOR DITAVAL CONDITIONS

ALL RIGHTS RESERVED. MAY 19, 2013 165

9.2.5 Passing attribute values through in output

To mark certain attribute values to be passed through so they are available for further
processing outside of DITA2Go :

[ConditionalPassthrough]
; attribute name = list of values to pass through.
attrname = value1 value2 ...

Although not rendered as output, attributes with these values are included in the output
stream, as possible for the output type. This setting has no effect in RTF output.

For example:
[ConditionalPassthrough]
product = Mif2Go DITA2Go

Any element with a product attribute of Mif2Go or DITA2Go would be included in
output, and the attribute name and value would be attached to the content (but not visible)
in whatever form is appropriate for the output type.

9.3 Including flags for ditaval conditions
By default, DITA2Go includes, in output, flags based on conditional processing attributes
in any ditaval files associated with your DITA document, or on settings you specify in
your project configuration file.

To omit conditional flags from output:
[ConditionOptions]
; UseConditionalFlagging = Yes (default, set flags per ditaval file
; or flag-related sections below), or No (do not in clude flags)
UseConditionalFlagging = No

If UseConditionalFlagging=Yes and you are producing HTML output, you might
want to include conditional flagging in CSS. DITA2Go can flag classes, and optionally
create a special CSS file for flagged classes.

To name a special CSS file for flagged classes:
[ConditionOptions]
; CSSFlagsFile = name of CSS file to use for flaggi ng classes for
; HTML outputs. If not specified, related settings below ignored.
CSSFlagsFile = flags.css

If your project configuration file includes a value for CSSFlagsFile , by default
DITA2Go creates a CSS file for flagged classes, places this file in your output directory,
and causes the flags file to be referenced in the <head> section after your main CSS file.

To prevent DITA2Go from writing a CSS flags file:
[ConditionOptions]
; WriteFlagsFile = Yes (default, write in output di rectory) or
; No (do not write)
WriteFlagsFile = No

To prevent DITA2Go from including a reference to a CSS flags file:
[ConditionOptions]
; ReferenceFlagsFile = Yes (default, reference afte r main CSS file
; in output document head) or No (do not reference) .
ReferenceFlagsFile = No

By default, the CSS file for flags remains a separate file; however, you can have
DITA2Go append the CSS flags file to your main CSS file:

CONFIGURING CONDITIONAL FLAGS DITA2GO USER’S GUIDE

166 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[ConditionOptions]
; AppendFlagsFile = No (default, keep separate from usual CSS) or
; Yes (append to regular CSS file if that file is b eing written)
AppendFlagsFile = Yes

JavaHelp CSS
breaks flagging

If you are producing JavaHelp, be aware that JavaHelp does not recognize multiple
classes, but instead uses the first class encountered in the CSS file (regardless of the order
in the class attribute itself) and ignores the rest. This breaks flagging for everything
except image (where DITA2Go inserts the image in the HTML output).

See also:
§9.2 Defining conditional actions on page 162

9.4 Configuring conditional flags
If you have set conditional-processing flags in configuration-file section
[ConditionalFlagging] , for those flags to have an effect in output you must either
define their properties or assign them appropriate attributes.

In this section:
§9.4.1 Specifying text properties for flags on page 166
§9.4.2 Providing images and alt text for startflag and endflag on page 168
§9.4.3 Highlighting conflicting flag properties on page 168

9.4.1 Specifying text properties for flags

To specify the properties of a conditional flag:
[ConditionalFlags]
flagname = property1 property2=value property3 ...

The property and property=value assignments are space delimited.

Properties you can assign to flagname include:

Table 9-1 Text properties for flags

Type of property Property name Description

Colors fgcolor Foreground color

bgcolor Background color

chcolor Change-bar color

Typographics underline Normal text underline

doubleline Double underline

numunderline Numeric underline

overline Text overline

strike Strikethrough

italics Italic; can be combined with bold

bold Bold; can be combined with italics

Change bars* change Show change bars

chcolor Change-bar color

chchars Change-bar character(s); punctuation only

Images* startflag Image (or text) at start of flagged element

endflag Image (or text) at end of flagged element

* Not implemented yet

9 SPECIFYING CONDITIONAL PROCESSING CONFIGURING CONDITIONAL FLAGS

ALL RIGHTS RESERVED. MAY 19, 2013 167

Colors For colors, the property name is followed by an equals sign, then by the name of a color, or
by the #RRGGBB hex value of the color. Color names you can specify include:

For example:
[ConditionalFlags]
whitefore = fgcolor=white
blueback = bgcolor=blue
greenback = bgcolor=green

A flag may have no more than one foreground color and one background color; if both are
assigned, the colors must be different. If the colors are the same, a conflict occurs, and the
conflicting properties are replaced by the properties of the conflict flag; see §9.4.3
Highlighting conflicting flag properties on page 168.

Typographics Line properties underline , overline , and strike can be combined for a single flag.
However, underline , doubleline and numunderline cannot be combined.
Properties bold and italics can be combined for a single flag; they can also be
combined with a line property.

For example:
[ConditionalFlags]
deleted = italics strike fgcolor=red

Change bars (Not implemented yet.)

To show change bars, assign property change to a flag. When you assign change , you
can also assign the following properties to the change-bar flag:

 • a color, with property chcolor

 • one or more punctuation characters, with property chchars ; these are displayed in
the margin, for output types that do not support change bars per se.

Property chcolor may be any of the colors listed under Colors, or the #RRGGBB hex
value of the color. Property chchars may consist of punctuation characters only.

For example:
[ConditionalFlags]
altered = change chcolor=teal chchars=*!*

Images You can use a conditional flag to precede and follow an element with images or with text.
This can be another way to substitute for change bars in output types such as HTML that
do not support change bars. The idea would be to start the revised element with an icon
something like >> and end it with <<; or to specify surrounding text such as Start of
change and End of change, perhaps in a contrasting color.

For example:
[ConditionalFlags]
altered = startflag endflag fgcolor=red bold

When you assign startflag and endflag , you must also provide links to the images,
alternate text to display, or both; see §9.4.2 Providing images and alt text for startflag and
endflag on page 168.

aqua gray navy silver

black green olive teal

blue lime purple white

fuchsia maroon red yellow

CONFIGURING CONDITIONAL FLAGS DITA2GO USER’S GUIDE

168 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

9.4.2 Providing images and alt text for startflag and endflag

For DITA2Go to make startflag and endflag (see §9.4.1 Specifying text properties
for flags on page 166) display something in output, you must specify the image, the text,
or both to display:

Starting image
Starting text
Ending image
Ending text

Starting image To specify an image for a conditional flag assigned property startflag :
[CondStartFlagImages]
; flag name = href for an image that marks the star t of the flagged
; area, usually a relative path or a URL for HTML
flagname = reference/to/image.gif

This setting takes effect only if the startflag property is assigned to flagname in
[ConditionalFlags] ; see §9.4.1 Specifying text properties for flags on page 166.

Starting text To specify alternate text for a conditional flag assigned property startflag :
[CondStartFlagAltText]
; flag name = alt text for the start flag image
flagname = Start of change

If no image is assigned to flagname in [CondStartFlagImages] , the text assigned
here is displayed instead. This setting takes effect only if the startflag property is
assigned to flagname in [ConditionalFlags] ; see §9.4.1 Specifying text properties
for flags on page 166.

Ending image To specify an image for a conditional flag assigned property endflag :
[CondEndFlagImages]
; flag name = href for an image that marks the end of the flagged
; area, usually a relative path or a URL for HTML
flagname = reference/to/image.gif

This setting takes effect only if the endflag property is assigned to flagname in
[ConditionalFlags] ; see §9.4.1 Specifying text properties for flags on page 166.

Ending text To specify alternate text for a conditional flag assigned property endflag :
[CondEndFlagAltText]
; flag name = alt text for the end flag image
flagname = End of change

If no image is assigned to flagname in [CondEndFlagImages] , the text assigned here
is displayed instead. This setting takes effect only if the endflag property is assigned to
flagname in [ConditionalFlags] ; see §9.4.1 Specifying text properties for flags on
page 166.

9.4.3 Highlighting conflicting flag properties

Flag name conflict is reserved for cases where different flags are set for the same
element, and their properties cannot be merged without loss. For example, a conflict
occurs when two such flags are both assigned the same color property but with different
values; or when the value of fgcolor is the same as the value of bgcolor , either for the
same flag or for different flags that apply to the same element.

Probably you would want to assign noticeable properties to the conflict flag, so the
problem stands out. For example:

9 SPECIFYING CONDITIONAL PROCESSING ASSIGNING ATTRIBUTES WITH CONDITIONAL FLAGS

ALL RIGHTS RESERVED. MAY 19, 2013 169

[ConditionalFlags]
conflict= bgcolor=white fgcolor=#ff00ff overline un derline

9.5 Assigning attributes with conditional flags
To assign an attribute to conditionally flagged elements:

[ConditionAttributes]
; flag name = attribute name=value pair for output, usually class
flagname = attrname=" value"

For example:
[ConditionAttributes]
blueback= class="bluebg"

Typically this setting is used to assign a CSS class name, which is appended to any other
class attribute so that the flag properties can be defined in CSS. This setting has no effect
in RTF output.

For HTML output only, the names of any flags to which you have not explicitly assigned a
class attribute here become the class names themselves (class=" flagname"). If an
element has multiple unassigned flags, all are applied; for the HTML class attribute, that
means all the class names appear as a space-delimited list in the attribute. Unassigned
flags are ignored for XML output.

9.6 Scoping and filtering within maps
With DITA version 1.3 and specializations you should be able to apply conditions to parts
of maps. You can achieve some of this effect in DITA version 1.1 or 1.2 with PIs that
constrain the scope of ditaval conditions; and as a bonus, you can reuse topics in multiple
places in the same document.

Note: Ordinarily, DITA PIs should be used only for filterable events; see §38.1.3
Deciding when to use PI markers on page 718. Including or omitting the PIs
described in this section would affect content, not just presentation, and therefore
should be considered a workaround. To preserve interoperability, use them only
until the DITA standard includes an architectural feature to address the need for
filtering within maps.

In this section:
§9.6.1 Understanding the advantages of filtering in maps on page 169
§9.6.2 Designating map sections as named branches on page 170
§9.6.3 Reusing the same topics with different conditions on page 170
§9.6.4 Directing a cross reference to the correct branch on page 171
§9.6.5 Directing a content reference to the correct branch on page 171
§9.6.6 Limiting the scope of keydefs by branch on page 172
§9.6.7 Directing a key reference to the correct branch on page 173

9.6.1 Understanding the advantages of filtering in maps

Filtering on <topicref> elements in a map instead of on attributes in a topic can help
keep topics reusable, by not cluttering them with attributes that must work correctly in all
maps in which those topics will ever be referenced. Filtering on attributes in topics can be
a problem for another reason: if a <topicref> pulls in a topic, and you then filter out the
content of that topic, you are left with something that might not be valid.

SCOPING AND FILTERING WITHIN MAPS DITA2GO USER’S GUIDE

170 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Same content for
multiple outputs in

same map

Suppose a topic includes information common to more than one product (for example),
with no variations in content by product. And suppose two or more products are included
in the map that references this topic. You must make sure the cross references from other
topics reference the correct instance of the topic for each product. You cannot just
reference one instance, because then you lose parent/child and previous/next relationships
that include the common topic.

Varying content
for multiple

outputs in same
map

Suppose the topic information varies to some degree for each product. That means the
topic must be filtered by a different ditaval file for each instance. DITA2Go accomplishes
this by adding a ditaval attribute to a PI that identifies the variant.

9.6.2 Designating map sections as named branches

To specify that part of a bookmap or ditamap should be treated differentially, you can
insert a special PI marker to give that map section a “branch” name:

<?dtall branch=" branchname" ?>

See §38 Working with processing instructions on page 717.

You do not need to specialize, or do anything else with the DITA code itself. When you
place a branch PI marker in a map (not in topics), doing so marks everything in the map
that comes after the PI marker, at the same level or below, as belonging to that branch.

You can override a branch PI with another branch PI marker, at the same level or below,
following the same scoping rules (inheritance). DITA2Go manages branch PIs on a stack,
so restore works as expected.

9.6.3 Reusing the same topics with different condi tions

Suppose you want to use the same map in two places in your output, with different
conditions applied. If (for example) you insert the following branch PI marker in a map:

<?dtall branch="productA" ditaval="producta.ditaval " ?>

then all topics referenced in branch productA , and no others, acquire the conditions
specified in producta.ditaval . But you can also insert:

<?dtall branch="productB" ditaval="productb.ditaval " ?>

in the same map, with the very same files in scope, and with two <topicref> elements
get the two outputs in one document. In each case, you would insert the branch PI marker
just before the <topicref> you want it to influence.

For example, you might set up a map like this:
<map>
 <topicref href="common_intro.dita" />
 <topichead navtitle="Product A">
 <?dtall branch="productA" ditaval="producta.dit aval" ?>
 <topicref href="product.ditamap" format="ditama p" />
 </topichead>
 <topichead navtitle="Product B">
 <?dtall branch="productB" ditaval="productb.dit aval" ?>
 <topicref href="product.ditamap" format="ditama p" />
 </topichead>
</map>

The very same map is used for both branches. So you get two copies, each filtered by its
own ditaval. You have complete flexibility to reuse a topic any number of times in the
same project, with different conditions for each use. You can apply a different ditaval to
each branch, or the same ditaval to disjoint areas of the map.

9 SPECIFYING CONDITIONAL PROCESSING SCOPING AND FILTERING WITHIN MAPS

ALL RIGHTS RESERVED. MAY 19, 2013 171

This method of accommodating duplicated topics avoids the workaround of reverse conref
elements, which is the usual (and ugly) answer: create empty topics for each place of use,
and conref the real information from a library of topics, as opposed to just referencing the
topic you want to use in the map.

9.6.4 Directing a cross reference to the correct b ranch

Branch PI markers in maps allow you to specify inclusion of the same topic in more than
one place in the output (see §9.6.3 Reusing the same topics with different conditions on
page 170). How do you specify where a cross reference to a duplicated topic should go?
DITA2Go applies two rules, in the following order:

1. If a cross reference in a named map branch targets another topic in the same branch,
the cross reference goes to the instance in its own branch.

2. If a cross reference is to a topic in a different named branch, you can specify the target
with a cross-reference branch PI marker placed just before the cross reference:

<?dtall xrefbranch=" branchname" ?>

A cross-reference branch PI applies only to the very next cross reference.

If neither of these rules applies, the cross reference goes to the first instance of the topic.

Suppose in common_intro.dita you want to reference an introduction that occurs in
each branch. You would insert a cross-reference branch PI in the referencing topic, just
before each cross reference. For example:

<p>The following products are described here:

 <?dtall xrefbranch="productA" ?>
 <xref href="product_intro.dita" />
 <?dtall xrefbranch="productB" ?>
 <xref href="product_intro.dita" />

</p>

The references are both to the same file; the PIs sort out which instance of the file to
target. So if the file referenced has conditions applied to <ph> elements in its title to yield
different resulting titles, you get the correct title for each in the list items.

9.6.5 Directing a content reference to the correct branch

When you include the same topic in more than one place in the output, to pull in content
from that topic via conref, you must be able to designate the correct instance; you do this
by specifying the map branch. To resolve a conref, DITA2Go applies the same rules as for
cross references (see §9.6.4 Directing a cross reference to the correct branch on page 171):

1. If a conref in a named map branch targets another topic in the same branch, the
content is pulled from the instance in its own branch.

2. If a conref is to a topic in a different named branch, you can specify the branch with a
conref branch PI marker placed just before the element with the conref:

<?dtall conrefbranch=" branchname" ?>

A conref branch PI applies only to the very next element that has a conref.

If neither of these rules applies, the conref pulls content from the first instance of the topic.

So, to reuse descriptions from the duplicated topics, you can set up the <shortdesc>
elements in product_intro.dita as follows:

SCOPING AND FILTERING WITHIN MAPS DITA2GO USER’S GUIDE

172 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

<concept id="prodintro">
<title>Name of product with conditional ph

elements as needed</title>
<shortdesc><ph id="description">Text here, with

conditional ph elements.</ph></shortdesc>
 ...
</concept>

Then:
<p>The following products are described here:

<?dtall xrefbranch="productA" conrefbranch="product A" ?>
<xref href="product_intro.dita" />: <ph

conref="product_intro.dita#prodintro/description"/>
<?dtall xrefbranch="productB" conrefbranch="product B" ?>
<xref href="product_intro.dita" />: <ph

conref="product_intro.dita#prodintro/description"/>

</p>

The two elements are identical; the PIs direct each one to its own branch, so they
pull in different content based on the conditions applied to those branches.

9.6.6 Limiting the scope of keydefs by branch

With named branches and branch PIs you can limit the scope of keydefs, and also
determine whether global keydefs should be used as a backup to branch keydefs.

To give preference to keydefs in a named branch when resolving keyrefs in that branch:
[KeyOptions]
; UseBranchKeydefs = No (default, standard DITA 1.2 single key space
; for whole map), or Yes (within a branch, search f or keydefs in the
; same branch before searching the global key space)
UseBranchKeydefs = Yes

When UseBranchKeydefs=Yes , if a named branch (always in a map) contains keydefs,
if possible DITA2Go uses those keydefs to resolve keyrefs in that branch. If it is not
possible to do so for a given keyref, or when UseBranchKeydefs=No , DITA2Go uses
the normal DITA 1.2 keydef resolution precedence: top down, breadth first from the root
map, first instance of the sought key prevails.

To restrict the use of branch keydefs to their named branch:
[KeyOptions]
; KeydefsOnlyWithinBranch = No {always retain keyde fs in branches in
; the global key space), or Yes (exclude branch key defs from the
; global key space when UseBranchKeydefs=Yes).
KeydefsOnlyWithinBranch = Yes

When KeydefsOnlyWithinBranch=Yes , the keydefs in any named branch are used
only in that branch. When KeydefsOnlyWithinBranch=No , all keydefs in named
branches remain in the global key space; however, they are used preferentially within their
named branch, provided UseBranchKeydefs=Yes .

For example:
<chapter id="ditaval1" navtitle="Ditaval Selection and Flagging">
<?dtall branch="Original" ditaval="WindowsProps.dit aval" ?>
<topicref href="DITAProps.ditamap" format="ditamap" />
<keydef keys="OS" ><topicmeta>

<linktext>Windows</linktext>
</topicmeta></keydef>
</chapter>

9 SPECIFYING CONDITIONAL PROCESSING SCOPING AND FILTERING WITHIN MAPS

ALL RIGHTS RESERVED. MAY 19, 2013 173

<chapter id="ditaval2"
navtitle="Ditaval Selection and Flagging Revisited" >
<?dtall branch="Revisited" ditaval="LinuxProps.dita val" ?>
<topicref href="DITAProps.ditamap" format="ditamap" />
<keydef keys="OS" ><topicmeta>

<linktext>Linux</linktext>
</topicmeta></keydef>
</chapter>

When a topic within the referenced map contains:
 <term keyref="OS"/>

that term becomes “Windows” in the first chapter and “Linux” in the second chapter.

Suppose that after the two keydefs in the named branches, the map contains:
<keydef keys="OS" ><topicmeta>
 <linktext>Solaris</linktext>
</topicmeta></keydef>

When KeydefsOnlyWithinBranch=Yes , this code in a topic that is not in a named
branch:

<term keyref="OS"/>

yields “Solaris”. However, when KeydefsOnlyWithinBranch=No , the term becomes
“Windows” (from the first keydef in the map).

9.6.7 Directing a key reference to the correct bra nch

To specify the branch to use for resolving the next keyref in a map or a topic, insert a
KeyrefBranch PI:

<?dtall keyrefbranch=" BranchName" ?>

A KeyrefBranch PI specifies the name of the branch to search to resolve the next keyref
only, either in a map or in a topic. It works the same way as cross-reference branch PIs and
conref branch PIs; see:

§9.6.4 Directing a cross reference to the correct branch on page 171
§9.6.5 Directing a content reference to the correct branch on page 171

Using the example in §9.6.6 Limiting the scope of keydefs by branch on page 172, if a
topic contains:

 <?dtall keyrefbranch="Revisited" ?><term keyref=" OS"/>

the term becomes “Linux” even if the keyref is in the Windows chapter.
(No illustrations)

SCOPING AND FILTERING WITHIN MAPS DITA2GO USER’S GUIDE

174 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 175

10 Including content by reference

DITA2Go supports content reference push and pull, and inclusion of external text content.
Topics include:

§10.1 Pushing and pulling content by reference on page 175
§10.2 Referencing external code or text fragments on page 176

10.1 Pushing and pulling content by reference
DITA2Go supports the conref push and pull actions included in DITA version 1.2, with a
few restrictions and a couple of extensions.

In this section:
§10.1.1 Referencing internal and external maps and topics on page 175
§10.1.2 Pushing content into an element on page 176
§10.1.3 Understanding problems with processing conkeyrefs on page 176

10.1.1 Referencing internal and external maps and topics

Processing requirements limit what DITA2Go can do to support copying content from and
to internal and external maps and topics. Table 10-1 summarizes the restrictions.

Nothing external to your project can be processed, except to pull from as a source. In other
words, DITA2Go does not handle any of the following:

 • push from a source external to your project
 • push to a destination external to your project
 • pull from an external destination.

Conref from map
to map

Map-to-map conrefs can be pull only (no push), and only from a map external to the
project. You can use map-to-map pull topicrefs to pull in topicrefs from another map, to
provide a form of indirection that does not employ keyrefs, which are not included in
DITA version 1.1. You can swap in different maps containing topicrefs with the same IDs
but different attributes; and the main map will add topicrefs from the other maps at run
time.

For example, if you have product-specific information to be included in many different
places, you can have a topicref with a conref at each such place. However, you cannot use
the same topic in the same map in two places, unless you use branches to distinguish them;
see §9.6 Scoping and filtering within maps on page 169.

Note: Map to map conkeyrefs are not supported, because it is not possible to resolve
keyrefs until maps are totally resolved, which cannot be done if any conkeyref is

Table 10-1 DITA2Go support for push and pull conrefs

Conref
from: to:

Internal target External target

RestrictionsPush Pull Push Pull

map map No No No Yes Pull only, from external map only

map topic Yes No No Yes No internal pull; pushreplace only

topic map No Yes No Yes No push from topic to map

topic topic Yes Yes No Yes All five push variants

REFERENCING EXTERNAL CODE OR TEXT FRAGMENTS DITA2GO USER’S GUIDE

176 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

present that can add a map; see §10.1.3 Understanding problems with processing
conkeyrefs on page 176.

Conref from map
to topic

A map cannot pull from a topic. By the time the topic is processed it is too late to affect
map processing in any useful way, even from external topics. Map processing has to be
finished (to resolve keyrefs) before any conrefs, and after that, changing the original
elements cannot affect the already processed results. Only an internal map can push, and
only pushreplace, not pushafter or pushbefore.

Conref from topic
to map

The topic with the conref must be internal to the project, and can pull from either an
internal or an external map. However, a topic cannot push to a map, because map
processing is finished before topic processing begins.

Conref from topic
to topic

Push and pull are supported between internal topics. Pull is also supported from external
topics, but you cannot push to an external topic. Push includes all five variants, two of
which (pushatstart and pushatend) are extensions not present in the DITA 1.2
specification; see §10.1.2 Pushing content into an element on page 176.

10.1.2 Pushing content into an element

In addition to the three DITA 1.2 push conactions (pushreplace, pushbefore, and
pushafter), DITA2Go also supports pushatstart and pushatend, which place the content
inside the target location; that is, at the start or the end of the element content, respectively.
The pushatstart and pushatend extensions put in only plain text extracted from the element
with the conref. They are only topic-to-topic, not to/from or between maps.

The target must be an element that can contain text, but is not otherwise limited. Only the
text content of the element with the conref is pushed. You can push text to the same
element as many times as you want; the pushes are performed in document order (of the
elements with the conrefs), and result in preserving that order both at start and at end. That
is, if you push A, then B, to start and to end, you get AB ... AB (not BA ... AB).

10.1.3 Understanding problems with processing conk eyrefs

DITA2Go processes conkeyrefs at the same time as keyrefs, after reading all the original
maps and before processing any map conrefs. Adding maps by conref after that has the
potential to change the keydefs. For example, if the top level map conrefs a topicref in an
external map that contains keydefs, those keydefs would theoretically be higher priority
than any referenced in lower-level maps. But the keyrefs in all the existing maps have
already been resolved, so there is a contradiction. DITA2Go handles this problem by
disregarding keydefs found in conref'd topicrefs.

If the keydefs are in the original set of maps, they will be used to resolve any conkeyrefs in
those maps, and that will happen before any new maps are conref'd. For that case,
conkeyref is identical to conref. But if a conref'd map element itself has a conkeyref,
DITA2Go still uses the original keydefs to resolve it. If the new element has a key not
present in the original set, but perhaps present in itself, that new keydef will not be used.
So in that unusual case a conkeyref may or may not work, but a conref will work.

10.2 Referencing external code or text fragments
Proposed Internet standard RFC 5147 provides a fragment identifier scheme for plain text
documents, which allows reference to both ranges of characters and ranges of lines within
a plain text document:

http://tools.ietf.org/html/rfc5147

http://tools.ietf.org/html/rfc5147

10 INCLUDING CONTENT BY REFERENCE REFERENCING EXTERNAL CODE OR TEXT FRAGMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 177

DITA2Go supports the proposed href attribute syntax, and also provides PI markers to
achieve the same effect. We recommend using the fragment identifiers described in RFC
5147 rather than PI markers, where it makes sense to do so.

In this section:
§10.2.1 Including external code snippets with PI markers on page 177
§10.2.2 Including external code snippets with fragment identifiers on page 177

10.2.1 Including external code snippets with PI ma rkers

When you use the DITA 1.2 <coderef> element to include code from an external file, by
default you get the content of the entire referenced file. However, you can use DITA2Go
external-code PI markers to select only a portion of the referenced code, by character
range or by line number. For example:

<?dtall ExtCodeStartLine="4" ExtCodeEndLine="15" ?>

Placed in your document, this PI marker would include only lines 4 through 15 of the file
referenced in the next <coderef> . To start at the beginning of the referenced file, omit
ExtCodeStartLine ; to go to the end, omit ExtCodeEndLine . You can specify starting
and ending characters in the file, instead of lines; for example:

<?dtall ExtCodeStartChar="34" ExtCodeEndChar="320" ?>

You could include a check on the length of the file, and specify its encoding, also:
<?dtall ExtCodeFileLen="438" ExtCodeFileEnc="UTF-8" ?>

An external-code PI marker applies only to the next <coderef> instance, and is self
canceling following the <coderef> . Instead of dtall , you can use dthtm to affect only
HTML/XHTML/XML outputs, or dtrtf to affect only Word and WinHelp output.

See §38 Working with processing instructions on page 717.

10.2.2 Including external code snippets with fragm ent identifiers

You can use RFC 5147 fragment identifier syntax in the href attribute value to select
portions of code or text from an external file. The following two examples produce the
same result:

With a processing
instruction

<?dtall ExtCodeStartLine="4" ExtCodeEndLine="15"
ExtCodeFileLen="438" ExtCodeFileEnc="UTF-8" ?>

<codeblock><coderef href="fdkfunc.c" /></codeblock>

With a fragment
identifier

<codeblock><coderef
href="fdkfunc.c#line=3,15;length=438,UTF-8" /></cod eblock>

The fragment identifier is not required to have #topicID/elemID in <coderef>
because the target file is not necessarily DITA, so the latter usage does not conflict with
the DITA specification.

In RFC 5147, the starting line number is actually the line number before the first line you
want, because it is zero-based; to start with the first line, you would use #line=,15 . By
contrast, DITA2Go PI markers remain one-based, just as all text editors do.

RFC 5147 does not say what to do if both line and character offsets are present. DITA2Go
starts with the starting line, then counts to the starting character from that point, and
continues until the ending character (relative to the same point), or the ending line,
whichever is encountered first. This allows you to select a part of one or more lines easily,
without having to count characters (which are code points, not bytes) to get to the starting
line.

REFERENCING EXTERNAL CODE OR TEXT FRAGMENTS DITA2GO USER’S GUIDE

178 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The file length (in bytes) provides a way to check whether the file has changed since you
specified the offsets. This is the same check Norm Walsh makes in Calabash for the
XInclude version. If the file size is provided and is not the same, DITA2Go logs an error
and does not include any file content, per RFC 5147.

(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 179

11 Defining element sets and properties

This section shows how to aggregate elements into sets for assigning properties, and how
to characterize the properties of specialized DITA elements. Topics include:

§11.1 Defining sets of elements on page 179
§11.2 Specifying properties of element types on page 179

See also:
§B Element type default properties on page 825

11.1 Defining sets of elements
To reduce the number of variants of essentially the same hierarchy, when you define an
element path (see §6.4.1 Understanding element paths on page 92), you might want to
treat several elements as equivalents; for example, topic , concept , task , and
reference . You can define a single element set that includes them all, and reference that
element set in the element path.

To define sets of elements:
[ElementSets]
; Name for set = list of elements and element sets, separated by
; spaces.
$setname = element1 element2 $otherset

Give each set an alphanumeric name prefixed with a $ (dollar sign). List the names of
members of the set to the right of the equals sign, separated by spaces. For example:

[ElementSets]
$topic = topic concept task reference glossentry
$body = body conbody taskbody refbody glossdef
$sect = section example refsyn
$map = map bookmap
$tref = topicref topichead chapter frontmatter back matter

A member of an element set can be either of the following:

 • the name of an element
 • the name of a previously defined element set.

Member sets must be defined in [ElementSets] above any other sets that include them.
Keep the definition of each set all on one line in your configuration file.

11.2 Specifying properties of element types
DITA2Go defines more than 50 properties that can be assigned to elements to characterize
the roles those elements play in a conversion project. These properties go beyond the
attributes specified in a DITA DTD.

In this section:
§11.2.1 Understanding when to assign element type properties on page 180
§11.2.2 Understanding what properties are available on page 180
§11.2.3 Assigning properties to element types on page 183
§11.2.4 Adding the full class attribute to an element on page 183

SPECIFYING PROPERTIES OF ELEMENT TYPES DITA2GO USER’S GUIDE

180 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

11.2.1 Understanding when to assign element type p roperties

All elements in the base DITA DTDs have preassigned DITA2Go properties, listed in §B
Element type default properties on page 825. You need to add or modify property
assignments only to accomplish one of the following:

 • change a default, if the default properties are not in accord with the way you are using
an element

 • specify properties of specialized elements.

For the former, as an example you might want to use the value of a particular element as a
variable; see §12.1 Understanding how DITA2Go user variables work on page 185. If that
element does not already have property Var by default, you would need to add Var to the
list of properties for the element.

For the latter, if you do not specify properties, a specialized element inherits the properties
of the element from which it was derived.

If your DITA document includes specialized elements with presentational characteristics
different from those of the base elements from which they are derived, you might want to
assign appropriate properties to the specialized elements.

On the other hand, if you convert specialized documents without defining element type
properties, and you like the results, you need not specify these properties for your
specialized elements. That will happen if you have specialized from base elements that
have the same presentational characteristics as your specialized elements. This is the
DITA process for generalization, which is what makes specialization so useful: tools that
do not understand a specialized element are required to treat it as the highest base class
they do understand. That handles most cases.

11.2.2 Understanding what properties are available

Table 11-1 shows the properties you can assign to the full class attribute of an element.
The list of elements for which a property is assigned by default is representative, not
exhaustive; for the complete list of default property assignments, see §B Element type
default properties on page 825.

Properties are grouped as follows in Table 11-1:

Basic Inline , Pre , Text , Typo , Num, Data , Pernicious ,
NoLevel , Draft

Role Root , Map, Topic , Meta , Var , Title , Section , Note , Task ,
Reference , Glossary , BookTitle , Navtitle , Trademark

Image or object Fig , Image , Alt , Object , Param

Index related Index , IxStart , IxSee , IxAlso , IxSort

Link or reference Ref , Key, XRSource , Link , Rel , Abbrev

List related List , ListItem , DL* , Sub, CascadeSet , CascadeItem ,
Numbered, Nonum, PL*

Grouping Group , Sequence

Descriptive Footnote , Desc , SDesc, Abstr

Table related Table , TabStart , TabCol , TabRow, TabCell , TabHead,
TabBody

11 DEFINING ELEMENT SETS AND PROPERTIES SPECIFYING PROPERTIES OF ELEMENT TYPES

ALL RIGHTS RESERVED. MAY 19, 2013 181

Table 11-1 Element type properties

Group Property Description

Basic Inline Does not start a new paragraph, starts an inline (character) format,
unless the element is also assigned property Typo . Default for ph,
img , xref , fn , tt .

Pre May be block or Inline, always Text ; retains all existing whitespace.
Default for pre , lines , codeblock .

Text Can have text; true of all Inline and of some block. An empty block
element that is not also Text is deleted; otherwise it becomes an
empty paragraph. Default for p, lq , and many others.

Typo Typographic property only; always Inline, but does not start an inline
format; treated like an override instead. Default for b, i , u, sub , sup .

Num Always given a number. Default for ol , fn .

Data Suppressed for output, except for any contained text; normally used
for metadata. Default for data , data-about .

Pernicious Can contain both text (#PCDATA) and block (as opposed to inline)
elements, resulting in “pernicious mixed content”. Default for li and
entry .

NoLevel Does not add to the hierarchy of levels for elements such as
headings. Default for sectiondiv , bodydiv , conbodydiv , and
refbodydiv .

Draft Used only for <draft-comment> .

Role Root Root element for DITA map or topic. Default for topic , concept ,
task , reference , glossentry , map, bookmap.

Map Specific to maps. Default for map and bookmap.

Topic Map element containing topic information. Default for topichead ,
topicref , topicmeta .

Meta Contains metadata. Default for topicmeta .

Var Sets a variable. Default for many bookmap text metadata elements:
author , booknumber , booktitlealt , brand , category ,
component , copyrholder , copyright , copyryear , featnum , isbn ,
mainbooktitle , platform , prodname , prognum , publisher ,
series , source .; see §12 Creating and deploying user variables on
page 185

Title Used for title. Default for title .

Section Used to group paragraphs. Default for section .

Note Element with type attribute, such as note . Default for note .

Task For <task> specific elements; also used for <example> .

Ref For <reference> specific elements.

Glossary Used for <glossentry> specific elements, <term> , and
<abbreviated-form> .

BookTitle Used for <mainbooktitle> and <booktitlealt> .

NavTitle Default for <navtitle> .

Trademark Default for <tm>.

Image or
object

Fig Contains a complete figure. Default for fig .

Image Contains image and alt text. Default for image .

Alt Contains alt text for image. Default for alt .

Object Contains a media object. Default for object .

Param Parameter element for an object. Default for param .

SPECIFYING PROPERTIES OF ELEMENT TYPES DITA2GO USER’S GUIDE

182 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Index related Index Used for indexing. Default for indexterm and index* .

IxStart Starts an index entry. Default for indexterm .

IxSee Index see reference. Default for index-see .

IxAlso Index see-also reference. Default for index-see-also .

IxSort Index sort string. Default for index-sort-as .

Link or
reference

Ref Used for cross-referencing. Default for xref ., topicref , booklist ,
among many others.

Key Use for DITA 1.2 indirection. Default for keydef .

XRSource Contains a number or content that may be used in an xref . Default
for title , li , fn .

Link Related Topics link. Default for link .

Rel Related information. Default for related-links , reltable .

Abbrev Used for keyrefs to abbreviations. Default for abbreviated-form .

Grouping Group Wraps a group. Default for topicgroup .

Sequence Wraps an ordered set. Default for linkinfo , linklist .

List related List Contains a list; default for sl , ol , ul .

ListItem Used within a list; default for li , sli .

DList Definition list start; default for dl .

DLEntry Entry in definition list; default for dlentry .

DLTerm Definition list term; default for dthd , dt .

DLDef Definition list definition; default for ddhd , dd.

Sub Distinguish substeps from steps; default for substeps.

CascadeSet Default for menucascade .

CascadeItem Default for uicontrol .

NoNumber Default for stepsection .

PList Used for a parameter list.

PLmEntry Used for a parameter list component.

PLTerm Used for a parameter list component.

PLDef Used for a parameter list component.

Descriptive Footnote Contains a footnote; default for fn .

Desc Description used in object, etc.; default for desc .

SDesc Short description in topicref or topic ; default for shortdesc .

Abstr Abstract in topic ; default for abstract .

Table related Table Starts a table or contains table-wide information. Default for table ,
simpletable , parml , dl , colspec , tgroup , thead , tbody .

TabStart Starts a table. Default for dl , parml , simpletable , table .

TabCol Contains column properties. Default for colspec .

TabRow Contains a row. Default for row, sthead , strow , plentry , dlhead ,
dlentry .

TabCell Table cell. Default for entry , stentry , pt , pd, dthd , ddhd , dt , dd.

TabHead Occurs in table head. Default for thead , sthead , dlhead .

TabBody Occurs in table body. Default for tbody , strow , dlentry , plentry .

Table 11-1 Element type properties (continued)

Group Property Description

11 DEFINING ELEMENT SETS AND PROPERTIES SPECIFYING PROPERTIES OF ELEMENT TYPES

ALL RIGHTS RESERVED. MAY 19, 2013 183

11.2.3 Assigning properties to element types

You must assign element type properties to the full class attribute of the element in
question, because the same element name can be reused in another context; for example,
both as a topic element and as a topicref in a map. You can set a maximum of 11 properties
for any one element; DITA2Go ignores any additional properties.

To specify properties for element types:
[ElementTypes]
; full class attribute = properties to use for elem ent
class/attribute of/element = property1 property2 ...

For example:
[ElementTypes]
topic/strow task/ chrow = Task TabRow TabBody
map/topicref bookmap/ colophon = Map Ref Topic
topic/ component = Text Var
topic/ copyryear =

These examples show a few of the default property assignments listed in §B Element type
default properties on page 825.

An empty assignment means the element is block only (not inline). If an element does not
have the Inline property, it is treated as block, and is assumed to start a new paragraph,
or to contain paragraphs or higher aggregates. If an element has the Text property, it starts
a block (paragraph) format. This is the default for all elements that do not have the
Inline property.

11.2.4 Adding the full class attribute to an eleme nt

You might encounter a deficiency in the DTDs that in some cases prevents them from
adding the @class to an element. DITA2Go adds the @class if possible, and otherwise
processes such an element as a <data> element, and writes the following error message to
the log file for your project:

No class attribute for element name

To correct this deficiency, for example for <abbreviated-form> :
[ElementClasses]
; Element name = "+ " followed by the full class at tribute
; followed by a space.
abbreviated-form = + topic/term abbrev-d/abbreviate d-form

Note: The trailing space is required, as is the space following the “+”.

If the DTD does in fact supply @class for an element, as it should, a setting in
[ElementClasses] for that element will not override the DTD.

(No illustrations)

SPECIFYING PROPERTIES OF ELEMENT TYPES DITA2GO USER’S GUIDE

184 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 185

12 Creating and deploying user variables

DITA2Go can capture DITA element content, and in some cases attribute values, in
named DITA2Go user variables for use in macros. This section describes the
configuration settings required to create and deploy such variables. Topics include:

§12.1 Understanding how DITA2Go user variables work on page 185
§12.2 Assigning variable names to element paths on page 186
§12.3 Including user variables in DITA2Go macros on page 186
§12.4 Deploying user variables in template macros on page 187

12.1 Understanding how DITA2Go user variables work
DITA2Go provides the following ways to capture element content in variables that you
can subsequently use in macros:

 • Assign property Var to an element; see §11.2 Specifying properties of element types
on page 179. The variable has the same name as the element.

 • Assign the name of a variable to an element path; see §12.2 Assigning variable names
to element paths on page 186.

Either way, what you get is a DITA2Go user variable. If an element is neither listed with a
path in [VariableMaps] nor assigned property Var in [ElementTypes] , no user
variable is created for it.

If you specify that an element is to function as a DITA2Go user variable, either by listing
an element path in [VariableMaps] or by setting Var for the element in
[ElementTypes] (explicitly or by default), DITA2Go stores the first instance as a
regular user variable. If the same element or path occurs again in your document, the
variable begins a list, and every subsequent instance is added to that list. A multiple-
instance user variable behaves like a read-only list variable; see §37.4 Using multiple-
value list variables on page 695.

Accessing single-
instance user

variables

You can access the content of a single-instance user variable in a macro as <$$varname>,
provided you have not already defined a DITA2Go macro variable of the same name,
either in [MacroVariables] (see §37.3 Using macro variables on page 687) or by
assigning a value to that name in a macro. Elements assigned property Var by default
(listed in Table 11-1 on page 181) appear just once in each DITA document, in a
bookmap. For these metadata items, only one value is captured, and you do not need to
use an index number to access the value. For example, to use the content of
mainbooktitle in a macro, you would reference <$$mainbooktitle> ; see §37.3
Using macro variables on page 687.

Accessing
multiple-instance

user variables

You can access any instance of a multiple-instance user variable (after the first instance) as
<$$varname[index]> , where index is a number from 1 to N. You can access the value
of N with <$$varname[]> . Each value is referenced by specifying the name and the
index-number-minus-1 of its occurrence. For example, if you (perhaps foolishly) assign
property Var to element title , the content of the third instance of title in your
document will be available as <$$title[2]> (because the first instance is <$$title>
and the second is <$$title[1]>). The 568th instance will be <$$title[567]> . If you
reference just <$$title> , you get the first instance.

User variables
are read-only

You cannot alter the content of a user variable derived from a DITA element; these
variables are read-only. However, you can override the content of a user variable by

ASSIGNING VARIABLE NAMES TO ELEMENT PATHS DITA2GO USER’S GUIDE

186 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

assigning a value to a macro variable of the same name; thereafter, the user variable is no
longer accessible.

12.2 Assigning variable names to element paths
You can assign a name to an element path to capture the element content in a DITA2Go
user variable of that name.

To map an element path to a user variable:
[VariableMaps]
; element path = name to use for variable with elem ent content,
; or None (variables are ignored, except booktitle and booktitlealt)
; default is the element name itself
elementpath = varname

For example:
[VariableMaps]
mainbooktitle/* = BookTitle

The user variable is then available for use in DITA2Go macros. This assignment applies
to any element, regardless of the properties set for the element in [ElementTypes] . How
many variables you get depends on how many instances of the element path occur in your
document. For example, if you set:

[VariableMaps]
title/* = MainTitle

you will get a variable $$MainTitle[index] for every use of title in your document.
If you change the setting to:

[VariableMaps]
title/map/1 = MainTitle

you will get just one variable, $$MainTitle . How specific you make the path determines
how many matches you get.

When elementpath=None (or No), user variables are not created for that particular
element path.

The DITA2Go distribution includes the following setting in system configuration file
%OMSYSHOME%\d2g\configs\d2g_config.ini :

[VariableMaps]
* = None

If you omit all settings in [VariableMaps] , this what you get. In this case the only user
variables DITA2Go recognizes are for booktitle and booktitlealt , which are
handled differently.

12.3 Including user variables in DITA2Go macros
Suppose you want to produce a list of titles in your document. If you want all titles, you
could assign property Var to title (see §11.2 Specifying properties of element types on
page 179). If you want only chapter titles, you could assign a user variable name to an
element path that begins with title :

[VariableMaps]
title/$topic/1 = title

You could create a macro that iterates through the resulting <$$title[n]> multiple-
instance user variable:

12 CREATING AND DEPLOYING USER VARIABLES DEPLOYING USER VARIABLES IN TEMPLATE MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 187

[WriteTitles]
<$$title><$_repeat ($$title[])>

<$$title[$$_wcount]><$endrepeat>\

and invoke the macro with code assigned to another macro, or to a configuration setting:
<p class="titles"><$WriteTitles></p>

to produce a list of titles:
<p class="titles">Test Suite Design

Purpose

Suite Components

Expected Results

Test Suite Operation

Test Suite Coverage

Contributors

. . .

See §37.1 Defining and invoking macros on page 679.

12.4 Deploying user variables in template macros
One of the advantages of DITA2Go user variables is that they provide a way to produce
additional output that is separate from the main document output stream, and that includes
metadata. This allows you to do things such as construct title pages and generate lists. To
produce such output, you deploy user variables in a template macro. A template macro is a
macro whose name is assigned to an external file name. A macro template associates a
template macro with a file name.

To assign a template macro to a file:
[MacroTemplates]
; filename.ext for template output doc = template m acro name
filename.ext = macroname
; or:
filename.ext = path/to/macro/file

The name of the file to which you assign the template macro must include an extension,
and may include a path. The default location for the file is the output directory.

The template macro name can refer to any of the following:

 • a macro defined in your project configuration file
 • a macro defined in a macro library file referenced by your configuration file (see

§37.2.4 Including macro definitions in your own macro library on page 685)
 • a file that contains only the template macro.

This example assigns a template macro named $BookTitlePageTemplate to an output
file named booktitlepage.htm located in the output directory:

[MacroTemplates]
booktitlepage.htm = BookTitlePageTemplate

Variable maptitle is assigned to the map title for the document:
[VariableMaps]
title/map/1 = maptitle

The content of variable author (element author is automatically a variable; see property
Var in Table 11-1 on page 181) is replaced with a new value:

[MacroVariables]
author = Omni Systems

The template macro is defined in the configuration file:

DEPLOYING USER VARIABLES IN TEMPLATE MACROS DITA2GO USER’S GUIDE

188 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[BookTitlePageTemplate]
<html><head>
<title><$$maptitle></title>
</head><body>
<h1><$$maptitle></h1>
<p class="author">By <$$author></p>
</body></html>

When <$BookTitlePageTemplate> is invoked, DITA2Go writes the following to file
booktitlepage.htm in the output directory:

<html><head>
<title>DITA Test Suite</title>
</head><body>
<h1>DITA Test Suite</h1>
<p class="author">By Omni Systems</p>
</body></html>

13 PROCESSING RELATED AND ASSOCIATIVE LINKS UNDERSTANDING HOW DITA2GO TREATS RELTABLES

ALL RIGHTS RESERVED. MAY 19, 2013 189

13 Processing related and associative links

This section shows what choices you have for getting the content of DITA related links
and other links into your output. Topics include:

§13.1 Understanding how DITA2Go treats reltables on page 189
§13.2 Generating and including related links on page 189
§13.3 Appending links to topics on page 190
§13.4 Including descriptions with related links on page 191
§13.5 Generating associative links for Help output on page 192
§13.6 Formatting links in output on page 192
§13.7 Changing link path for peer related links on page 196

13.1 Understanding how DITA2Go treats reltables
DITA2Go assumes a reltable describes all relationships you might ever want for topics in
the map; or potentially in the map, perhaps under different conditions.

This “permissive” view of reltables allows them to provide a “superset” of relationships,
from which DITA2Go produces links whenever they make sense: that is, when both
source and target are part of the navigation hierarchy for the current project. This vastly
simplifies re-use of reltables.

DITA2Go silently omits any reltable links where the link target is not included as content
in the root map or in any maps referenced from the root map.

13.2 Generating and including related links
Which related links DITA2Go generates or includes by default depends on the type of link
and the source of the link. Table 13-1 shows how each type of link is treated by default.
See also §13.3 Appending links to topics on page 190.

To change the default action for any type of related link:
Generate inferred previous/next, parent/child, or sibling links from maps
Exclude previous/next, parent/child, or sibling links in topics or reltables
Include ancestor/descendant, cousin, or friend links in topics

Table 13-1 Default treatment of related links by link source and type

Source of related links Default Link types
Inferred relationships (not in reltables) in DITA maps Ignore previous/next

parent/child

sibling

Reltables and DITA topic related-links elements Include previous/next

parent/child

sibling

DITA topic related-links elements Exclude ancestor/descendant

cousin

friend

APPENDING LINKS TO TOPICS DITA2GO USER’S GUIDE

190 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Generate inferred
previous/next,

parent/child, or
sibling links from

maps

By default, DITA2Go ignores previous/next links, parent/child links, and sibling links that
exist in DITA maps outside of reltables. To specify which of these links to generate from
inferred relationships in maps:

[RelatedLinks]
; GeneratePrevNext = No (default) or Yes (generate Previous Topic
; and Next Topic links based on map position)
GeneratePrevNext = Yes
; GenerateParentChild = No (default) or Yes (genera te Parent Topic
; and Child Topics links based on map position)
GenerateParentChild = Yes
; GenerateSiblings = No (default) or Yes (generate Related Topic
; links for siblings in the map)
GenerateSiblings = Yes

These links are attached to topics based on map position. See also §6.12.4 Including
children of topic headings on page 107.

Exclude
previous/next,

parent/child, or
sibling links in

topics or reltables

By default, DITA2Go includes previous/next links, parent/child links, and sibling links
that occur in reltables and in DITA topic related-links elements. To exclude any of
these links:

[RelatedLinks]
; UsePrevNext = Yes (default, use links with role p revious or next)
; or No (ignore such links in related-links)
UsePrevNext = No
; UseParent = Yes (default, use links with role par ent) or No
UseParent = No
; UseChildren = Yes (default, use links with role c hild) or No)
UseChildren = No
; UseSiblings = Yes (default, use links with role s ibling) or No
UseSiblings = No

See also §6.12.4 Including children of topic headings on page 107.

Include
ancestor/descend

ant, cousin, or
friend links in

topics

To include ancestor/descendant, cousin, and friend links that occur in DITA topic
related-links elements:

[RelatedLinks]
; UseAncestors = No (default, ignore links with rol e ancestor)
; or Yes (use such links)
UseAncestors = Yes
; UseDescendants = No (default, ignore links with r ole descendant)
; or Yes (use such links)
UseDescendants = Yes
; UseCousins = No (default, ignore links with role cousin) or Yes
UseCousins = Yes
; UseFriends = No (default, ignore links with role friend) or Yes
UseFriends = Yes

13.3 Appending links to topics
On output you can have DITA2Go append to topics either related links or fixed links, or
both.

In this section:
§13.3.1 Appending related links to topics on page 191
§13.3.2 Appending fixed links to topics on page 191

See also:
§13.6.3 Specifying output formats for related and fixed links on page 194

13 PROCESSING RELATED AND ASSOCIATIVE LINKS INCLUDING DESCRIPTIONS WITH RELATED LINKS

ALL RIGHTS RESERVED. MAY 19, 2013 191

13.3.1 Appending related links to topics

By default, on output DITA2Go appends to the end of each topic the content of any
included related-links and reltable elements, and any related links generated from
maps. To omit these items:

[RelatedLinks]
; AppendLinksToTopics = Yes (default, add related-l inks and reltable
; links at the end of the source topics), or No (om it related topics)
AppendLinksToTopics = No

By default, DITA2Go divides lists of related topics by topic type, producing separate lists
for Concepts, Tasks, and References, plus a Topics list for all others. To prevent list
separation:

[RelatedLinks]
; UseTopicTypes = Yes (default, separate related to pics lists by
; type: Concepts, Tasks, References, or Topics for others), or No
UseTopicTypes = No

See also §13.2 Generating and including related links on page 189.

13.3.2 Appending fixed links to topics

After (or instead of) related-link items, you can have DITA2Go append fixed links to
generated lists; by default DITA2Go omits these links:

[RelatedLinks]
; Fixed links to include at the bottom after all re lated links items:
; AddContentsLink = No (default) or Yes
AddContentsLink = Yes
; AddLOFLink = No (default) or Yes
AddLOFLink = Yes
; AddLOTLink = No (default) or Yes
AddLOTLink = Yes
; AddGlossaryLink = No (default) or Yes
AddGlossaryLink = Yes
; AddIndexLink = No (default) or Yes
AddIndexLink = Yes

The content of each fixed link is the text setting for the heading in question, found in the
language configuration file; see §8.9 Localizing output headings, labels, and names on
page 157. For example, in d2g_lang_en.ini :

[ContentsText]
TOCTitle = Contents

[IndexText]
IDXTitle = Index

See also:
§14.3 Generating a table of contents on page 198
§14.8 Producing an index on page 206

13.4 Including descriptions with related links
By default, DITA2Go does not include descriptions with links. To include text from map
desc , shortdesc , or linktext elements:

[RelatedLinks]
; UseRelDescription = No (default, do not include a ny descriptions)
; or Yes (include description from map shortdesc, l inktext, or desc)
UseRelDescription = Yes

GENERATING ASSOCIATIVE LINKS FOR HELP OUTPUT DITA2GO USER’S GUIDE

192 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To include shortdesc content in the title attribute of the heading it applies to, instead
of as a paragraph following the heading:

[RelatedLinks]
; UseRelDescAsTitle = No (default, treat descriptio ns as text if used)
; or Yes (use descriptions without formatting as ti tle attributes)
UseRelDescAsTitle = Yes

When UseRelDescAsTitle=Yes , the shortdesc text appears with a mouseover in
HTML output. This setting is effective only if you also set UseRelDescription=Yes .

Note: For the topic itself, the shortdesc always appears after the title, unless you
specify otherwise; see §6.12.2 Including shortdesc content in the title attribute on
page 106.

See also:
§6.13 Deciding where to display title and shortdesc on page 107

13.5 Generating associative links for Help output
To generate associative links (see §16.6.2 Understanding how ALinks work on page 259)
for topics associated by related-links or by reltables:

[RelatedLinks]
; GenerateALinks = No (default) or Yes (generate AL inks for topics
; associated by related-links items or by reltables)
GenerateALinks = Yes

In a reltable, each row is associated with an ALink name that is applied to all local topics
within the row. And each related-links section is also associated with an ALink name.

In either case, you specify the name as the id attribute of the relrow or the related-links
element. such IDs need to be unique only within their topic or map file, not in the whole
project. So you can use the same term for rows in different maps, and in different topics, to
identify the ALink groups. DITA2Go automatically eliminate any duplicates.

If a relrow, or a related-links element, has no id attribute, DITA2Go skips that row or
element. The id attribute can have only one value, not a list of values, so you have to live
with that limitation when you direct DITA2Go to generate ALinks from related-links or
reltables.

For Help output, there are other ways to specify ALinks, by inserting ALink and
ALinkJump PI markers in your DITA XML files; see §16.6 Providing related-topic links
for Help systems on page 258. You should choose between allowing DITA2Go to
generate ALinks and inserting them yourself with PI markers. Do not try to mix the two
methods.

13.6 Formatting links in output
In this section:

§13.6.1 Understanding how DITA2Go presents related links on page 193
§13.6.2 Labeling related links on page 193
§13.6.3 Specifying output formats for related and fixed links on page 194
§13.6.4 Inserting dividers between topics and lists of links on page 195

13 PROCESSING RELATED AND ASSOCIATIVE LINKS FORMATTING LINKS IN OUTPUT

ALL RIGHTS RESERVED. MAY 19, 2013 193

13.6.1 Understanding how DITA2Go presents related links

By default, DITA2Go presents links to related topics three ways, depending on the type of
relationship:

Parent/Child
Next/Previous
Sibling

Parent/Child For parent/child links, based on the relationship in the map and regardless of reltable or
related-links settings, the parent is listed flush left like this:

Parent topic: Link to topic

The child links are indented, with no heading:
Link to first child

Shortdesc of first child
Link to second child

Shortdesc of second child

Next/Previous For next/previous links, the treatment is similar to that for parent/child links, with different
headings:

Next topic: Link to topic
Previous topic: Link to topic

Sibling For sibling links, including those in the same row of the reltable, DITA2Go presents lists
with a bold heading flush left, and the links under it, also flush left:

Related concepts:
Link to topic
Related tasks:
Link to topic
Related Reference:
Link to topic
Related topics:
Link to topic

You can improve on this presentation with CSS. For example:
<div>
<div class="relinfo">Related concepts</stro ng>

<div><a href="DITATestConcept.html"
title="Overview of Test Suite design.">Test Suite D esign</div>
</div>
<div class="relinfo">Related reference</str ong>

<div><a href="DITATestReference.html"
title="DITA features.">Test Suite Coverage</div >
</div>
</div>

The CSS is just:
 .relinfo { margin-top: 1em; margin-bottom: 1em }

13.6.2 Labeling related links

You can include labels with related links. The Previous , Next , and Parent labels are on
the same line as the single topic title; the other labels are actually headings on the line
above their topic list, which is indented below them, one topic per line.

FORMATTING LINKS IN OUTPUT DITA2GO USER’S GUIDE

194 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Text values for labels and headings are provided in each of the language configuration
files; see §8.9 Localizing output headings, labels, and names on page 157. The values
shown here are the default values specified in d2g_lang_en.ini .

The following settings indicate which types of relationship to show as a labeled group; if a
setting is unspecified (= blank), that label is omitted, but the topics under it are listed if
their “Use” setting (see §13.2 Generating and including related links on page 189) is Yes.

To specify labels based on type of link, in a language configuration file:
[RelatedLinksText]
; PrevHead = label to use for previous topic in seq uence
; (on same line)
PrevHead=Previous Topic:
; NextHead = label to use for next topic in sequenc e (on same line)
NextHead=Next Topic:
; ParentHead = label to use for parent topic (on sa me line)
ParentHead=Parent Topic:
; ChildHead = label to use for child topics list (o n line above)
ChildHead=Child Topics:
; SiblingHead = label to use for siblings
SiblingHead=Related Topics:
; AncestorHead = label to use for role ancestor (on line above)
AncestorHead=Ancestor Topics:
; DescendantHead = label to use for role descendant (on line above)
DescendantHead=Descendant Topics:
; CousinHead = label to use for role cousin (on lin e above)
CousinHead=Cousin Topics:
; FriendHead = label to use for role friend (on lin e above)
FriendHead=Friend Topics:

To omit a label, set the label value to blank; for example:
[RelatedLinksText]
FriendHead =

To specify labels based on topic type (the type attribute of the link or topicref):
[RelatedLinksText]
; ConceptsHead = label for concept topics
ConceptsHead=Related Concepts:
; TasksHead = label for task topics
TasksHead=Related Tasks:
; ReferencesHead = label for reference topics
ReferencesHead=Related References:
; RelatedHead = label to use for other related topi cs (on line above);
RelatedHead=Related Topics:

13.6.3 Specifying output formats for related and f ixed links

To specify formats for various types of related links:
[RelatedLinks]
; HeadInlineFormat = format for inline heads (Prev, Next, Parent)
HeadInlineFormat = Strong
; HeadBlockFormat = format for list heads (Child, S ib, Related)
HeadBlockFormat = RelatedHead
; TopicTitleFormat = block format for topic title l ines (including
; those with inline heads)
TopicTitleFormat = RelatedTopic
; ShortdescFormat = block format to use for link de scription
ShortdescFormat = RelatedDesc

To specify a format for fixed links to generated lists:

13 PROCESSING RELATED AND ASSOCIATIVE LINKS FORMATTING LINKS IN OUTPUT

ALL RIGHTS RESERVED. MAY 19, 2013 195

[RelatedLinks]
; AddedLinksFormat = format to use, default Related Topic
AddedLinksFormat = RelatedHead

Configure link formats in the appropriate format configuration file; see §7.2.1
Understanding where to define output formats on page 110.

To configure components of fixed-link entries:
[RelatedLinks]
; AddedLinksSpacer = text to put between added link s, can include
; <U+nnnn/> for symbols, and
 for a line break
AddedLinksSpacer = <spc/><U+2022/><spc/>
; AddedLinksStart = text to put before first link, default none
AddedLinksStart =
; AddedLinksEnd = text to put after last link, defa ult none
AddedLinksEnd =

These settings use format-component processing, so can include any format-component
properties except <name/> , which is meaningless in this context. See §8 Configuring
format components on page 141.

With the default values, if you turn on all fixed-link options, you get a row of links below
the related links that looks something like this, where each term is a link to the
corresponding generated list:

Contents * Figures * Tables * Glossary * Index

See §13.3 Appending links to topics on page 190.

13.6.4 Inserting dividers between topics and lists of links

By default, DITA2Go inserts a space as a divider between a topic and its related links.

To omit any divider between topic and links:
[RelatedLinks]
; UseRelatedDivider = Yes (default, put divider par a before any
; related links) or No
UseRelatedDivider = No
; RelatedDividerFormat = block format for divider, if used
RelatedDividerFormat = RelatedDivider

To specify a divider between related links (or the topic, if you are not including related
links) and any following fixed links:

[RelatedLinks]
; UseAddedDivider = No (default) or Yes (put divide r para after any
; related links and before added links)
UseAddedDivider = Yes
; AddedDividerFormat = block format for divider, if used
AddedDividerFormat = RelatedDivider

The default value for AddedDividerFormat is the same format specified for
RelatedDivider . Configure divider formats in the appropriate format configuration file;
see §7.2.1 Understanding where to define output formats on page 110.

To specify content for the divider(s), in a language configuration file:
[RelatedLinksText]
; RelatedDividerText = content for divider para (de fault is a space)
RelatedDividerText = ~:~:~:~
; AddedDividerText = content for divider para (defa ult is a space)
AddedDividerText =

See §8.9 Localizing output headings, labels, and names on page 157.

CHANGING LINK PATH FOR PEER RELATED LINKS DITA2GO USER’S GUIDE

196 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

13.7 Changing link path for peer related links
To change the reference for a related link to the actual location when scope="peer" (for
example):

[PeerLinks]
; href of link = path to use in target links
../ ditatopic.dita= finaltopic.htm

ALL RIGHTS RESERVED. MAY 19, 2013 197

14 Generating lists and indexes

If the output type for your DITA2Go project requires generated lists such as a table of
contents, a list of figures, a list of tables, or an index, or multiple versions of these lists,
DITA2Go can produce them, replete with links. Topics include:

§14.1 Understanding how DITA2Go produces lists on page 197
§14.2 Naming generated HTML list and index files on page 198
§14.3 Generating a table of contents on page 198
§14.4 Generating a list of figures on page 201
§14.5 Generating a list of tables on page 202
§14.6 Treating figure titles as table titles on page 203
§14.7 Producing a glossary on page 203
§14.8 Producing an index on page 206
§14.9 Configuring variant booklist components on page 213

14.1 Understanding how DITA2Go produces lists
DITA2Go uses bookmap elements that are specified as components of frontmatter and
backmatter booklists to determine which lists to produce and what goes into each list. The
DITA rule is simple: if the booklist element is present, and has no @href , the processor (in
this case DITA2Go) must generate the specified list. If you do not want a particular list,
remove the booklist element from the bookmap, or condition it out.

A DITA bookmap can contain several elements that call for generated lists: toc ,
indexlist , figurelist , tablelist , glossarylist , bibliolist , abbrevlist ,
trademarklist , amendments , and booklist ; the last is a general case for
specialization. All are derived from topicref . By default, DITA2Go assigns element
type properties List , Ref , Topic , and Map to each of these bookmap elements; see §11.2
Specifying properties of element types on page 179. To produce multiple variations of any
of these booklist types, see §14.9 Configuring variant booklist components on page 213.

Some bookmap list elements may be authored directly, such as bibliolist ,
abbrevlist , trademarklist , and amendments . DITA2Go handles toc via maps and
indexlist via indexterm s. A glossarylist can be produced by a map of
glossentry topics. However, figurelist and tablelist (and maybe abbrevlist
and trademarklist) must be generated from topics. To produce lists of tables and
figures, DITA2Go collects copies of table and figure titles, applies a user-specifiable
format for the list, and adds top and bottom information.

If a DITA map element has a navtitle , DITA2Go uses that title in place of any user-
specified title for a given list. If the navtitle includes an @href , DITA2Go assumes the
link points to a valid topic or map file, and therefore does not generate a list, but just
processes the referenced file.

Elements with content to be included as entries in lists or indexes must have id attributes.
You can omit an element from a list by eliminating its id attribute.

See also:
§27.2.1 Choosing between splitting and chunking on page 523

NAMING GENERATED HTML LIST AND INDEX FILES DITA2GO USER’S GUIDE

198 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

14.2 Naming generated HTML list and index files
For HTML output, you can specify base names and identifying suffixes for generated list
and index files. However, unless you need to match an external convention, it is best to use
the default values.

By default, all generated list and index files for a project get the same base name, followed
by a three-letter suffix that identifies the file type, followed by a file extension that is the
value of [Setup]FileSuffix specified for your project (see §4.1.6 Checking output
type and file extension on page 70). Table 14-1 lists the generated file types and their
default suffixes, and shows the keywords available for specifying alternate values for base
name or suffix.

If you specify a value for one of the base-name keywords listed in Table 14-1, DITA2Go
ignores the value of the corresponding suffix keyword, and just uses the base name as
specified, followed by the extension. If you specify a base name, no suffix is added.

The default base name for generated files depends on whether you are running a
conversion from the DITA2Go Project Manager, or from a command prompt, using the
command-line version of DITA2Go :

Via DITA2Go Project Manager
Via DITA2Go DCL.

Via DITA2Go
Project Manager

If you are using the DITA2Go Project Manager, the default base name for generated files
is the base name of the top-level map file in your project. For example, if you set neither
TOCFile nor TOCSuffix , the default file name for the table of contents generated from
mydoc.bookmap would be mydocTOC.htm .

Via DITA2Go
DCL

If you are running DITA2Go DCL from a command line, the default base name is the base
name of the value specified for the -o argument; see §2.7.2 Understanding how to run
DITA2Go DCL on page 47. For example, for the following command:

dcl -f html -o somename.htm mydoc.bookmap

the default name of the table of contents file would be somenameTOC.htm.

If you omit the -o argument, the default base name is the name of the map file. For
example, for the following command:

dcl -f html mydoc.bookmap

the default name of the TOC file would be mydocTOC.htm , just as it would be if you were
using the DITA2Go Project Manager.

14.3 Generating a table of contents
DITA2Go produces a table of contents from a DITA bookmap or a ditamap file, following
DITA rules. However, if you are creating a Help system such as HTML Help or Oracle

Table 14-1: Default file name suffixes for generated files

Generated file
Default
suffix

Configuration
section

Base name
keyword

Suffix
keyword Ref.

Table of contents TOC [Contents] TOCFile TOCSuffix 14.3.1

List of figures LOF [ListOfFigures] LOFFile LOFSuffix 14.4

List of tables LOT [ListOfTables] LOTFile LOTSuffix 14.5

Index IDX [Index] IDXFile IDXSuffix 14.8.6.2

Glossary GLS [Glossary] GLSFile GLSSuffix 14.7

14 GENERATING LISTS AND INDEXES GENERATING A TABLE OF CONTENTS

ALL RIGHTS RESERVED. MAY 19, 2013 199

Help for Java, a table of contents is produced automatically.by the Help system tool; so for
Help systems you do not really need another TOC, unless you intend to use it as the
default start page of your output.

In this section:
§14.3.1 Specifying a file name and title for the TOC on page 199
§14.3.2 Deciding what to include in the TOC on page 199
§14.3.3 Specifying formats for TOC title, entries, and references on page 200
§14.3.4 Including navigation titles from maps in the TOC on page 200

See also:
§14.9 Configuring variant booklist components on page 213
§16.3 Producing contents and index for Help systems on page 248

14.3.1 Specifying a file name and title for the TO C

If your project requires producing more than one TOC, you can override the settings
described in this section with equivalent settings specific to each variant TOC; see §14.9
Configuring variant booklist components on page 213.

For HTML output, DITA2Go creates a separate file for the TOC; you can specify a file
name, or you can simply allow DITA2Go to name the file after the map from which the
TOC is generated, with suffix TOC. For RTF output, no separate file is produced.

TOC file name To specify a file name for the table of contents (HTML output only):
[Contents]
; TOCFile = base name to use for output TOC file, w ith suffix TOC
TOCFile = mapnameTOC
; TOCSuffix = suffix for the base file name, defaul t TOC
TOCSuffix = TOC

If you specify a value for TOCFile , DITA2Go ignores TOCSuffix . See §14.2 Naming
generated HTML list and index files on page 198. To keep the TOC with any material that
precedes it in output, see §27.2.3 Providing a page break between title and TOC on
page 525.

TOC title To specify the text of a title for the table of contents, in the language configuration file
referenced by your project:

[ContentsText]
; TOCTitle = title text for TOC
TOCTitle = Table of Contents

Each DITA2Go -supplied language configuration file includes a setting for TOCTitle ; see
§8.9 Localizing output headings, labels, and names on page 157. The value shown here is
the default value specified in d2g_lang_en.ini . The <toc> @navtitle overrides the
value of TOCTitle .

14.3.2 Deciding what to include in the TOC

By default, DITA2Go includes all topicref titles in the TOC, except the topicref for
the TOC itself.

To also include TOC entries for nested topics:
[Contents]
; UseNestedTopicsInTOC = No (default) or Yes (add t hem
; as though they were specified in map topicrefs)
UseNestedTopicsInTOC = Yes

GENERATING A TABLE OF CONTENTS DITA2GO USER’S GUIDE

200 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To also include shortdesc content in TOCs generated from maps:
[Contents]
; UseTOCDescriptions = No (default, omit shortdesc from TOC) or Yes.
UseTOCDescriptions = Yes

When UseTOCDescriptions=Yes , DITA2Go includes in the generated TOC all text
material from the map. For HTML output, the shortdesc content appears in a
mouseover. For RTF output, it seriously clutters the TOC, especially for large documents.

The values of UseNestedTopicsInTOC and UseTOCDescriptions apply to all TOCs
produced in your current project.

See also:
§6.12.1 Providing default output formats for map content on page 105
§6.13 Deciding where to display title and shortdesc on page 107

14.3.3 Specifying formats for TOC title, entries, and references

If your project produces more than one TOC, you can override the settings in this section
with equivalent settings specific to each TOC; see §14.9 Configuring variant booklist
components on page 213.

To specify formats for TOC title and cross references:
[Contents]
; TOCFormat = format to use for TOC entries
TOCFormat = TOC1
; TOCTitleFormat = format for TOC title
TOCTitleFormat = ContentsTitle
; TOCXrefFormat = xref subformat for TOC xrefs to t opics.
TOCXrefFormat = TOCXref

The format for topicrefs, which turn into TOC entries, is the base map format name
followed by a sequence number; see §6.12.1 Providing default output formats for map
content on page 105. These formats are already mapped to a fairly deep level in
configuration file d2g_config.ini , located in %OMSYSHOME%\d2g\configs. If you
change any format names, you must either alias your names to the default names, or
provide your own definitions in a format configuration file; see §7 Configuring output
formats on page 109.

14.3.4 Including navigation titles from maps in th e TOC

The <navtitle> element, as opposed to the @navtitle attribute, is supported in maps
beginning with DITA version 1.2. To direct DITA2Go to look for <navtitle> elements
instead of navtitle attributes in <topichead> s, to use for TOC entries:

[TopicHeads]
; TopicheadsHaveNavtitles = No (default, treat topi cheads as
; topics only if they have a navtitle attribute, no t element)
; or Yes (assume all topicheads have navtitles)
TopicheadsHaveNavtitles = Yes

To direct DITA2Go to treat the value of locktitle as “yes ” when this attribute is
missing:

[MapOptions]
; LockAllNavtitles = No (default, require @locktitl e="yes" to
; use navtitles) or Yes (make missing @locktitle de fault to yes)
LockAllNavtitles = Yes

To include all topics in the TOC by default:

14 GENERATING LISTS AND INDEXES GENERATING A LIST OF FIGURES

ALL RIGHTS RESERVED. MAY 19, 2013 201

[MapOptions]
; UseAllInTOC = No (default, require @toc="yes" to put topic
; in TOC), or Yes (put all topics in TOC unless @to c="no")
UseAllInTOC = Yes

If you are producing a Help output type, also see §16.4.2 Including contents entries in
HTML-based Help on page 250.

14.4 Generating a list of figures
DITA2Go produces a list of figures when your DITA source includes a bookmap
figurelist element. DITA2Go includes in the list of figures the title element in each
fig element or element derived from fig (unless you assign to it element types that do
not include fig), provided the fig element has an id attribute. Requiring the id attribute
gives you a way to exclude items from the list: DITA2Go omits the titles of fig elements
that have no @id.

DITA2Go supports title elements in imagemap elements, despite the DITA prohibition
against this. If you put titles in image maps, those titles can be included in the list of
figures. The DITA topic file containing the image map will no longer be valid DITA, but it
will be well formed DITA.

If your project includes more than one <figurelist> , you can override the settings in
this section with equivalent settings specific to each list of figures; see §14.9 Configuring
variant booklist components on page 213.

The properties you can specify for a list of figures include:
File name and suffix
Text of the list title
Output formats.

File name and
suffix

For HTML output, DITA2Go creates a separate file for a list of figures; you can specify a
file name, or you can simply allow DITA2Go to name the file after the map from which
the list of figures is generated, with suffix LOF. For RTF output, no separate file is
produced.

To specify a file name for the list of figures (HTML output only):
[ListOfFigures]
; LOFFile = base name to use for output file, plus suffix LOF
LOFFile = mapnameLOF
; LOFSuffix = suffix for the base file name, defaul t LOF
LOFSuffix = LOF

If you specify a value for LOFFile , LOFSuffix is ignored. See §14.2 Naming generated
HTML list and index files on page 198.

Text of the list title To specify text for the title of the list of figures, in the language configuration file
referenced by your project:

[ListOfFiguresText]
; LOFTitle = title text for list of figures
LOFTitle = List of Figures

Each DITA2Go -supplied language configuration file includes a setting for LOFTitle ; see
§8.9 Localizing output headings, labels, and names on page 157. The value shown here is
the default value specified in d2g_lang_en.ini .

Output formats To specify formats for the list of figures:
[ListOfFigures]
; LOFTitleFormat = format for LOF title

GENERATING A LIST OF TABLES DITA2GO USER’S GUIDE

202 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

LOFTitleFormat = FigureListTitle
; LOFFormat = default format to use for LOF entries
LOFFormat = FigureListItem
; LOFTOCFormat = format for TOC entry for list of f igures title
LOFTOCFormat = LOF
; LOFXrefFormat = format for cross references to LO F
LOFXrefFormat = FigureTitleXref

All values here are the default format names. If you change any format names, you must
either alias your names to the default names, or provide your own definitions in a format
configuration file; see §7 Configuring output formats on page 109.

14.5 Generating a list of tables
DITA2Go produces a list of tables when your DITA source includes a bookmap
tablelist element. DITA2Go includes in the list of tables the title element under
each table element or element derived from table (unless you assign to it element types
that do not include table), provided the table element has an id attribute. Requiring the
id attribute gives you a way to exclude items from the list: DITA2Go omits the titles of
table elements that have no @id.

If your project includes more than one <tablelist> , you can override the settings in this
section with equivalent settings specific to each list of tables; see §14.9 Configuring
variant booklist components on page 213.

The properties you can specify for a list of tables include:
File name and suffix
Text of the list title
Output formats.

File name and
suffix

For HTML output, DITA2Go creates a separate file for a list of tables; you can specify a
file name, or you can simply allow DITA2Go to name the file after the map from which
the list of tables is generated, with suffix LOT. For RTF output, no separate file is
produced.

To specify a file name for the list of tables (HTML output only):
[ListOfTables]
; LOTFile = base name to use for output file, plus suffix LOT
LOTFile = mapnameLOT
; LOTSuffix = suffix for the base file name, defaul t LOT
LOTSuffix = LOT

If you specify a value for LOTFile , LOTSuffix is ignored. See §14.2 Naming generated
HTML list and index files on page 198.

Text of the list title To specify a title for the list of tables, in the language configuration file referenced by your
project:

[ListOfTablesText]
; LOTTitle = title text for list of tables
LOTTitle = List of Tables

Each DITA2Go -supplied language configuration file includes a default setting for
LOTTitle ; see §8.9 Localizing output headings, labels, and names on page 157. The
value shown here is the default value specified in d2g_lang_en.ini .

Output formats To specify formats for the list of tables:
[ListOfTables]
; LOTTitleFormat = format for LOT title
LOTTitleFormat = TableListTitle

14 GENERATING LISTS AND INDEXES TREATING FIGURE TITLES AS TABLE TITLES

ALL RIGHTS RESERVED. MAY 19, 2013 203

; LOTFormat = default format to use for LOT entries
LOTFormat = TableListItem
; LOTTOCFormat = format for TOC entry for list of t ables title
LOTTOCFormat = LOT
; LOTXrefFormat = format for cross references to LO T
LOTXrefFormat = TableTitleXref

All values here are the default format names, specified in configuration template
d2g_config.ini , located in directory %OMSYSHOME%\d2g\config. If you change any
format names, you must either alias your names to the default names, or provide your own
definitions in a format configuration file; see §7 Configuring output formats on page 109.

14.6 Treating figure titles as table titles
If you use a fig element to hold a <simpletable> in order to give the <simpletable>
a title, you might want the fig title included in the list of tables instead of in the list of
figures. To make this happen, give either the fig element or its title an @outputclass
that contains the string “table ” or “Table ”. By default, DITA2Go includes such titles in
the list of tables instead of the list of figures; and applies the table-title output format
instead of the figure-title output format.

To instead keep titles of fig elements that include an @outputclass with the string
“ table ” or “Table ” in the list of figures:

[FigureOptions]
; TreatTableFigAsTable = Yes (default), or No
TreatTableFigAsTable = No

When TreatTableFigAsTable=Yes , if either a fig element or its title element has
an @outputclass that contains the string “table ” or “Table ”, the figure title gets the
table title format and goes into the list of tables instead of the list of figures.

For example:
<fig id="figspec">
<title outputclass="TableTitle">Figure Containing a Table</title>
<simpletable>
 ...
</simpletable>
</fig>

The title Figure Containing a Table gets the table title format, because of the
@outputclass , and also goes into the list of tables instead of into the list of figures.

14.7 Producing a glossary
DITA2Go provides special processing for cross references to glossary items; terms and
keywords that use keyrefs to get to a glossary item; and support for <abbreviated-
form> . You can specify a title for the glossary, and configure output formats and use of
abbreviations. For HTML output you can specify a file name.

In this section:
§14.7.1 Specifying file name and title for the glossary on page 204
§14.7.2 Specifying output formats for the glossary on page 204
§14.7.3 Configuring use of abbreviations for glossary terms on page 205

See also:
§22.9 Providing hover text for links in HTML on page 441

PRODUCING A GLOSSARY DITA2GO USER’S GUIDE

204 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

14.7.1 Specifying file name and title for the glos sary

To specify a file name for the glossary (HTML output only):
[Glossary]
; GLSFile = base name to use for output file, plus suffix GLS
GLSFile = mapnameGLS
; GLSSuffix = suffix for the base file name, defaul t GLS
GLSSuffix = GLS

If you specify a value for GLSFile , GLSSuffix is ignored. See §14.2 Naming generated
HTML list and index files on page 198.

To specify text for the glossary title, in the language configuration file referenced by your
project:

[GlossaryText]
; GLSTitle = title text for glossary
GLSTitle = Glossary

Each DITA2Go -supplied language configuration file includes a setting for GLSTitle ; see
§8.9 Localizing output headings, labels, and names on page 157. The value shown here is
the default value specified in d2g_lang_en.ini .

14.7.2 Specifying output formats for the glossary

To specify output formats for the glossary:
[Glossary]
; GLSTitleFormat = format for the glossary title
GLSTitleFormat = GlossaryTitle
; GLSTOCFormat = format for TOC entry for the gloss ary title
GLSTOCFormat = GLS

Default formats for glossary components and references are specified in
%OMSYSHOME%\d2g\system\config\d2g_config.ini :

[BlockFormatMaps]
glossarylist/* = GLS
glossarylist/booklists/backmatter/bookmap/1 = TOC2P
title/$topic/glossarylist/booklists/backmatter/$map /1 = GlossaryTitle
glossterm/* = Heading1
glossdef/* = Abstract
glossAbbreviation/* = Heading2S
glossAcronym/* = Heading2S
glossSynonym/* = Heading2S
gloss* = Body

[InlineFormatMaps]
glossPartOfSpeech/* = Bold
gloss* = No

See §6.4.2 Mapping block and inline element paths to formats on page 93. The formats are
defined in %OMSYSHOME%\d2g\system\formats\d2htm_formats.ini (for HTML
output) and d2rtf_formats.ini (for RTF output).

If you change any format names, you must either alias your names to the default names, or
provide your own definitions in a format configuration file; see §7 Configuring output
formats on page 109.

See also §14.7.3.4 Formatting output for the abbreviated-form element on page 206.

14 GENERATING LISTS AND INDEXES PRODUCING A GLOSSARY

ALL RIGHTS RESERVED. MAY 19, 2013 205

14.7.3 Configuring use of abbreviations for glossa ry terms

Your company style guide might require certain terms to be spelled out in full the first
time they appear in your document, after which you can use an abbreviation or acronym.
This can present some challenges:

 • If such a term is included in a glossary, you must be able to represent the relationship
between either form of the term and its definition.

 • In a reusable-topic-based writing environment there is no way to know which will be
the first use of a term.

 • The first-use rule can vary depending on the context, on the type of output, and other
possible factors.

In DITA 1.2 and later versions, you can use the <abbreviated-form> element to
represent every reference to a glossary term.

In this section:
§14.7.3.1 Specifying first-use rules for glossary-term abbreviations on page 205
§14.7.3.2 Overriding first-use rules for abbreviations on page 206
§14.7.3.3 Specifying @class for the abbreviated-form element on page 206
§14.7.3.4 Formatting output for the abbreviated-form element on page 206

14.7.3.1 Specifying first-use rules for glossary-t erm abbreviations

DITA2Go determines whether to output the full form or the abbreviated form, based in
part on where the reference occurs:

DITAmaps (including bookmaps) and their submaps
Topic title elements.

DITAmaps
(including

bookmaps) and
their submaps

In maps and submaps, at the first occurrence of:
<abbreviated-form keyref=" key"/>

where key is the value defined on the keys attribute of the <glossref> element that
references the <glossentry> topic for the term, DITA2Go includes the content of the
<glossSurfaceForm> element for the term. For all subsequent occurrences in the same
topic, DITA2Go includes the abbreviated form instead: that is, the content of the
<glossAcronym> element for the term.

DITA2Go provides a way for you to specify the map level where the first-use rule should
apply. For example, to show the full term the first time it is used in a <chapter> :

[Glossary]
; ResetAbbrevAt = Level in bookmap to restart (put out
; glossSurfaceForm again). One of: Document, Part, Chapter,
; Head1, ..., Head6, or Topic; default is Topic.
ResetAbbrevAt = Chapter

The default value of ResetAbbrevAt is Topic .

DITA2Go treats appendix as equivalent to Chapter . Part and Chapter apply only to
bookmaps. In a bookmap, the Head1 through Head6 levels start under Chapter .

Head1 through Head6 apply to the titles of topics, not to section titles within topics.

The first occurrence of <abbreviated-form> at the level specified by
ResetAbbrevAt gets the full term. All subsequent occurrences at the same level,
and at lower levels in the same map and its submaps, get the abbreviated form.

Topic title
elements

To specify whether terms in titles should be treated differently from terms in text with
respect to the first-use rule:

PRODUCING AN INDEX DITA2GO USER’S GUIDE

206 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[Glossary]
; UseAbbrevInTitles = Yes (default, use glossAcrony m,
; not glossSurfaceForm, in title elements) or No
; (treat title instances the same as any others).
UseAbbrevInTitles=Yes

When UseAbbrevInTitles=Yes , every instance of <abbreviated-form> in a topic
<title> gets the content of <glossAcronym> . However, if it is the instance that would
be considered first use according to the value of ResetAbbrevAt , the next occurrence in
that topic of <abbreviated-form> with the same key gets the content of
<glossSurfaceForm> .

When UseAbbrevInTitles=No , title elements are treated the same as any other
elements with respect to first use of <abbreviated-form> .

14.7.3.2 Overriding first-use rules for abbreviati ons

DITA2Go determines the identity of a reference in <abbreviated-form> based on the
@key, not on what the @keydef resolves to. To force a restart you could put two or more
keys in the @keydef , and move on to the next in the @keyref .

14.7.3.3 Specifying @class for the abbreviated-for m element

The DITA version 1.2 DTDs seem to have a deficiency that prevents them from adding the
@class to <abbreviated-form> , which makes it not work. To overcome this
deficiency:

[ElementClasses]
abbreviated-form=+ topic/term abbrev-d/abbreviated- form

Note: The value has a trailing space.

See §11.2.4 Adding the full class attribute to an element on page 183. Perhaps this has
been fixed in a newer version of the DTDs.

14.7.3.4 Formatting output for the abbreviated-for m element

When DITA2Go encounters <abbreviated-form> in your DITA source, in addition to
displaying the correct form of the referenced term based on first-use rules and settings, the
rendered term becomes an active cross reference to the glossary item, and the
<glossTerm> content (title) shows on mouseover; see §22.9 Providing hover text for
links in HTML on page 441.

If you specify @outputclass on <abbreviated-form> , DITA2Go treats the value as
the name of a cross-reference output format; otherwise, DITA2Go uses cross-reference
format TextXref . See §8.7 Defining cross-reference output formats on page 155.

14.8 Producing an index
DITA2Go produces a customizable index for HTML or print RTF output, based on
<index*> elements in your DITA document. DITA2Go generates indexes by default
when you convert a bookmap that includes indexlist elements.

In this section:
§14.8.1 Specifying output formats for the index on page 207
§14.8.2 Overriding formats for index entries and references on page 207
§14.8.3 Configuring see and see-also index entries on page 208
§14.8.4 Configuring index references on page 209

14 GENERATING LISTS AND INDEXES PRODUCING AN INDEX

ALL RIGHTS RESERVED. MAY 19, 2013 207

§14.8.5 Including heading letters in the index on page 210
§14.8.6 Configuring index features for HTML output on page 211

See also:
§14.9 Configuring variant booklist components on page 213
§16.3 Producing contents and index for Help systems on page 248

14.8.1 Specifying output formats for the index

If your project includes more than one index, you can override the settings described here
with equivalent settings specific to each index; see §14.9 Configuring variant booklist
components on page 213. The values shown here are default values for all indexes.

To specify output formats for index title, entries, and TOC entry:
[Index]
; IDXFormat = default format for index entries
IDXFormat = Index1
; IDXTitleFormat = format for index title
IDXTitleFormat = IndexTitle
; IDXTOCFormat = format of TOC entry for index titl e
IDXTOCFormat = IndexTOC

DITA2Go uses the value of IDXFormat only if all of the following are true:

 • The required item-level format is missing from both:
 – [IndexEntryFormats] (see §14.8.2 Overriding formats for index entries and

references on page 207) and
 – [VariantNameBLForms] (see §14.9.4 Defining properties of items in variant

booklist components on page 216).
 • No value is specified for [VariantNameBList]ItemFormat (see §14.9.3

Specifying properties of variant booklist components on page 215).

By default, DITA2Go writes the index title as a heading at the top of the index page. For
HTML output only, you can omit this heading:

[Index]
; UseIndexHeading = Yes (default, put a title on th e index) or No.
UseIndexHeading = No

When UseIndexHeading=Yes , the title appears at the top of the index page. To provide
a different kind of title of your own devising, set UseIndexHeading=No and use
[Inserts] keyword IndexTop to specify code or a macro to produce a title; see
§14.8.6.4 Customizing and linking to the index file on page 213.

To specify the text of a title for the index, in the language configuration file referenced by
your project:

[IndexText]
; IDXTitle = text of index title
IDXTitle = Index

DITA2Go uses the value of IDXTitle as the index title if the indexlist element does
not contain a @navtitle , and also uses this value for references to the index from the
TOC and from related-links lists.

14.8.2 Overriding formats for index entries and re ferences

You do not need to assign formats to index-entry levels, except to override the default
assignments. The default formats assigned to index-entry levels 1 through 9 are defined in
system format configuration files.

PRODUCING AN INDEX DITA2GO USER’S GUIDE

208 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To assign level-specific formats for compact index entries:
[IndexEntryFormats]
; level number = format
1 = Index1
...
9 = Index9

To assign level-specific formats for full-title index references (not needed for the compact
form):

[IndexRefParaFormats]
; level number = format (used only for non-compact indexes)
1 = IndexRef1
...
9 = IndexRef9

See §14.8.4 Configuring index references on page 209.

14.8.3 Configuring see and see-also index entries

To determine how see and see-also entries are displayed in the index, you can specify:
Format component names
Component building blocks
Text for redirection entries.

Format
component

names

To specify output formats for index see and see-also entries:
[IndexSeeFormats]
; IndexSeeStart = format to use at start of index-s ee references
IndexSeeStart = SeeStartIndex
; IndexSeeAlsoStart = format to use at start of ind ex-see-also
IndexSeeAlsoStart = SeeAlsoStartIndex
; IndexSeeEnd = format to use at end of index-see
IndexSeeEnd = SeeEndIndex
; IndexSeeAlsoEnd = format to use at end of index-s ee-also
IndexSeeAlsoEnd = SeeAlsoEndIndex

All values here are the default format names. If you change any format names, you must
either alias your names to the default names, or provide your own definitions in a
subformat configuration file.

Component
building blocks

You can use the building blocks described in §8.1.5 Including typographic tags and
character formats on page 143 to fine-tune index see and see-also entries:

[SeeStartIndex]
help = Start of "see" index entry
form = <spc/><i><name/></i><spc/>

[SeeAlsoStartIndex]
help = Start of "see also" index entry
form = <i><name/></i><spc/>form = :<i><name/></i><s pc/>

[SeeEndIndex]
help = End of "see" index entry
form =

[SeeAlsoEndIndex]
help = End of "see also" index entry
form =

These are the default formats, defined in Subformats configuration file
d2htm_subformats.ini .

Text for
redirection entries

To specify text for index see and see-also entries, in the language configuration file
referenced by your project:

14 GENERATING LISTS AND INDEXES PRODUCING AN INDEX

ALL RIGHTS RESERVED. MAY 19, 2013 209

[IndexSeeText]
; SeeStartIndex = content to use at start of index- see entries
SeeStartIndex = see
; SeeAlsoStartIndex = content to use at start of in dex-see-also
SeeAlsoStartIndex = See also
; SeeEndIndex = content to use at end of index-see
SeeEndIndex =
; SeeAlsoEndIndex = content to use at end of index- see-also
SeeAlsoEndIndex =

Each value becomes the <name/> content of the corresponding format component. A
colon at the end of the value specified for SeeEndIndex or SeeAlsoEndIndex forces
the following item to the next index level.

Text for the settings in [IndexSeeText] is specified in language configuration files; see
§8.9 Localizing output headings, labels, and names on page 157. The text shown here for
these settings is the default text specified in d2g_lang_en.ini , located in directory
%OMSYSHOME%\d2g\system\lang .

14.8.4 Configuring index references

For cross references from index entries to topics, you can choose between displaying links
as stacked topic titles and displaying them as a series of references (usually page numbers)
in the same paragraph as the index entry.

If your project includes more than one index, you can override the settings described here
with equivalent settings specific to each index; see §14.9 Configuring variant booklist
components on page 213.

To specify how to display index references:
[Index]
; UseCompactForm = Yes (default; icons for HTML, pa ge numbers for
; RTF), or No (topic titles, one per line, for eith er HTML or RTF)
UseCompactForm = Yes
; FullIndexRanges = Yes (default for RTF) or No (de fault for HTML)
FullIndexRanges = No

When UseCompactForm=Yes , all references from an index entry are added to the end of
the index-entry paragraph:

text of index entry 5, 12, 21-26, 40, ...

This is the default presentation for RTF output. For HTML output, the page numbers are
replaced by the symbol ✺ , and only the start member of a start /end <indexterm>
pair is included (unless you set FullIndexRanges=Yes). To use a different symbol,
override the Unicode value in cross-reference format [IndexIconXref] ; see §8.7
Defining cross-reference output formats on page 155.

When FullIndexRanges=Yes , both members of a start /end <indexterm> pair are
included in the index; this is the default for RTF output when UseCompactForm=Yes .

When FullIndexRanges=No , only the start member is included in the index, this is
the default for HTML output when UseCompactForm=Yes .

When UseCompactForm=No , each reference shows the full text of the topic title to which
the index entry refers, and multiple references from each index entry are stacked under the
entry. Only the start member of any start /end <indexterm> pair is included:

text of index entry
topic1 title
topic2 title
...

PRODUCING AN INDEX DITA2GO USER’S GUIDE

210 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To specify separators for multiple references, in the language configuration file referenced
by your project:

[IndexText]
; IndexRefStartSep = separator between entry and fi rst reference
IndexRefStartSep =
; IndexRefSep = separator between multiple referenc es
IndexRefSep = ,
; IndexRangeSep = separator between references in a range
IndexRangeSep = -

These are the default values:

 • a space between the entry and its first reference
 • a comma and a space between successive references
 • a dash between start and end references in a range.

For RTF output only, when UseCompactForm=Yes , you can include a leader between
each index entry and the first page number for that entry:

[Index]
; UseIndexLeader = No (default) or Yes, include a t ab with a leader.
UseIndexLeader = Yes

The default leader is a row of dots. To use a different leader, you must override the value
of property tabs in format [IndexBase] ; see §7.4.6 Modifying DITA2Go default output
formats on page 116.

14.8.5 Including heading letters in the index

You can include individual letters of the alphabet as headings to introduce each alphabetic
section of the index. You can also include letters of the alphabet across the top of the page,
each with a link to the corresponding heading letter within the index.

Heading letters as
separators

To include heading letters to introduce each alphabetic section of the index:
[Index]
; UseIndexLetters = Yes (default, insert alphabetic s) or No
UseIndexLetters = Yes
; IndexLetterSymbol = text to use, or blank to omit
IndexLetterSymbol = Sym
; IndexLetterNumber = text to use, or blank to omit
IndexLetterNumber = Num
; IndexLettersFormat = format to use for index alph abet headings
IndexLettersFormat = IndexLetters
; IndexLetterPrefix = prefix to use for anchors for jumps to
; index heading letters
IndexLetterPrefix = ixlet

When UseIndexLetters=Yes , DITA2Go inserts, as a heading, a letter of the alphabet
at the beginning of each section of the index where entries start with that letter.

By default, heading characters are included for entries that start with a digit or with a non-
alphanumeric character: for digits, the default heading is Num; and for non-alphanumeric
characters, the default heading is Sym. You can change these headings. If you specify a
sort order that ignores digits or symbols, you can set IndexLetterNumber or
IndexLetterSymbol to blank. See §16.5.8 Customizing index sort order on page 256.

Heading letters at
top of page

To include a row of letters across the top of each index page, linking to the heading letters:
[Index]
; UseIndexTopLetters = Yes (default for RTF; for HT ML, default only if
; IndexNavType=HTML: top-of-page alphabetics that l ink to heading
; letters) or No

14 GENERATING LISTS AND INDEXES PRODUCING AN INDEX

ALL RIGHTS RESERVED. MAY 19, 2013 211

UseIndexTopLetters = Yes
; IndexTopLettersFormat = format to use for top-of- page alphabet
IndexTopLettersFormat = IndexTopLetters

When UseIndexTopLetters=Yes , DITA2Go writes the alphabet across the top of the
index page. Each letter is an active link to the same heading letter in the body of the index,
unless there are no entries that begin with that letter.

For HTML, UseIndexTopLetters is effective only when IndexNavType=HTML ; see
§14.8.6.1 Choosing the type of index to generate for HTML on page 211.

14.8.6 Configuring index features for HTML output

The settings described here are intended for non-Help HTML output. You can also use the
settings described for Help systems; see §16.5 Configuring index entries for Help systems
on page 251.

Values of the settings described here become the default values for all HTML indexes
produced by a conversion. If you are creating multiple indexes, see §14.9 Configuring
variant booklist components on page 213 for values you can specify individually for each
index.

In this section:
§14.8.6.1 Choosing the type of index to generate for HTML on page 211
§14.8.6.2 Specifying a file name and suffix for the index on page 212
§14.8.6.3 Specifying CSS classes for index components on page 212
§14.8.6.4 Customizing and linking to the index file on page 213

See also:
§16.5 Configuring index entries for Help systems on page 251

14.8.6.1 Choosing the type of index to generate fo r HTML

To specify the type of index to generate for HTML or XHTML output:
[Index]
; IndexNavType = HTML (default, plain HTML, uses id xhtm.css),
; CSS (pure CSS, uses idxcss.css), or JavaScript (u ses idxjs.*)
IndexNavType = HTML
; WriteIndexCssLink = Yes (default, write link for index CSS) or No
WriteIndexCssLink = Yes

DITA2Go gathers all the index terms from your document into one of three types of
multi-level index, depending on the value of IndexNavType :

DITA2Go accesses the required CSS (and JavaScript, if IndexNavType=JavaScript)
from %OMSYSHOME%\common\local\htmlidx or, if the files are not there, from
%OMSYSHOME%\common\system\htmlidx .

You can copy the CSS and JavaScript files from \system\htmlidx to
\local\htmlidx and edit them there, to customize index appearance for your HTML

IndexNavType CSS file Default effect
HTML idxhtm.css All entries visible initially; optional heading letters across the

top of the page, with links
CSS idxcss.css Only heading letters visible initially, arrayed vertically on the

left; mouseover reveals next level down
JavaScript idxjs.css Only index letters visible initially, arrayed vertically on the

left; click reveals next level down

PRODUCING AN INDEX DITA2GO USER’S GUIDE

212 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

output. Do not change the names of these files, and do not edit the files in
%OMSYSHOME%\common\system\htmlidx .

When IndexNavType=HTML , you can also include heading letters across the top of the
page, with links to their counterparts within the index. See §14.8.5 Including heading
letters in the index on page 210.

When WriteIndexCssLink=Yes , DITA2Go writes into the index file <head> the link
to the extra CSS file that is called for according to the value of IndexNavType . For
example, if IndexNavType=HTML , the link would look like this:

<link rel="stylesheet" href="idxhtm.css" type="text /css">

WriteIndexCssLink=No is intended to let you turn off the added CSS links for the
index, in case you have custom CSS that already includes them, or in case you add your
own in-line styles.

14.8.6.2 Specifying a file name and suffix for the index

To specify a file name for the index:
[Index]
; IDXFile = base name to use for output file, with suffix IDX
IDXFile = mapnameIDX
; IDXSuffix = suffix for the base file name, defaul t IDX
IDXSuffix = IDX
; IndexFileSuffix = suffix to add to map name for i ndex file
; if no IDXFile name (deprecated)
IndexFileSuffix = IDX.htm

If you specify a value for IDXFile , IDXSuffix is ignored. See §14.2 Naming generated
HTML list and index files on page 198.

For IndexFileSuffix , you must include the file extension as well as a suffix to add to
the base map name. The default suffix is IDX.htm . Use of IndexFileSuffix is
deprecated. If you provide a value for IDXFile , DITA2Go ignores IndexFileSuffix .

14.8.6.3 Specifying CSS classes for index componen ts

You can specify CSS class names for index entries, for the links from the index into the
HTML content, and (though deprecated) for an entry for the index in the table of contents:

[Index]
; IndexLevelClass = class to use for index item s
IndexLevelClass = IndexEntry
; IndexRefClass = class to use for index reference s
IndexRefClass = IndexRef
; IndexTOCClass = class to use for index entry in T OC (deprecated)
IndexTOCClass = IndexTOC

These class names are also the names of the respective default formats for each of these
features; see §14.8.1 Specifying output formats for the index on page 207. In particular,
IndexTOCClass is deprecated in favor of IDXTOCFormat .

Note: You can alter the formats by overriding their default definitions; see §7.4.6
Modifying DITA2Go default output formats on page 116.

If you want a different appearance (other than indentation) for index entries at each level:
[Index]
; UseIndexLevelNum = No (default) or Yes (include l evel number
; in IndexLevelClass and IndexRefClass, requires ed iting CSS).
UseIndexLevelNum = Yes

14 GENERATING LISTS AND INDEXES CONFIGURING VARIANT BOOKLIST COMPONENTS

ALL RIGHTS RESERVED. MAY 19, 2013 213

If you set UseIndexLevelNum=Yes , you must also edit the appropriate idx*.css file in
\local\htmlidx to include a definition for each level.

The following settings are deprecated in favor of the corresponding format settings:
[Index]
; IndexLetterClass = class for index letters on lef t (deprecated)
IndexLetterClass = IndexLetters
; IndexTopLettersClass = class for index letters at top (deprecated)
IndexTopLettersClass = IndexTopLetters

Use IndexLettersFormat and IndexTopLettersFormat instead; see §14.8.5
Including heading letters in the index on page 210.

14.8.6.4 Customizing and linking to the index file

To include a link to the index from the TOC, and to provide code to customize index
features:

[Inserts]
; IndexHead is within the index-file <head> element , after <title>.
; IndexTOC is inserted at the end of the TOC.
; IndexTop is at the top of the index-file body, af ter any JS link.
; IndexBottom is at the bottom of the index-file bo dy.

For example:
[Inserts]
IndexTOC=<$IndexTOCEntry>
IndexTop=<$IndexHeader>

If you set [Inserts]IndexTOC to your own code or macro, DITA2Go uses your code,
instead of generating built-in code with the value of IndexTOCClass (default
IndexTOC) as class and IndexFileTitle (default Index) as content. This means your
code must specify class and content of the link from the TOC to the index. You can
reference the index file with predefined macro variable $$_indexfilename :

[IndexTOCEntry]
; Link from the TOC to the index:
<H2 align="left" class="PartTOC">
<a href="<$$_indexfilename>">Index</H2>

[IndexHeader]
; A roll-your-own title for the index (see d2html_macros.ini):
<H2 align="left" class="IndexHeaderClass">Index</H2 >

For other index specifications DITA2Go provides Use* settings, so if (for example) you
want your own heading to replace the one DITA2Go generates, you would set
UseIndexHeading=No and assign code or a macro to [Inserts]IndexTop .

See also:
§14.9.5 Mapping indexterms to variant indexes on page 217
§27.6.2 Assigning code to [Inserts] keywords for splits and extracts on page 535
§37.3.4 Using predefined macro variables on page 691.

14.9 Configuring variant booklist components
A bookmap can contain multiple instances of the same type of generated list. For
DITA2Go to get the correct items into the correct list, you must configure separately any
variants of a given booklist type.

CONFIGURING VARIANT BOOKLIST COMPONENTS DITA2GO USER’S GUIDE

214 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

In this section:
§14.9.1 Differentiating variant booklist components on page 214
§14.9.2 Naming variant booklist components on page 214
§14.9.3 Specifying properties of variant booklist components on page 215
§14.9.4 Defining properties of items in variant booklist components on page 216
§14.9.5 Mapping indexterms to variant indexes on page 217

14.9.1 Differentiating variant booklist components

Suppose you want to produce two tables of contents for HTML output: an overview and a
more detailed TOC showing more levels of headings. You can differentiate the two TOCs
in DITA by assigning them different outputclass values; for example:

<frontmatter>
 <booklists>
 <toc outputclass="overview" />
 <toc outputclass="fulltoc" />

. . .

To identify generated lists for which you want DITA2Go to produce two or more booklist
variants, you must:

 • distinguish variants by @outputclass
 • assign each variant a name.

For example, to distinguish two lists of figures:
<frontmatter>
 <booklists>
 <figurelist outputclass="schematics" />
 <figurelist outputclass="assemblies" />

. . .

To assign each variant a name, see §14.9.2 Naming variant booklist components on
page 214.

14.9.2 Naming variant booklist components

To specify names for variant booklist components:
[BookLists]
; element/@outputclass = name

For example:
[BookLists]
figurelist/schematics = S_LOF
figurelist/assemblies = A_LOF

You do not have to assign names to booklist components for which you are not
configuring variants. If a booklist component is not listed in [BookLists] , its name is
the same as the element name.

The booklist components for which you can specify variants include:
abbrevlist
amendments
bibliolist
booklist
figurelist
glossarylist
indexlist

14 GENERATING LISTS AND INDEXES CONFIGURING VARIANT BOOKLIST COMPONENTS

ALL RIGHTS RESERVED. MAY 19, 2013 215

tablelist
trademarklist

In addition to these components, DITA2Go recognizes as a booklist component any
element with the following properties (see §11.2 Specifying properties of element types on
page 179):

Map
Ref
Topic
List

This automatically includes elements that are specialized from any of the recognized
booklist types. See §B Element type default properties on page 825.

TOC is different Because TOC processing is very different, assigning a variant name directly does not
work. However, for the TOC you can assign a variant name to the booklist element
instead. For example:

[BookLists]
booklist/overview = OverviewTOC

Index is different In addition to specifying names and properties for indexlist variants and items, you
must map indexterm outputclass values (assigned via PI) to variant indexes; see
§14.9.5 Mapping indexterms to variant indexes on page 217.

14.9.3 Specifying properties of variant booklist c omponents

In a general configuration file, create a section named for the booklist variant, with suffix
BList . This is a variable-name, fixed-key section:

[VariantNameBList]

If you omit any properties, their default values will be those of the corresponding
properties in effect for a normal list or index.

Properties of a booklist variant named in [BookLists] include:
Identifiers: file name, suffix, reference ID
Output formats: for title, item, links, TOC entry
Output configuration: for index references
Alphabetic aids: for index navigation
Title: text of the title for the list

Identifiers: file
name, suffix,
reference ID

To specify file name, suffix, and a reference ID for the booklist variant:
[VariantNameBList]
; FileName = Full name, no ext; if omitted, project base name + Suffix
FileName = D:\MyProject\Output\SchematicsLOF
; Suffix = Suffix for base name if no FileName prov ided, with defaults
; for some types, as listed in Table 14-1
Suffix = LOF
; RefID = ID to use for internal references such as "Rlof";
; default is R + variant name; for example:
RefID = Rs_lof

Output formats:
for title, item,

links, TOC entry

To specify output formats for booklist components:
[VariantNameBList]
; TitleFormat = block format to use for list title
TitleFormat = LOFTitle
; UseHeading = Yes (default, put a title on the ind ex) or No
UseHeading = Yes
; ItemFormat = block format for items to include
ItemFormat = FigureListItem

CONFIGURING VARIANT BOOKLIST COMPONENTS DITA2GO USER’S GUIDE

216 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; XrefFormat = inline format for list-item xrefs (n ot for indexlists)
XrefFormat = FigureListXref
; TOCFormat = block format to use for TOC entry for list
TOCFormat = LOFTOC

If the booklist variant includes items at different levels, the value of ItemFormat
provides a default format for any levels not specified; see §14.9.4 Defining properties of
items in variant booklist components on page 216.

Output
configuration: for
index references

To specify an output configuration for index references (indexlist variants only):
[IndexNameBList]
; CompactForm = Yes (default), page numbers (RTF) o r icons (HTML);
; or No, full topic titles as index references
CompactForm = Yes
; RefFormat = inline format for index references (i ndexlists only)
RefFormat = IndexIconXref
; UseLeader = No (default) or Yes (RTF only) includ e a tab with
; a leader between index entry and first page numbe r
UseLeader = No

See §14.8.4 Configuring index references on page 209.

Alphabetic aids:
for index

navigation

To include heading letters to introduce each alphabetic section of the index, and an
alphabet across the top of each index page with links to the heading letters (indexlist
variants only):

[IndexNameBList]
; UseLetters = Yes (default, insert heading letters) or No
UseLetters = Yes
; UseTopLetters = Yes (default for RTF; for HTML, d efault only if
; IndexNavType=HTML: top-of-page alphabet with link s to heading
; letters) or No
UseTopLetters = Yes

See §14.8.5 Including heading letters in the index on page 210.

Title: text of the
title for the list

To specify text for the title of the list or index: in a language configuration file, create a
section named for the variant, with suffix BLText . This is a variable-name, fixed-key
section where you specify the text string for the title of the list:

[VariantNameBLText]
; ListTitle = title to use if no navtitle in bookma p
ListTitle = Text of title

14.9.4 Defining properties of items in variant boo klist components

For booklist variants other than indexlist : in a general configuration file, create a
section named for the booklist variant, with suffix BLItems . This is a variable-name,
variable-key section where you list the document formats of the items to be included in the
list, and assign each a level number:

[VariantNameBLItems]
; DocFormatName = level in list, default 1
SomeTitle = 1

For example:
[OverviewBLItems]
ChapterTitle = 1
Heading1SC = 2
Heading1C = 2

The formats you list here are not the formats to be used to render the items as part of the
generated list. You specify those formats in [VariantNameBList] ; see §14.9.3
Specifying properties of variant booklist components on page 215. Instead, this section

14 GENERATING LISTS AND INDEXES CONFIGURING VARIANT BOOKLIST COMPONENTS

ALL RIGHTS RESERVED. MAY 19, 2013 217

enumerates the formats used in your document to render the content of the items. In other
words, DITA2Go uses the format names you list here as selectors; see §7.1 Understanding
the purpose of output formats on page 109.

For example, a <figurelist> would include figure titles as list items; so you would
include in [VariantNameBLItems] the format used to render the <title> elements of
<fig> s where they appear with images in output:

[AssembliesBLItems]
FigureTitle = 1

Note: Do not use [VariantNameBLItems] for indexlist variants; selectors for
indexterm s are derived from outputclass values rather than format names.
See §14.9.5 Mapping indexterms to variant indexes on page 217.

Formats for list
items other than

in indexes

For booklist variants that contain items at more than one level, such as TOC and index
variants: in a general configuration file, create a section named for the booklist variant,
with suffix BLForms . This is a variable-name, variable-key section where you list the
levels, and associate an output format with each level:

[VariantNameBLForms]
; level number = item format

The formats you assign to levels here are the formats to be used to render the items as part
of the generated list. For example:

[OverviewBLForms]
1 = Heading1TOC
2 = TOCItem

Typically, items at each successive level would be assigned a format that indents the
content relative to the previous level.

Formats for list
items in indexes

You do not need to assign formats to index entries, except to override the default formats;
see§14.8.2 Overriding formats for index entries and references on page 207. For unusual
cases, you can assign formats to levels for the references from index entries to content:

[VariantNameBLRefForms]
; level number = reference format

For example:
[RTF_IXBLRefForms]
1 = MyIndexRef1
2 = MyIndexRef2
3 = MyIndexRef3

See also §14.9.5 Mapping indexterms to variant indexes on page 217.

14.9.5 Mapping indexterms to variant indexes

Each indexterm you want to include in a variant indexlist must be immediately
preceded in your DITA source by a PI of the form:

<?dtall outputclass=" variantname" ?>

This is because the outputclass attribute is not allowed on indexterm . See §38.1.1
Understanding DITA2Go PI marker syntax on page 717.

For indexlist variants, in addition to names and properties, you need settings to
accomplish the following:

Map outputclass values to variants
List outputclass values for each variant.

CONFIGURING VARIANT BOOKLIST COMPONENTS DITA2GO USER’S GUIDE

218 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Map outputclass
values to variants

To map outputclass PI values to the indexlist variants named in [BookLists]
(see §14.9.2 Naming variant booklist components on page 214):

[IndexClasses]
; indexterm outputclass PI = name(s) of indexlist v ariant(s)

In addition to names of indexlist variants, you can use as values two predefined flags:

An indexterm with an outputclass PI value mapped in [IndexClasses] is
included only in the indexlist variants to which it is mapped; if the IDX flag is in the
list of variants, that includes the normal index. You need the NoIDX flag only for those
indexterm s you do not want in any index.

You can map an outputclass value to more than one indexlist variant. For example:
[IndexClasses]
Subject = TestIX IDX
Test = TestIX
Skip = NoIDX

An indexterm is included only in the normal index if it has any of the following:

 • an outputclass PI value mapped only to IDX

 • an outputclass PI value that is not mapped
 • no outputclass PI.

List outputclass
values for each

variant

To specify the outputclass PI values of indexterm s to include in each indexlist
variant:

[IndexLists]
; indexlist name = outputclass PI values to include
TestIX = Subject Test

The normal index includes the content of all indexterm s with the following
characteristics:

 • no outputclass PI
 • an outputclass PI value not mapped in [IndexClasses]
 • an outputclass PI value mapped to IDX in [IndexClasses] .

To omit an indexterm from all indexes, give the indexterm element an outputclass
PI, and map the value to NoIDX in [IndexClasses] .

IDX Identifies the normal index

NoIDX Omits from all indexes the content of any indexterm s with the specified
outputclass value

ALL RIGHTS RESERVED. MAY 19, 2013 219

15 Converting to print RTF

This section shows you how to specify options for converting to Microsoft Word. The RTF
produced for Word can also be viewed in OpenOffice and StarOffice. Topics include:

§15.1 Setting up a print RTF project on page 219
§15.2 Adjusting output for different versions of Word on page 224
§15.3 Converting paragraph and character formats on page 225
§15.4 Modifying text appearance on page 227
§15.5 Converting cross references and hypertext links on page 229
§15.6 Converting tables to print RTF on page 232
§15.7 Managing graphics for print RTF on page 234
§15.8 Including RTF code for Word output on page 238
§15.9 Turning on revision tracking in Word on page 239
§15.10 Managing Word output after conversion on page 239
§15.11 Converting to OpenOffice or StarOffice on page 241

If you are creating WinHelp, see:
§16 Producing on-line Help on page 243
§17 Generating WinHelp on page 281

You must use a separate project directory and separate configuration files for WinHelp;
Word and WinHelp RTF files are not compatible.

15.1 Setting up a print RTF project
To add or change any of the options described in this section, edit configuration file
_d2rtf.ini , located in the project directory.

In this section:
§15.1.1 Specifying output file extension on page 219
§15.1.2 Specifying the default output language and code page on page 220
§15.1.3 Constraining the number of bookmarks in Word on page 221
§15.1.4 Including or excluding contents and index for RTF output on page 221
§15.1.5 Producing PDF automatically via Word on page 222
§15.1.6 Launching Word from the DITA2Go Project Manager on page 223
§15.1.7 Importing a Word template on page 223

15.1.1 Specifying output file extension

By default, DITA2Go produces RTF files with extension .rtf .

To specify a different file extension for RTF files:
[Setup]
FileSuffix=. ext

All versions of Word support RTF input. To produce .doc or .docx files, the RTF files
DITA2Go produces must be loaded in Word and then saved as the desired output; see
§15.10.1 Supporting more than one version of Word on page 239.

If you are converting to WordPerfect, also specify:

SETTING UP A PRINT RTF PROJECT DITA2GO USER’S GUIDE

220 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[WordOptions]
; WordPerfect = No (default) or Yes to override all features
; WP does not tolerate
WordPerfect = Yes

15.1.2 Specifying the default output language and code page

If you plan to produce Word output in a language other than US English, you can specify
the following for several languages:

Language or locale identifier
Code page.

Language or
locale identifier

To specify a language or locale identifier for print RTF output:
[Defaults]
; Language is the decimal Unicode language, or hexa decimal locale
; identifier, for the RTF default language, overrid ing the type in
; the source doc if given.
Language = 0x409

The default language is US English (Language=1033 or Language=0x409). If you
specify a value for Language , that value overrides any language specification in your
DITA document.

You can use the following decimal Unicode values:

DITA2Go supports the following hexadecimal locales (always include the 0x):

Code page To specify the Windows ANSI code page to use:
[Defaults]
; CodePage is the Windows ANSI code page number
CodePage = 1252

The value of CodePage is the Windows ANSI code page number, one of the following:

US English 1033 (default)
UK English 2057

Oz English 3081

German 1031

US English 0x409 (default)

Greek 0x408

Russian 0x419

Turkish 0x41F

Czech (for CE) 0x405

Japanese 0x411

Traditional. Chinese 0x404

Simple Chinese 0x804

Korean 0x412

English 1252 (default)
Greek 1253

Russian 1251

Turkish 1254

Czech 1250

Japanese 932

Traditional Chinese 950

15 CONVERTING TO PRINT RTF SETTING UP A PRINT RTF PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 221

To specify whether to include a space after Unicode characters:
[Defaults]
; SpaceAfterUnicode = No (default, good for Cyrilli c and Greek),
; or Yes (best for Asian languages)
SpaceAfterUnicode=No

15.1.3 Constraining the number of bookmarks in Wor d

By default, DITA2Go includes bookmarks in Word for all references between documents,
and for all index ranges. However, Word has a limit of 16,379 bookmarks per document. If
you are converting a very large document with many references, you might need to reduce
the number of bookmarks.

To omit bookmarks in Word for index ranges:
[WordOptions]
BookmarkIXRanges = No

To omit bookmarks in Word for interfile references;
[WordOptions]
ExternalXrefs = No

Omitting unneeded related links can drastically reduce the number of bookmarks. For
example, to produce the DITA2Go User’s Guide, all but the child links had to go:

[RelatedLinks]
AppendLinksToTopics = Yes
GeneratePrevNext = No
GenerateParentChild = Yes
GenerateSiblings = No
UsePrevNext = No
UseParent = No
UseChildren = No
UseSiblings = No
UseAncestors = No
UseDescendants = No
UseCousins = No
UseFriends = No
UseRelatedDivider = No

See §13.3 Appending links to topics on page 190.

15.1.4 Including or excluding contents and index f or RTF output

DITA2Go generates a table of contents for Word, by default, from map information. The
table of contents precedes the first topic; see §14.3 Generating a table of contents on
page 198.

To omit the table of contents:
[Contents]
; GenerateTOC = Yes (default) or No (omit TOC)
GenerateTOC = No

If your DITA source has a bookmap that includes an <indexlist> element, by default
DITA2Go generates Word index entries from any index terms in your document. See
§14.8 Producing an index on page 206.

To omit the index:

Simple Chinese 936

Korean 949

SETTING UP A PRINT RTF PROJECT DITA2GO USER’S GUIDE

222 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[Index]
; GenerateIDX = Yes (default, generate index) or No .
GenerateIDX = No

When GenerateIDX=Yes , provided [WordOptions]Index=Standard , you can have
Word generate an index after conversion. To include {xe} fields for index terms in RTF
output, see §15.10.2 Including index terms in Word on page 240.

For RTF output, DITA2Go does not produce a formatted index; instead, you must update
fields in Word for this step. The result will be an index with page-number references, but
without live links to content.

See also:
§15.1.5 Producing PDF automatically via Word on page 222

15.1.5 Producing PDF automatically via Word

Starting with Word 2007, Microsoft Word can output PDF with no added tools. This
means that you can run your entire DITA2Go conversion, from ditamap to PDF, as one
step, using a Word macro to get from RTF to PDF. For earlier versions of Word, you can
use Adobe PDF as your printer if you have Adobe Acrobat (not just Reader). Or, there are
dozens of other PDF makers, many of them free.

Note: A defect in the 64-bit version of Office 2010 might cause Word to crash when you
try to create a PDF from your DITA2Go Word output. The remedy is to use the
32-bit version of Word 2010, even if you are on a 64-bit Windows 7 system.

What you need is a Word macro that will do the following upon loading an RTF file:

1. Update fields

2. Generate the index, if you included index terms (see §15.10.2 Including index terms in
Word on page 240)

3. Save as .doc

4. Generate a PDF file, with active links (except from index entries).

PDF macro for
Word 2007

The following Word macro is designed for Word 2007:
Sub LoadD2gRtfFile()
'
' LoadD2Grtf2007 Macro
' Macro recorded 5/31/2010 by Omni Systems
'

Dim nameStr As String
Selection.WholeStory
Selection.Fields.Update
nameStr = Replace(ActiveDocument.FullName, ".rtf", ".doc")
ActiveDocument.SaveAs FileFormat:=wdFormatDocument, _

FileName:=nameStr, LockComments:=False
nameStr = Replace(ActiveDocument.FullName, ".doc", ".pdf")
ActiveDocument.ExportAsFixedFormat OutputFileName:= nameStr, _

ExportFormat:=wdExportFormatPDF, _
OptimizeFor:=wdExportOptimizeForPrint, _
Range:=wdExportAllDocument, From:=1, To:=1, _
Item:=wdExportDocumentContent, KeepIRM:=True, _
CreateBookmarks:=wdExportCreateNoBookmarks, _
DocStructureTags:=True, BitmapMissingFonts:=True, _
UseISO19005_1:=False

Selection.StartOf
End Sub

15 CONVERTING TO PRINT RTF SETTING UP A PRINT RTF PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 223

This particular macro works in Word 2007, provided you uncheck the “rely on system
fonts only” option in Adobe PDF printing preferences. You might have to modify the
macro for other versions of Word. Try to run it from within Word after you load the RTF
and save it as .doc (or .docx). See if it works then. Also, make sure the name of the
macro is correct. Depending on which version of Word you use, the resulting PDF file will
have active links, except for index entries.

Settings required
for PDF

production

For automatic PDF production you must also include the following settings in your
DITA2Go project configuration file:

[Setup]
; To get the correct extension after Word saves as .doc:
FileSuffix=.doc

[WordOptions]
; To get active links, you must target Word 2007 or a later version:
Word2007 = Yes
; To run the macro from the Project Manager:
ViewOutputCommand = path/to/winword.exe /mLoadD2gRtfFile

PDF from the
Project Manager

When you click View Output on the DITA2Go Project Manager Run Project tab, the
Project Manager loads your RTF output file in Word. The macro runs, producing a PDF
with the same base name as your Word RTF file, and extension .pdf . See §15.1.6
Launching Word from the DITA2Go Project Manager on page 223.

PDF from the
command line

To produce PDF via Word from the command line:
dcl -f rtf -o .doc ..\ mymap.bookmap " path/ to/winword.exe"
/mLoadD2gRtfFile mymap.doc

This command must be all on one line, even if it does not look that way here. See §2.7
Converting documents from the command line on page 46

15.1.6 Launching Word from the DITA2Go Project Man ager

When you use the DITA2Go Project Manager to run a conversion to Word, you can view
the output immediately with the View Output button on the Run Project tab. You can
even have Word run a macro at the same time, with the Word /m switch. For example, to
launch Word and then run a macro that will Select all/Update fields/Deselect:

[WordOptions]
; ViewOutputCommand = path\to\viewer.bat, default n one
ViewOutputCommand=C:\office2k\Office\WINWORD.EXE /m UpdateSaveDoc

You can specify an absolute path or a path relative to the wrap directory. See §1.3.7
Establish system-wide configuration settings on page 33.

15.1.7 Importing a Word template

To format RTF output, you must either use the formatting options provided by DITA2Go ,
or supply your own Word template.

To import a Word template:
[WordOptions]
; Template is one of the two possible sources of fo rmatting info, and
; must be present if [Templates]Formats is not used .
Template = RequiredName.dot

A better alternative to importing a Word template is to specify the Word styles you want in
terms of DITA2Go output formats; see §7 Configuring output formats on page 109. Use a
Word template only as a last resort.

ADJUSTING OUTPUT FOR DIFFERENT VERSIONS OF WORD DITA2GO USER’S GUIDE

224 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

15.2 Adjusting output for different versions of Wo rd
Microsoft makes significant changes to the underpinnings of every new version of Word.
RTF output from DITA2Go that looks fine in one version of Word might not look quite
right in another version.

Consider which version(s) of Word will be used to view your DITA2Go print RTF output:
Word 2003 (the default)
Word 7/95 and earlier versions
Word 8/97 and later versions
Multiple versions of Word

Word 2003 (the
default)

By default, DITA2Go produces RTF output tuned for Word 2003.

Word 7/95 and
earlier versions

If your RTF output files will be viewed in a version of Word earlier than Word 8/97, set
the following option:

[WordOptions]
; Word8 = Yes (default, for Word8/Office97 and late r) or No (earlier)
Word8 = No

Table 15-1 lists the main differences in the RTF code that DITA2Go generates, based on
the value specified for Word8.

Word 8/97 and
later versions

If your RTF output files will be viewed in a version of Word later than Word 8/97, use the
default value (Word8=Yes), and consider which of the following additional options you
might need:

[WordOptions]
; Word2000 = No (default) or Yes (for Word 9/2000)
; Word2002 = No (default) or Yes (for Word 10/XP)
; Word2003 = Yes (default) for Word 11/2003 or No
; Word2007 = No (default) or Yes (for Word 12/2007)
; Word2009 = No (default) or Yes (for Word 13/2009)
; Word2010 = No (default, or Yes (for Word 14/2010)

In practice, Word2003 through Word2010 produce the same output; if any one of these is
set to Yes , the result is the same. However, specifying either Word2000=Yes or
Word2002=Yes (or both) and not any of Word2003 through Word2010 will produce
graphics scaled in himetric units rather then twips; see §15.7.4 Preserving graphics scale
in Word on page 236.

Differences in how Word interprets RTF code are particularly noticeable in the following
document features:

Table 15-1 RTF differences between Word 7/95 and later versions

Feature Word 7/95 Word 8/97 and later versions Ref.

Hypertext fields Not produced Produced by default 15.5

Table straddles Column only Row and column

Table cell vertical alignment No Yes

Graphics scale units twips himetric (Word 8, 9, and 10 only) 15.7.4

Image field name IMPORT INCLUDEPICTURE

Graphics Scaling units vary among Word versions; see §15.7.4 Preserving
graphics scale in Word on page 236.

Tables Straddled rows and rotated text are supported only by some Word
versions; see §15.6 Converting tables to print RTF on page 232.

15 CONVERTING TO PRINT RTF CONVERTING PARAGRAPH AND CHARACTER FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 225

Multiple versions
of Word

If your RTF output files will be viewed in multiple versions of Word, see §15.10.1
Supporting more than one version of Word on page 239.

15.3 Converting paragraph and character formats
Sometimes differences in available formats in Word can make precise conversions tricky.
You might have to experiment with different settings to get the appearance you want.

In this section:
§15.3.1 Mapping paragraph formats to RTF styles on page 225
§15.3.2 Merging paragraph formats on page 226
§15.3.3 Converting autonumbered formats on page 226
§15.3.4 Converting bulleted formats on page 226
§15.3.5 Converting character formats on page 227

15.3.1 Mapping paragraph formats to RTF styles

You can remap formats to have other names in the output file. One reason for doing this
might be to enable the use of Word’s paragraph autonumbering facility, which requires use
of the predefined Heading 1 through Heading 9 styles:

[Styles]
; Document para format name = RTF style name (affec ts name only)
; Always use the remapped (RTF) name in the HelpSty les sections
; the RTF name must be unique; some examples are sh own below
; the Heading N styles support Word outline and aut onumber features
ChapTitle=Title
Heading1=Heading 1
Heading2=Heading 2
Heading3=Heading 3
Heading4=Heading 4
Heading5=Heading 5
HeadingRunin=Heading 6
Numbered1=Heading 7
Numbered=Heading 8
Heading9=Heading 9

You cannot use
[Styles] to merge

formats

Each style name used for the RTF file must be unique; you cannot use the [Styles]
section to merge styles. If you try to do so, Word unmerges them for you, by adding a digit
after the repeating name. For example, if you specify both Numbered1=Heading 7 and
Numbered=Heading 7 , Word renames the second style Heading 71 . Use the
[StyleReplacements] section to map multiple formats to a single style; see §15.3.2
Merging paragraph formats on page 226.

You cannot map
to Normal style

For the same reason, avoid mapping any format to Normal , which Word uses for its first
style. Word renames such mapped styles Normal1 , Normal2 , and so on.

Null mappings are
ignored

DITA2Go ignores any assignment in the [Styles] section that has no entry to the right
of the equals sign.

Links Cross references and hypertext links can be made active and updatable
in later versions of Word; see §15.5 Converting cross references and
hypertext links on page 229.

Revision
tracking

Revision tracking can be turned on automatically in some versions of
Word; see §15.9 Turning on revision tracking in Word on page 239.

CONVERTING PARAGRAPH AND CHARACTER FORMATS DITA2GO USER’S GUIDE

226 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

15.3.2 Merging paragraph formats

To merge formats, use the [StyleReplacements] section to map each format to an
existing RTF style. For example:

[StyleReplacements]
; Document para format name = replacement existing RTF style name
; the RTF name need not be unique, and may be creat ed in [Styles]
; the properties of the original style remain as-is in the text
; unless Template and TemplateAutoUpdate are set i n [WordOptions]
HeadingRunIn=Heading 2
SubHead=Heading 2

DITA2Go ignores any assignment in the [StyleReplacements] section that has no
entry to the right of the equals sign.

15.3.3 Converting autonumbered formats

To convert DITA2Go autonumbers to Word SEQ fields, set the following options:
[WordOptions]
; WriteAnums = Yes (default, write per SeqAnums) or No (omit entirely,
; used when having a Word style sheet add them for selected styles)
WriteAnums = Yes
; SeqAnums = No (default, write as text) or Yes (wr ite as SEQ fields)
SeqAnums = Yes

When WriteAnums=Yes (the default) and SeqAnums=Yes, DITA2Go adds numbering
prefixes to text paragraphs as SEQ fields, according to numbering properties you assign to
paragraph formats (see §8.5 Configuring output numbering properties on page 146) and
format definitions you specify in a format configuration file (see §7.5 Understanding text
output formats on page 119).

When WriteAnums=No , the value of SeqAnums is ignored, and DITA2Go -supplied
numbering is omitted in favor of whatever Word stylesheet you supply. This is not a
recommended option, because Word style-based numbering is very problematic.

By default, the tabs included in autonumber formats (see §8.5 Configuring output
numbering properties on page 146), are 1/4" or 18pt wide. To specify a different width, in
points:

[WordOptions]
; AnumTabWidth = width in points for anum/xref tab spacing, default
; 1/4", for the tabs specified in [*Formats]; used only for drxml
AnumTabWidth = 18

To insert a new item in a SEQ field-based autonumber sequence in Word, the best practice
is to copy and paste an instance of that number style, either from the same sequence or
from a Word template. You cannot include in a Word style SEQ fields (or bullets) as such.

15.3.4 Converting bulleted formats

Bulleted lists in DITA should convert to their RTF equivalents without a problem, except
in the following circumstance:

 • You are converting to Word 97.
 • The format name for a bulleted paragraph starts with the word “bullet” followed by a

space.

When a Word style has a name that starts with “bullet ”, Word 97 helpfully supplies a
bullet as a prefix; the result is two bullets in front of each item. The problem does not
occur in later versions of Word, and does not affect format names such as Bulleted.

15 CONVERTING TO PRINT RTF MODIFYING TEXT APPEARANCE

ALL RIGHTS RESERVED. MAY 19, 2013 227

If the RTF files you produce will be viewed in Word 97, you can rename the problem
formats in the configuration file. For example:

[Styles]
Bullet Open=Bull Open
Bullet Sq=Bull Sq
Bullet Sq Indent=Bull Sq Indent

15.3.5 Converting character formats

DITA2Go can output character formats as Word character styles, instead of as overrides.
This is sometimes difficult for Word to handle, however, so use this feature only if you
anticipate needing to revise the Word text:

[WordOptions]
; CharStyles sets char properties in styles (causes problems with WP)
CharStyles=Yes
; CharStylesUsedInText = No (default); or Yes, use cs codes in text
CharStylesUsedInText=Yes

Style names only,
not properties

Be aware that if DITA2Go does not output style properties explicitly, they do not appear
in Word. That is, the style name appears, but the actual properties are all Word defaults.
That is why DITA2Go puts out overrides: there is no choice, in Word.

15.4 Modifying text appearance
In this section:

§15.4.1 Adjusting line spacing on page 227
§15.4.2 Specifying a style for quotes on page 227
§15.4.3 Hiding content in Word on page 228
§15.4.4 Omitting content from RTF output on page 228
§15.4.5 Replacing content in RTF output on page 228

15.4.1 Adjusting line spacing

The default setting for line spacing allows Word to expand lines to accommodate taller
characters, such as embedded bitmaps. If you prefer that Word use exact line spacing, set
the following option:

[WordOptions]
; ExactLineSpace = No (default, variable line height allowed) or Yes
ExactLineSpace=Yes

You can also set a default line space for the output, in twips (twentieths of a point):
[Defaults]
; LineSpacing is in twips, 240 = 12pt
LineSpacing=240

15.4.2 Specifying a style for quotes

Converting to Word for print output, you might choose to use “smart quotes” (curly
quotes); or, set Quotes to Help to convert them all to vertical quote marks:

[WordOptions]
; Quotes = Help (only " and ') or Standard (allow l eft/right quotes)
Quotes=Standard

MODIFYING TEXT APPEARANCE DITA2GO USER’S GUIDE

228 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

15.4.3 Hiding content in Word

To convert content so it becomes hidden text in Word, set a unique value of
@outputclass for the material in DITA XML, and assign the following property to the
resulting format:

[WordStyles]
; Hide makes the content Word hidden text.
ParaFmt=Hide

When you assign the Hide property to a paragraph format, all text in that format remains
hidden in Word unless the user chooses to view hidden text. This setting is meant for Word
output only; the Hide property is ignored in WinHelp.

If you really want the content not to be included at all in Word, see §15.4.4 Omitting
content from RTF output on page 228.

15.4.4 Omitting content from RTF output

To prevent text from appearing in RTF output, you can do the following:

1. Use a special value of @outputclass (for example, onlineonly)

1. Use a special value of @outputclass (for example, onlineonly) for all instances
of the unwanted text in your document.

2. In the configuration file, assign property Delete to the paragraph format:
[WordStyles]
; format (char or para) = keyword
; Delete is used to remove displayable text
OnlineOnly=Delete

To remove unwanted blank paragraphs at the end of topics:
[WordOptions]
; FrameEndPara = Yes (default, preserve empty parag raph at end of text
; frame) or No (remove empty final paragraph)
FrameEndPara = No

15.4.5 Replacing content in RTF output

This method is deprecated in favor of the CodeReplace property described in §37.9.3
Surrounding or replacing text with code or macros on page 711.

You can direct DITA2Go to replace the content of a paragraph, or of a character-formatted
span of text, with arbitrary RTF code:

[WordStyles]
; format (char or para) = keyword
; Replace deletes, and also puts out the RTF in [W ordReplacements]
Parafmt = Replace

You specify the replacement RTF code as a property of the format to which you assigned
the Replace property:

[WordReplacements]
; Replace causes the insertion of raw RTF code
; in place of the original content of the named pa ra or char format
Parafmt = { some arcane string of RTF code}

See also:
§37.3.5.2 Inserting code with the CodeStore property on page 693.

15 CONVERTING TO PRINT RTF CONVERTING CROSS REFERENCES AND HYPERTEXT LINKS

ALL RIGHTS RESERVED. MAY 19, 2013 229

15.5 Converting cross references and hypertext lin ks
In this section:

§15.5.1 Converting cross references to Word on page 229
§15.5.2 Converting hypertext links to Word on page 231
§15.5.3 Locking hypertext links to allow revision tracking on page 231

15.5.1 Converting cross references to Word

Cross references can become active links in Word, and they can be updated in Word.

In this section:
§15.5.1.1 Understanding how DITA2Go converts cross references on page 229
§15.5.1.2 Making cross references active and updatable on page 229
§15.5.1.3 Weighing cross-reference behavior trade-offs on page 230
§15.5.1.4 Omitting cross references from RTF output on page 231

15.5.1.1 Understanding how DITA2Go converts cross references

When you specify Word output, cross references in your DITA document become Word
bookmarks and bookmark-references. If you subsequently make changes to the text or
number of a source paragraph in Word, the cross reference also changes, after you update
all fields.

By default, DITA2Go also wraps cross references as Word hypertext links.

15.5.1.2 Making cross references active and updata ble

For Word output, by default DITA2Go converts cross references to hypertext links, then
makes them act like cross references implemented as Word bookmarks:

[WordOptions]
; Xrefs = Standard (default, working), or None (pla in text)
Xrefs=Standard
; XrefHyper = Yes (default, make xrefs work as hype rlinks) or No
XrefHyper=Yes
; LockXrefs = Yes (default, faster load)
; or No (allow updating of xrefs)
LockXrefs=Yes

The default values for these settings have the following effects:

When Xrefs=None , cross references are converted to text, and are not updatable; but if
XrefHyper=Yes , they work as clickable links.

When XrefHyper=No , cross references do not work as links; but if Xrefs=Standard ,
they can be updated to match the source text.

When LockXrefs=No , you can update all cross references in Word without unlocking
them first. However, what you lose is accurate page numbers in references. If your cross
references do not include page numbers, this does not matter. If your cross references do

Xrefs=Standard Changing the source text in Word, then updating the cross-
reference field, changes the text in the reference.

XrefHyper=Yes Clicking the reference in Word (Ctrl -clicking in Word 2003)
takes you to the source of the reference.

LockXrefs=Yes Updating a cross reference to reflect changes to the source text
requires unlocking the reference first.

CONVERTING CROSS REFERENCES AND HYPERTEXT LINKS DITA2GO USER’S GUIDE

230 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

include page numbers, there is little to gain by setting LockXrefs=No , because all you
save in Word is a single click to unlock a reference for updating.

Table 15-2 summarizes the effects of these settings.

Note: The former FieldHyper setting is deprecated (and is replaced by XrefHyper),
but still works; the former Xrefs=Fields is replaced by Xrefs=Standard .

Referencing page
numbers in

different files

Word does not support page references for cross-reference destinations in a different file,
so DITA2Go produces a workaround in Word output. If you display hidden text in Word
after converting cross references, immediately following each heading you will see a
(hidden) page number; this is a Word PAGEREF field that points to the main bookmark for
the heading. The PAGEREF field is bookmarked also. This way, references to the heading
from other files can include dynamically updated page numbers.

15.5.1.3 Weighing cross-reference behavior trade-o ffs

Every version of Microsoft Word seems to behave differently with respect to cross
references. To ensure accurately displayed cross references, you might have to target a
single version of Word, and you might have to give up one or more of the following:

 • revision tracking
 • updating cross references
 • using cross references as live links.

Wrapping cross references as hypertext links avoids some problems, causes others:
[WordOptions]
; WrapXrefs = Yes (default, wraps full xref format content as
; hyperlink, but displays xrefs as errors on Word 20 00) or No
WrapXrefs=Yes

When WrapXrefs=Yes , cross references look and work as expected, but updating an
interfile reference might cause a cannot-open-file error message to replace the text of the
reference in Word 2000, even though the referenced file is present.

When WrapXrefs=No and LockXrefs=Yes , cross references are not active.

When WrapXrefs=No and LockXrefs=No , only the following cross references are
active:

 • Word 2000: cross references to target markers within the same file.
 • Word 2003 and later versions: cross references to target markers in other files.

Table 15-2 Effects of cross-reference settings in Word

Configuration settings Cross references in Word

Xrefs= XrefHyper= LockXrefs= Updatable? Active link? Pag e #s OK?

Standard Yes Yes Unlock first Yes Yes

No Yes Yes No

No Yes Unlock first No Yes

No Yes No No

None Yes Yes No Yes Yes

No No Yes No

No Yes No No Yes

No No No No

15 CONVERTING TO PRINT RTF CONVERTING CROSS REFERENCES AND HYPERTEXT LINKS

ALL RIGHTS RESERVED. MAY 19, 2013 231

15.5.1.4 Omitting cross references from RTF output

To actually omit cross references from RTF output, you must specify the following
property for each cross-reference format you want omitted:

[XrefStyles]
; xref format name = properties (Delete or Text),
; if omitted treated as link
XrefFormat=Delete

See also §15.1.3 Constraining the number of bookmarks in Word on page 221.

15.5.2 Converting hypertext links to Word

By default, DITA2Go creates active links in Word from hypertext links:
[WordOptions]
; UseHyperlinks = Yes (default) or No (ignore all h yperlinks)
UseHyperlinks=Yes

15.5.3 Locking hypertext links to allow revision t racking

You can lock hypertext links:
[WordOptions]
; LockHyper = No (default, allow edit) or Yes (when revision tracking)
LockHyper=Yes

When LockHyper=No , hypertext links are active in Word, and they are updatable in
Word. On the other hand, every hypertext link is marked with a change bar in Word when
revision tracking is on; see §15.9 Turning on revision tracking in Word on page 239.

When LockHyper=Yes , hypertext links are neither active nor updatable in Word;
however, at least in some versions of Word, locking them might avoid having every link
marked with a change bar when revision tracking is on.

15.5.4 Enabling interfile cross references and hyp ertext links
§15.5.4.1 Making page numbers in interfile links updatable on page 231
§15.5.4.2 Mapping file names, extension, or location on page 231

15.5.4.1 Making page numbers in interfile links up datable

By default, DITA2Go makes page numbers in external references updatable:
[WordOptions]
; ExtXrefPages = Yes (default, make page refs to ex ternal files into
; updatable fields), or No (just put page numbers a s plain text)
ExtXrefPages=Yes

When ExtXrefPages=Yes , external cross references with page numbers get the page
number from the external file. However, if that file has not itself had its fields locked or
updated (see §15.5.1.2 Making cross references active and updatable on page 229), the
page-number value might not be correct. Once you update the page-number field in the
referenced file, and then in the referencing file, you should get the right page number in
the cross reference. Or, make sure LockXrefs=Yes (the default setting).

15.5.4.2 Mapping file names, extension, or locatio n

In most situations, interfile cross references and hypertext links function as active,
updatable links in Word with just the default settings for cross references and hypertext
links, provided your RTF output file names have both of the following characteristics:

CONVERTING TABLES TO PRINT RTF DITA2GO USER’S GUIDE

232 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • extension .rtf (see §15.1.1 Specifying output file extension on page 219)
 • the same base names as the corresponding DITA input files.

However, in the following situations you must specify additional settings to make interfile
references work:

 • You specified an extension other than .rtf for output files (see §15.1.1 Specifying
output file extension on page 219).

 • You specified names for output files that differ from names of the corresponding input
files (see §45.4 Specifying output file paths and names on page 812).

 • After conversion, the file names or extension will change in a post-processing step; for
example, someone will load the output files in Word and then save them for further
use with an extension other than .rtf .

For interfile cross references and hypertext links you can specify the following:
Different file extension
Different file names
Default file location

Different file
extension

To specify the file extension to use in cross references and hypertext links:
[WordOptions]
; XrefFileSuffix = suffix to use to convert [WordXr efFiles] xrefs
XrefFileSuffix= ext

This setting specifies the extension to use in Word INCLUDE fields and HYPERLINK fields
when these fields reference a file other than the current file.

If you change the output file extension in a post-DITA2Go step, for example by saving the
files as .doc from within Word, specify the final extension you expect the files to have at
the time the cross references and hypertext links are used.

Different file
names

To map input-file base names to corresponding output-file base names:
[WordXrefFiles]
; file name in xref = file name for Word interfile xref
fchap1=wchap1

List mappings in the form oldfile=newfile, without file extension.

Default file
location

For some versions of Word, you might have to specify the default document location to be
the path to the directory where your converted files are located. From the top menu bar in
Word, go to: Tools > Options... > File Locations > Documents .

15.6 Converting tables to print RTF
In Word, tables are not objects. They are just paragraphs with border properties that make
them look like rows.

Before you attempt the fine tuning described in this section:

 • To specify output formats and general options for DITA table types, see §6.9
Specifying formats and options for tables on page 103.

 • To map table elements to output formats using attributes, see §6.3.2 Mapping table
outputclass attributes to formats on page 90.

 • To define properties for each table format, see §7.7 Configuring table output formats
on page 129.

You can also use configuration settings or PI markers to control some table characteristics
for RTF output:

Table and column widths

15 CONVERTING TO PRINT RTF CONVERTING TABLES TO PRINT RTF

ALL RIGHTS RESERVED. MAY 19, 2013 233

Table title position
Cell properties
Straddled columns

Other characteristics might be more problematic:
Straddled rows
Tables with too many columns

Table and column
widths

Define default widths for tables and table columns in a table-format configuration file; see
§7.7 Configuring table output formats on page 129. To specify a different table width for
an individual table generated from DITA <simpletable> , <choicetable> , or
<properties> element, insert a SimpleTableWidth PI marker just before or at the
beginning of the element. For example:

<?dtrtf SimpleTableWidth="4.5in" ?>

DITA definition lists and parameter lists are best rendered as tables in RTF output. These
element types do not allow width settings in DITA XML. However, you can specify either
relative or absolute column widths for RTF output, with a SimpleTableRelCol PI marker
placed just before or at the beginning of the element. For example, for relative column
widths:

<?dtrtf SimpleTableRelCol="2* 4*" ?>

This simply acts exactly like DITA @relcolwidth for the tables generated from those
lists. For absolute column widths, you can use any units allowed in DITA; for example:

<?dtrtf SimpleTableRelCol="1in 36pt 5pc" ?>

You can combine both SimpleTableWidth and SimpleTableRelCol values in a single PI
marker, separated by a space; see §38.1.1 Understanding DITA2Go PI marker syntax on
page 717.

Table title position To reposition table titles:
[Tables]
; TableTitles = 0 to leave alone, 1 to put at top, 2 to put at bottom
TableTitles=0

Cell properties To adjust cell properties for all tables:
[Tables]
; TableRules = Cell (standard default), None (help default), or one
; of the Box types: Box, Double, Thick, Shadow, P ara (variable)
TableRules=Cell
; TableFill = AsIs (default), ColorOnly, ShadingOnl y, None
TableFill=AsIs

Cell properties set in [Tables] apply to all tables in your document, and override values
of the same properties specified in a table-format configuration file; see §7.7.4
Configuring cell format properties on page 132.

TableRules determines whether the border values set in a table-format configuration file
take effect. If TableRules has any value except Cell , DITA2Go does not write borders.
If TableFill=None or ColorOnly , DITA2Go ignores the table-format configuration
settings for shading.

Straddled
columns

Given the opportunity, Word handles table cells that straddle columns by combining the
cells involved in the straddle into a single cell. Because this might not be what you want in
Word output, by default DITA2Go does not combine the cells; however, you can override
the default. To combine column-straddling cells into a single cell:

MANAGING GRAPHICS FOR PRINT RTF DITA2GO USER’S GUIDE

234 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[Tables]
; MergeStradCells = No (default) or Yes (combine co l-straddling cells)
MergeStradCells=Yes

Note: For WinHelp output, the default value of MergeStradCells is Yes (the opposite
of the default for Word); see §17.5.2 Adjusting table appearance on page 291.

Straddled rows Word 8/97 and later versions can handle straddled rows in tables; Word 7/95 cannot.

Tables with too
many columns

Word seems incapable of handling tables that have more than 63 columns. Such a table
ends up in Word with all columns beyond the 63rd merged into the last column allowed,
making that cell much taller than the rest, in every row.

15.7 Managing graphics for print RTF
In this section:

§15.7.1 Understanding graphics requirements for Word on page 234
§15.7.2 Understanding where to locate graphics on page 235
§15.7.3 Limiting bitmap resolution and color depth on page 235
§15.7.4 Preserving graphics scale in Word on page 236
§15.7.5 Accommodating graphics in multiple versions of Word on page 237
§15.7.6 Including file names of referenced graphics in Word on page 237
§15.7.7 Linking instead of embedding referenced graphics on page 237
§15.7.8 Embedding graphics in converted RTF files on page 238
§15.7.9 Updating fields in Word to show linked graphics on page 238

See also:
§40 Working with graphics on page 745

15.7.1 Understanding graphics requirements for Wor d

To produce properly scaled images in Word at the best resolution, you need BMP (for
bitmap) or WMF (for vector) versions of the images Word allows images to be scaled only
if the images are embedded as WMFs. Only WMF or BMP images can be embedded as
WMFs in Word. DITA2Go wraps BMPs in WMFs for scaling purposes.

This is the only way to set the image scale and position in RTF.

Therefore, even though you can insert other types of graphics into a Word document,
images to be transferred from your DITA document (or substituted for the images
referenced by your DITA document) must be in either BMP or WMF format. Also, Word
requires a viewable WMF of each image to be present in the document file, even if you
“link” to the image.

Because Microsoft tinkers with the poorly documented WMF format, if your graphics do
not embed correctly, you might have to make do with referencing them in Word via
INCLUDEPICTURE field. See §15.7.7 Linking instead of embedding referenced graphics
on page 237

The bitmap part of each image must be in BMP format; use WMF only for real vector
graphics, not for bitmaps. Converting bitmap graphics to WMF increases processing time
dramatically, because DITA2Go has to take each such WMF graphic apart and adjust
many settings before embedding the image.

If your DITA document references graphics that are neither BMP nor WMF, you must
provide BMP or WMF replacements for the graphics files.

15 CONVERTING TO PRINT RTF MANAGING GRAPHICS FOR PRINT RTF

ALL RIGHTS RESERVED. MAY 19, 2013 235

For referenced graphics in other formats, DITA2Go puts each image file name in a Word
INCLUDEPICTURE field. What Word does with these images depends on which version of
Word is used to view the images. Because Word provides no way to specify scaling in an
INCLUDEPICTURE field, images in formats other than BMP or WMF are seldom the
proper size.

If your document references graphics that are not in BMP or WMF format, those graphics
must be converted to BMPs, to embed the images in Word. They do not have to be
processed every time you run the conversion, but only when graphics change.

If you want properly scaled images in Word at the best resolution, use a third-party
graphics converter to make matching BMP images for referenced graphics that are in other
formats. This gives the best quality.

Replacements in
project directory

Put the resulting .bmp files in the project directory, and set the following options in the
configuration file:

[Graphics]
FilePaths=None
FileNames=Map

Replacements in
original directory

As an alternative, put the resulting .bmp files in the same directory with the original
graphics, and use the following options instead:

[Graphics]
FilePaths=Retain
FileNames=Map

See §40.2.2.1 Substituting graphics files for RTF on page 748.

Map old
extension to new

For each of the formats you are converting, specify the before and after formats. For
example:

[GraphFiles]
eps=bmp
gif=bmp

See §4.4 Processing graphics on page 77.

15.7.2 Understanding where to locate graphics

For RTF output, graphics files should end up in the same directory as the RTF files;
otherwise, if you move the project you are very likely to break links.

If the graphics are BMP or WMF, DITA2Go can embed them directly in RTF. If other
formats, DITA2Go writes a field that causes Word to embed them on loading the RTF. In
the latter case, you must select the correct images to copy, and direct DITA2Go to copy
them; see §44.7 Placing graphics files for distribution on page 796.

Once you resave an RTF file in Word as a .doc or .docx file, there is no further need for
the graphics files; the path is used only during conversion. Word always embeds images,
even if you specify referencing in the field code.

15.7.3 Limiting bitmap resolution and color depth

Graphics destined for print look best at a resolution of 300 to 1,200 DPI. However, you
cannot increase the DPI of an existing bitmap image: the upper limit of resolution is the
DPI of the original graphic.

Use 256-color (8-
bit) BMP images

where possible

The number of colors in bitmap images should be 256 or less, because the size increase for
more colors can make files too large for Word to load. If you use 24-bit color, conversion
can be slower and the resulting .rtf files much larger. This is because DITA2Go has to

MANAGING GRAPHICS FOR PRINT RTF DITA2GO USER’S GUIDE

236 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

use embedded WMFs to get the images into Word, and 24-bit bitmaps do not compress in
WMFs. If you are using 256 colors (8-bit bitmaps), conversion is faster and output file size
smaller. However, reducing a photographic image to 256 colors degrades its appearance.

Save Word files
with 24-bit BMP
images as .doc

RTF lacks compression for 24-bit BMP images (which include “millions of colors”).
Every pixel takes 3 bytes. At 300 DPI for acceptable print quality, a 3.25" x 3.5" image
would contain 1,023,750 pixels, requiring about 3 MB in a binary format. However,
because RTF represents each byte with two hexadecimal digits, the actual size would be
6 MB. On the other hand, if you are able to load an RTF file containing such an image into
Word, you can save the file as a Word .doc file. Then Microsoft uses a proprietary
compression method to shrink the size drastically. Unfortunately, DITA2Go cannot
legally use this method, thanks to the Digital Millennium Copyright Act (DMCA).

15.7.4 Preserving graphics scale in Word

Between Word versions 7/95 and 8/97 Microsoft changed the size of a graphics scale unit
from twips (twentieths of a point: 1,440 per inch) to himetric (hundredths of a millimeter:
2,400 per inch). For Word 7/95, DITA2Go computes the value in twips; for Word 8/95
and later versions, in himetric; until Word 2003, when Microsoft changed the (non-user-
settable) graphics scale unit back to twips.

Table 15-3 shows what happens to the apparent size of an embedded image viewed in
Word, depending on which version of Word you specify as the DITA2Go output type, and
which version of Word you use to view the RTF output. The rightmost column shows the
settings required to preserve scale for those versions of Word that display images at other
than 100%. These settings affect only images embedded in Word. Linked images cannot
be scaled; see §15.7.7 Linking instead of embedding referenced graphics on page 237.

The remedy depends on which problem you observe in Word:
Embedded images are much too small
Embedded images are much too large
Embedded images are still a little off

Embedded
images are much

too small

If you specify Word 7/95 as the output type when you set up your conversion project,
then convert your document and load the resulting RTF file(s) in Word 8/97,
Word 9/2000, or Word 10/XP, your graphics will appear at 60% of the correct size.

Embedded
images are much

too large

If you specify Word 8/97 as the output type when you set up your conversion project, then
convert and load the output into Word 7/95 or Word 11/2003, your graphics will appear at
167% of their original size. To correct this problem, add the following setting:

[WordOptions]
Word2003 = Yes

Embedded
images are still a

little off

For Word versions that use a default graphic unit of “himetric” instead of “twips” (Word
8/97, 2000, and 10/XP), the correctly computed scaling factor of 176 does not always look
right. To adjust the scaling factor:

[WordOptions]
; PicScale = 176 (default), percentage to expand gr aphics for Word

Table 15-3 Graphics scale percentages for Word versions

Project
output type

Image scale for RTF viewed in Word, by version [Word Options]
remedial setting
to achieve 100%7/95 8/97 9/2000 10/XP 11/2003+

Word 7/95 100% 60% 60% 60% 100% Word8 = Yes

Word 8/97 167% 100% 100% 100% 167% Word2003 = Yes

15 CONVERTING TO PRINT RTF MANAGING GRAPHICS FOR PRINT RTF

ALL RIGHTS RESERVED. MAY 19, 2013 237

; 8/97, 9/2000, and 2002/XP to compensate for redef ined Word default.
PicScale = 176

Adjust as needed; for example, Word 9/2000 seems to do better with PicScale=178 .

15.7.5 Accommodating graphics in multiple versions of Word

If your converted files are to be used in a later version of Word (or in several versions),
and you expect problems with missing or incorrectly scaled graphic elements, do the
following for each RTF file:

1. Load the file into the version of Word you specified for the conversion.

2. Save the file as .doc.

Use the .doc file instead of the RTF file in later versions of Word.

See also:
§15.2 Adjusting output for different versions of Word on page 224.
§15.7.7 Linking instead of embedding referenced graphics on page 237.

15.7.6 Including file names of referenced graphics in Word
Name and

graphic
To include the original file names of referenced graphics in Word output, so reviewers can
refer to graphics by name:

[Graphics]
; NameGraphics = No (default)
; or Yes (for Word only, put original Frame graphic name in an
; INCLUDEPICTURE field, with the WMF in the result p art of the field,
; so that the name is shown by showing Field Codes)
NameGraphics=Yes

When NameGraphics=Yes , DITA2Go inserts a Word field that has the following
content:

 • the file name of the graphic in the INCLUDEPICTURE field instructions
 • the corresponding WMF in the field result part.

The entire field is locked so it cannot be updated accidentally. Reviewers can view the
names of graphics in the Word document via Tools > Options > View > Field Codes .

Name only To include and display graphics file names but omit the graphics themselves, see §40.2.2.3
Excluding graphics from RTF output on page 751.

15.7.7 Linking instead of embedding referenced gra phics

You can use DITA2Go to produce RTF output with linked graphics instead of embedded
graphics (in fact, that is what you get by default when no BMP or WMF versions of
referenced graphics are present). Usually this is not a good idea, because Word does not
permit scaling linked graphics in RTF. For an image to appear at the correct size, it must
be in an embedded WMF; see §15.7.1 Understanding graphics requirements for Word on
page 234.

To create RTF files without embedding referenced graphics, so that Word can link to the
graphics files instead, make sure that DITA2Go can neither find nor generate WMF or
BMP versions of those graphics. Make sure no referenced graphics are in the project
directory. Then DITA2Go will create INCLUDEPICTURE references to the graphics
instead of embedding them.

INCLUDING RTF CODE FOR WORD OUTPUT DITA2GO USER’S GUIDE

238 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

After converting your document, place the graphics files to be linked in the same directory
as the RTF files. To see the graphics in Word, go to Edit > Links... , select each graphics
link, uncheck Save picture in document , and click Update Now .

See also:
§15.2 Adjusting output for different versions of Word on page 224
§15.7.6 Including file names of referenced graphics in Word on page 237
§15.7.8 Embedding graphics in converted RTF files on page 238

15.7.8 Embedding graphics in converted RTF files

If your conversion project is set up so that DITA2Go inserts field references to graphics
instead of the graphics themselves (because they are not in WMF or BMP format, for
example), you might want to do the following:

1. Open the .rtf file in Word. When you do so, Word imports all the graphics named in
the fields, if possible.

2. Save the file as .doc . The .doc file includes the graphics, and you do not need to
provide the graphics files themselves along with the Word file.

If you provide only the .rtf file, you have to provide any graphics files also. To find out
if the .rtf file contains graphics, check the size: files containing graphics are much larger
than files that only reference graphics.

See also:
§15.7.6 Including file names of referenced graphics in Word on page 237
§15.7.7 Linking instead of embedding referenced graphics on page 237

15.7.9 Updating fields in Word to show linked grap hics

When your graphics end up in INCLUDEPICTURE fields, you have to update all fields in
Word to show the images; this is a limitation of Word. Use Ctrl-A then F9 in Word to
update an entire Word file. If you have a large number of files to do this for, you might
want to create a VBA macro in Word to do the updating and then save each file in .doc
format, so that you do not have to do it again. You should be able to set Word to do the
updating on load, as a Word Auto* macro.

15.8 Including RTF code for Word output
If you want to do complicated things with RTF, you need to know the coding rules.
Microsoft provides very little in the way of documentation, and the specification is
incomplete. The best approach is to do what you want in a tiny file in Word itself, save as
RTF, and use the Omni Systems pretty-print utility to make the result readable:

pprtf myfile.rtf > myfile.txt

Study what Word did to produce that output. Make sure the braces {} are balanced in the
fragment you extract from the Word output, and double the backslashes.

For example, suppose you want to use a DITA2Go macro to pull an image into the title
page for your Word document, so in RTF you get an INCLUDEPICTURE field:

{ INCLUDEPICTURE "MyLogo.bmp" * MERGEFORMAT \d \x \y }

Because backslash is meaningful both in RTF code and in DITA2Go macros, you must
double any backslashes within fields and then double them again for the macro; so you
end up with something like this to get what you want into RTF:

15 CONVERTING TO PRINT RTF TURNING ON REVISION TRACKING IN WORD

ALL RIGHTS RESERVED. MAY 19, 2013 239

{\\field {*\\fldinst INCLUDEPICTURE "MyLogo.bmp" \\\\d \\\\x \\\\y
 * MERGEFORMAT }{\\fldrslt }}

If you look at the resulting RTF with a text editor after you run the DITA2Go conversion,
you should see:

{\field {*\fldinst INCLUDEPICTURE "MyLogo.bmp" \\d \\x \\y
 * MERGEFORMAT }{\fldrslt }}

Line breaks are acceptable in RTF code.

15.9 Turning on revision tracking in Word
To turn on revision tracking in Word for DITA2Go RTF output files:

[WordOptions]
; RevTrack = No (default) or Yes (turn on Word revi sion tracking)
RevTrack=No
; RevProt = No (default) or Yes (locks on Word revi sion tracking so
; that user cannot turn it off, also sets RevTrack= Yes)
RevProt=No

When RevTrack=Yes (or RevProt=Yes), if you leave cross references unlocked (see
§15.5.1 Converting cross references to Word on page 229), you get change bars in Word
for every cross reference; and if you also specify live hypertext links (see §15.5.2
Converting hypertext links to Word on page 231), you get change bars in Word for every
hypertext link. You can lock cross references and hypertext links:

[WordOptions]
; LockXrefs = Yes (default, faster load)
; or No (allow updating of xrefs)
LockXrefs=Yes
; LockHyper = No (default, allow edit) or Yes (when revision tracking)
LockHyper=Yes

When you lock cross references, they still work, but you have to unlock them to update
them in Word; when you lock hypertext links, the links no longer work in Word.

In some versions of Word, even setting both options does not turn off revision marking of
links.

15.10 Managing Word output after conversion
In this section:

§15.10.1 Supporting more than one version of Word on page 239
§15.10.2 Including index terms in Word on page 240
§15.10.3 Producing ASCII text from a converted Word document on page 241
§15.10.4 Checking print RTF output files for DITA2Go version on page 241

15.10.1 Supporting more than one version of Word

If you are trying to support multiple users who have a variety of Word versions, you
cannot just give them RTF files; Microsoft made sure of that. Instead, you must provide
documents in .doc or .docx format.

To produce Word files in .doc or .docx format from RTF files generated by DITA2Go :

1. Load each generated RTF file into the version of Word for which DITA2Go produced
it; see §15.2 Adjusting output for different versions of Word on page 224).

MANAGING WORD OUTPUT AFTER CONVERSION DITA2GO USER’S GUIDE

240 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

2. Wait until Word has counted up pages to the end, and stops; watch the counter in the
status bar.

3. Select all (Ctrl+A).

4. Update fields (F9).

5. Save the file from Word as .doc (or .docx for Word 2007 and later versions).

Automate the
process

Or, you can create a Word VBA macro that will do all that for you; for example, a Word
macro like the following macro for .doc output:

Sub LoadRtfFile()
'
' LoadRtf2007 Macro
' Macro recorded 5/31/2010 by Omni Systems
'
 Dim nameStr As String
 Selection.WholeStory
 Selection.Fields.Update
 nameStr = Replace(ActiveDocument.FullName, ".rtf ", ".doc")
 ActiveDocument.SaveAs FileFormat:=wdFormatDocume nt, _
 FileName:=nameStr, LockComments:=False
 Selection.StartOf
End Sub

See the Word VBA reference for details. Word files in .doc or .docx format can be
distributed to users who have any version of Word.

Also see §15.1.5 Producing PDF automatically via Word on page 222.

15.10.2 Including index terms in Word

To have DITA2Go include index terms in RTF output:
[WordOptions]
; Index = Standard (Word index markers), or None
Index=Standard

When Index=Standard , DITA2Go creates a Word {xe} field for each <indexterm> .
To generate an index from these fields in Word, see §15.1.4 Including or excluding
contents and index for RTF output on page 221.

Note: Word uses the character formatting in effect at the {xe} field itself for the entire
index item. To avoid unwanted formatting, place index markers at the very end of
a paragraph. (Or at the very beginning; though if the paragraph format itself
includes bold or italic, those effects will apply to the index item.)

When Index=None , Word {xe} fields are not created.

“See also” index
references

See also” type index references are not supported by Word index generation. However,
when you specify Index=Standard you can direct DITA2Go to refrain from converting
see-also index entries to Word {xe} fields:

[WordOptions]
; NoSeeAlso = No (default, keep See Also markers)
; or Yes (remove them)
NoSeeAlso=Yes

When NoSeeAlso=No , see-also index entries are converted to {xe} fields in RTF output
files.

When NoSeeAlso=Yes , see-also index entries are not converted to {xe} fields in RTF
output.

15 CONVERTING TO PRINT RTF CONVERTING TO OPENOFFICE OR STAROFFICE

ALL RIGHTS RESERVED. MAY 19, 2013 241

See also:
§14.8 Producing an index on page 206
§15.1.4 Including or excluding contents and index for RTF output on page 221

15.10.3 Producing ASCII text from a converted Word document

If your reason for converting a document from DITA to Word is to take advantage of the
Text with Layout converter available from http://www.gmayor.com/downloads.htm, you
might have to provide some extra settings to cope with differences in how Word treats
such things as tabs and cross references.

Replace missing
tabs with extra

spaces

The Text with Layout converter drops tabs from headings and numbered or bulleted
formats. To get around this, for each such format specify one or more fixed spaces to
follow the number or bullet. For example:

[CodeAfterAnum]
Bulleted = \~\~
Heading* =\~\~
Numbered* = \~\~

See §37.9.3 Surrounding or replacing text with code or macros on page 711.

Remove
unwanted page

references

Unwanted numbers might appear at the ends of headings; for example, “Known Issues”
might appear as “Known Issues26”. These numbers are hidden-text page numbers that
DITA2Go uses to emulate dynamic cross references to pages. To omit these numbers:

[WordOptions]
ExtXrefPages = No

See §15.5.4.1 Making page numbers in interfile links updatable on page 231.

15.10.4 Checking print RTF output files for DITA2G o version

If you recently installed a DITA2Go upgrade or beta version, after you run DITA2Go ,
check to make sure the latest version was actually used to produce RTF output. Windows
sometimes caches DLLs, and does not always use a newly replaced DLL until after the
system is rebooted.

Open an RTF output file in Word and choose File > Properties > Comments . You should
see a line like the following:

DCL filter dwrtf, Ver 3.3 d194b r278b

The last two entries identify the build numbers of the DITA2Go drxml.dll and
dwrtf.dll components that were used to create the RTF file. See §A.1.5 Check your
version of DITA2Go on page 820.

15.11 Converting to OpenOffice or StarOffice
OpenOffice.org Writer and StarOffice can open the RTF files that DITA2Go converts
from DITA to Word 97 or Word 2000. However, not all features are supported. According
to OpenOffice.org 2.0 Help:

OpenOffice.org can automatically open Microsoft Office 97/2000/XP documents.
However, some layout features and formatting attributes in more complex Microsoft
Office documents are handled differently in OpenOffice.org or are unsupported. As a
result, converted files require some degree of manual reformatting. The amount of
reformatting that can be expected is proportional to the complexity of the structure
and formatting of the source document.

http://www.gmayor.com/downloads.htm

CONVERTING TO OPENOFFICE OR STAROFFICE DITA2GO USER’S GUIDE

242 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

If you load the RTF output files in Word and save them as .doc first, then open the .doc
files in OpenOffice, results are much improved.

ALL RIGHTS RESERVED. MAY 19, 2013 243

16 Producing on-line Help

You can use DITA2Go to generate various forms of on-line Help. Special settings are
available for Microsoft Windows Help (WinHelp), Microsoft HTML Help, OmniHelp,
Oracle Help for Java, and JavaHelp. This section addresses issues that are common to
most or all Help systems. Topics covered:

§16.1 Weighing Help-system alternatives on page 243
§16.2 Completing Help system construction on page 247
§16.3 Producing contents and index for Help systems on page 248
§16.4 Configuring contents entries for Help systems on page 250
§16.5 Configuring index entries for Help systems on page 251
§16.6 Providing related-topic links for Help systems on page 258
§16.7 Jumping to secondary windows in Help systems on page 262
§16.8 Creating pop-up topics for Help systems on page 263
§16.9 Including expandable sections in Help topics on page 264
§16.10 Setting up Context Sensitive Help (CSH) on page 277
§16.11 Setting up a dynamic modular Help system on page 280

For strategies and configuration settings that are specific to a particular Help system, see
the following:

§17 Generating WinHelp on page 281
§18 Generating Microsoft HTML Help on page 313
§19 Generating OmniHelp on page 353
§20 Generating JavaHelp or Oracle Help on page 385
§21 Generating Eclipse Help on page 413

16.1 Weighing Help-system alternatives
Most users expect three navigation elements in a Help system:

 • Table of Contents (TOC), preferably in an expanding and collapsing tree form, that
tracks your position in the Help system

 • Index (IX), with multiple levels and See/See Also capabilities
 • Full-Text Search (FTS) that gets you directly to each occurrence of a word or phrase.

You could use generic HTML for a Help system as is, especially with framesets (see
§22.13 Using framesets on page 443). JavaScript-based TOC templates are available on
the Web, and an index is not hard to create. But the search engine is harder. So it is a good
idea to consider the existing alternatives for Help systems. Keep in mind that users might
run into security issues with any browser-based help system; all such systems use
JavaScript.

In this section:
§16.1.1 Considering Help-system features on page 244
§16.1.2 Understanding the effects of mid-topic links on page 244
§16.1.3 Evaluating Microsoft Windows Help (WinHelp) on page 244
§16.1.4 Evaluating Microsoft HTML Help on page 245
§16.1.5 Evaluating WebHelp on page 245
§16.1.6 Evaluating OmniHelp on page 245

WEIGHING HELP-SYSTEM ALTERNATIVES DITA2GO USER’S GUIDE

244 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§16.1.7 Evaluating JavaHelp and Oracle Help for Java on page 246
§16.1.8 Evaluating Eclipse Help on page 246

16.1.1 Considering Help-system features

For HTML-based Help systems, DITA2Go can produce any specialized form of HTML
you need, including those that work with proprietary DLLs.

If you have the eHelp (RoboHelp) license that permits you to redistribute the appropriate
eHelp DLL, you can use DITA2Go to produce WinHelp 2000. You generate WinHelp,
then add the eHelp data to the WinHelp project file before you compile; see §17.2.9
Integrating WinHelp from RoboHelp on page 285. Also, you can generate HTML Help as
a precursor to using RoboHelp to generate WebHelp; see §16.1.5 Evaluating WebHelp on
page 245.

If you need something similar to WebHelp or Web Works Help, try generating OmniHelp;
see §16.1.6 Evaluating OmniHelp on page 245. Otherwise you would have to roll your
own, which you could do with DITA2Go frameset support; see §22.13 Using framesets on
page 443. OmniHelp provides a simpler and faster solution.

If you need Microsoft Help Viewer 1.x (the successor to Microsoft Help 2), you can
generate HTML Help with DITA2Go and then use mshcMigrate (part of the Helpware
FAR tool set) to convert the resulting .chm file:

Microsoft Help Viewer 1.x is the local Help that ships with Visual Studio 2010 and its
associated MSDN Library; see:

http://www.helpware.net/mshelp3/

See also §16.5.2 Preparing index entries for Microsoft Help Viewer on page 252.

To produce electronic books and content for mobile devices, see §22.1 Deciding which
type of output to produce on page 430.

16.1.2 Understanding the effects of mid-topic link s

Several of the HTML-based Help systems are not designed to support large files with
many mid-topic links. These Help systems are intended for, and some are optimized for,
single-topic files. In OmniHelp, mid-topic links cause problems with navigation; for
example, the Prev /Next buttons do not work as expected. HTML Help, Eclipse Help, and
JavaHelp also have trouble with mid-topic links. In HTML Help, for example, the TOC
does not synchronize with the topic being displayed.

16.1.3 Evaluating Microsoft Windows Help (WinHelp)

WinHelp is a very old format, and is not supported on versions of Windows later than
Windows XP, and Microsoft Help Workshop is no longer available to compile WinHelp.
Your users would have to individually download the WinHelp reader from Microsoft; you
are prohibited from redistributing the reader. Many products that originally supported
WinHelp dropped it once Microsoft made it effectively impossible to use.

WinHelp
drawbacks

Although WinHelp works on all flavors of Microsoft Windows, users must go through a
multiple-step validation process to use WinHelp on Windows versions later than Windows
XP. WinHelp does not work on any system other than Microsoft Windows, except through
a Windows emulator.

mshcMigrate http://mshcmigrate.helpmvp.com/home

FAR http://www.helpware.net/FAR/index.html

http://mshcmigrate.helpmvp.com/home
http://www.helpware.net/FAR/index.html
http://www.helpware.net/mshelp3/

16 PRODUCING ON-LINE HELP WEIGHING HELP-SYSTEM ALTERNATIVES

ALL RIGHTS RESERVED. MAY 19, 2013 245

WinHelp does not support mouseovers, and supports Flash movies only with difficulty.
Text formatting is limited (especially for tables), you cannot customize index sort order,
and there is no tri-pane display.

The WinHelp compiler, which predates Unicode, does not recognize Unicode characters,
which instead are in a proprietary Microsoft encoding.

WinHelp
advantages

WinHelp provides the fast response needed for Context Sensitive Help (CSH). You can
use WinHelp for initial CSH calls, and WinHelp can, in turn, link to HTML Help or
OmniHelp for further information. Also, WinHelp produces decent pop-ups.

See §17 Generating WinHelp on page 281.

16.1.4 Evaluating Microsoft HTML Help

HTML Help from Microsoft does a thorough job, even though it is slow and has numerous
defects.

Some disadvantages:

 • Your users cannot access compiled HTML Help on a network drive; the CHM file
must be local.

 • HTML Help does not perform exactly as documented. Some features are missing,
others have defects, and the software is no longer being maintained.

 • HTML Help requires Internet Explorer 4.x or a later version. HTML Help uses most
of the guts of Internet Explorer, which opens the user’s system to numerous security
hazards via ActiveX features.

 • The compressed .chm files can be used only on Windows systems, not on Macintosh
or UNIX, because the Java applet is poorly implemented. This is the main reason
other Help-authoring-tool vendors use their own proprietary Java applets to provide a
tri-pane window and search functionality, which you need for cross-platform
applications.

 • Pop-ups are just plain text: no font variations appear at all, not even bold or italic.
 • Opening Context Sensitive Help the first time can be very slow.

On Windows 2000, Microsoft itself gets around the last two problems by using WinHelp
for Context Sensitive Help and pop-ups, HTML Help for the rest.

16.1.5 Evaluating WebHelp

WebHelp is a proprietary Help format; to generate WebHelp, you must have RoboHelp
installed on your system. To produce WebHelp-compatible output with DITA2Go , you
generate HTML Help, then import the HTML Help project file into RoboHelp.

Generating HTML Help produces contents and index files; when you import the HTML
Help project file into RoboHelp, you get the whole contents and index. However, index
links in WebHelp can point only to the beginning of a topic. When an indexed item can be
displayed at the top of the screen after a jump, users do not have to guess why this
particular topic came up for that index entry; this is especially important for topics that
contain long tables of values. WebHelp deprives you of that option; see §16.5.7 Specifying
index link destinations for HTML-based Help on page 255.

16.1.6 Evaluating OmniHelp

If you need cross-platform compatibility and easy localization, and you can manage with a
JavaScript-based Help system, consider OmniHelp. You can read the OmniHelp Design
Report here:

WEIGHING HELP-SYSTEM ALTERNATIVES DITA2GO USER’S GUIDE

246 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

http://www.dita2go.com

Unlike JavaHelp, Oracle Help, or Eclipse Help, on the client side OmniHelp is based
entirely on JavaScript. OmniHelp uses only JavaScript, framesets, and CSS; and therefore
works on any operating system, with any current browser. For international use, if you
furnish translated versions of text contained in three small JavaScript files, you have a
localized interface. A technical writer can edit the text in these files without disturbing the
JavaScript code.

OmniHelp provides contents and index, full-text Boolean search with JavaScript-style
regular expressions, Context Sensitive Help, related-topic links, pop-ups, and secondary
windows.

See §19 Generating OmniHelp on page 353.

16.1.7 Evaluating JavaHelp and Oracle Help for Jav a

For pure Java applications, consider Oracle Help for Java.

Oracle Help for
Java

Oracle Help for Java, from Oracle, is an excellent choice if the application for which you
are preparing Help is written in Java, especially if you need cross-platform compatibility.
It is a better alternative to Sun Microsystems JavaHelp. DITA2Go writes Oracle Help for
Java files in Oracle Help preferred format, rather than just JavaHelp format. You can use
most of the features DITA2Go supports for JavaHelp. However, you might not be able to
create a usable JAR file from an Oracle Help for Java helpset.

JavaHelp JavaHelp from Sun Microsystems is another choice if your application is written in Java,
and if you can tolerate limited CSS support, no support for related-topic linking, only one
topic per index entry, and slow performance.

Other Java-based systems can be worth considering, also; see the HelpMaster site for
information:

http://www.helpmaster.info/

See §20 Generating JavaHelp or Oracle Help on page 385.

16.1.8 Evaluating Eclipse Help

Eclipse Help is specific to the open-source Eclipse Platform. Eclipse is built on a
mechanism for integrating and running modules the Eclipse Community calls plugins. An
Eclipse plugin connects to an Eclipse Platform at an extension point, providing
information about itself in an XML manifest file. For information about Eclipse, see:

http://www.eclipse.org/

Eclipse Help is based on an XML table of contents that specifies the structure of the Help
system and references content in standard HTML files. Eclipse Help plugs into an Eclipse
Platform, which provides the viewer. Eclipse Help can provide context-sensitive help (in
the form of “infopops”) for other Eclipse applications.

Eclipse Help can be challenging to set up, and it is poorly documented as a Help format. It
makes most sense if you are documenting an Eclipse plugin, where the environment is
already installed on users' systems.

http://www.dita2go.com
http://www.helpmaster.info/
http://www.eclipse.org/

16 PRODUCING ON-LINE HELP COMPLETING HELP SYSTEM CONSTRUCTION

ALL RIGHTS RESERVED. MAY 19, 2013 247

16.2 Completing Help system construction

In this section:
§16.2.1 Specifying additional processing after conversion on page 247
§16.2.2 Compiling and distributing Help systems on page 247
§16.2.3 Launching a Help viewer from the Project Manager on page 248

16.2.1 Specifying additional processing after conv ersion

When you set up a new Help project, DITA2Go includes a few postprocessing settings in
your newly created configuration file.

Some Help systems require running additional programs after files are converted from
DITA: either to compile the output (WinHelp or HTML Help), or to create a search index
(JavaHelp or Oracle Help). When you first set up a DITA2Go project to generate one of
these Help systems, you can include an option to have DITA2Go run the additional
program after conversion.

WinHelp, HTML
Help

For a WinHelp or HTML Help project, add the following settings to your configuration
file:

[Automation]
CompileHelp = Yes
WrapAndShip = Yes

JavaHelp, Oracle
Help

For JavaHelp or Oracle Help, include the following setting in your new configuration file:
[Automation]
WrapAndShip = Yes

OmniHelp,
Eclipse Help

For OmniHelp or Eclipse Help, include the following setting:
[Automation]
WrapAndShip = Yes

If CompileHelp=Yes or WrapAndShip=Yes , after generating output files DITA2Go
copies distributable files to the directory designated by WrapPath (or in the case of
JavaHelp or Oracle Help, a directory structure under the directory designated by
WrapPath). If you want your final Help files to go somewhere other than subdirectory
_wrap , change the value of WrapPath in your configuration file. See §16.2.2 Compiling
and distributing Help systems on page 247.

16.2.2 Compiling and distributing Help systems

After generating Help output files, DITA2Go can do the following:

 • Create a directory (or a directory structure) for assembling the output.
 • Copy the necessary files to the new directory or directory structure.
 • Run the appropriate Help compiler, if there is one.
 • Create a shipping directory.
 • Archive the files required for distribution (not usually necessary for compiled Help).
 • Place the compiled and/or archived Help system in the shipping directory.

See §44 Producing deliverable results on page 787.

See also:
§17.2.10 Compiling a WinHelp project on page 285
§18.13 Compiling and testing HTML Help on page 346

PRODUCING CONTENTS AND INDEX FOR HELP SYSTEMS DITA2GO USER’S GUIDE

248 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§19.13 Assembling OmniHelp files for viewing on page 380
§20.3.6 Creating a directory structure for JavaHelp / Oracle Help on page 389
§21.8 Packaging Eclipse Help files on page 427

16.2.3 Launching a Help viewer from the Project Ma nager

When you use the DITA2Go Project Manager to run a conversion, you can view the
output immediately with the View Output button on the Run Project tab, provided both of
the following are true:

 • the key output file for the Help system is located in the wrap directory
 • if a command is needed to launch the viewer, you have specified that command.

For OmniHelp, HTML Help, and WinHelp, you do not have to supply a command to start
the viewer at the default topic, as long as the name of the key file (for OmniHelp) or the
compiled system is located in the wrap directory. This is equivalent to specifying the
default value (blank):

[HelpOptions] or [OmniHelpOptions] or [MSHtmlHelpOptions]
; ViewOutputCommand = path\to\viewer, default none
ViewOutputCommand =

For JavaHelp, Oracle Help, and Eclipse Help systems you will need to provide a command
the Project Manager can launch to run the viewer.

[JavaHelpOptions] or [OracleHelpOptions] or [EclipseHelpOptions]
ViewOutputCommand = path\to\viewer

You can specify an absolute path or a path relative to the wrap directory. For example:
[JavaHelpOptions]
ViewOutputCommand = java -jar D:\JH2\demos\bin\hsvi ewer.jar -helpset

For Oracle Help, the command can be quite long, and must be all on the same line, even if
it does not look that way here:

[OracleHelpOptions]
ViewOutputCommand = java -classpath "d:\ohj\ohj427\ help4.jar;
d:\ohj\ohj427\help4-demo.jar;d:\ohj\ohj427\ohj-jewt .jar;
d:\ohj\ohj427\;d:\ohj\ohj427\oracle_ice.jar"
oracle.help.demo.ChoiceDemo

For Eclipse Help, you are on your own.

See §1.3.7 Establish system-wide configuration settings on page 33.

16.3 Producing contents and index for Help systems
By default, DITA2Go generates both contents and index for Help systems:

 • Contents entries are based on topic headings in your DITA document.
 • Index entries are produced from DITA index entries.

However, you can choose to exclude contents or index or both.

In this section:
§16.3.1 Modifying contents or index production for HTML-based Help on page 249
§16.3.2 Modifying contents or index production for WinHelp on page 249

16 PRODUCING ON-LINE HELP PRODUCING CONTENTS AND INDEX FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 19, 2013 249

16.3.1 Modifying contents or index production for HTML-based Help

You can use a configuration setting to override the default production method for contents
or index or both; however, usually there is little reason to change the default method. You
can also omit production of contents or index.

See also:
§16.4 Configuring contents entries for Help systems on page 250
§16.5 Configuring index entries for Help systems on page 251
§18.9.1 Choosing how to generate HTML Help contents and index on page 335
§19.6 Choosing navigation features for OmniHelp on page 367
§20.4.4 Locating JavaHelp or Oracle Help contents and index files on page 397
§21.4.1 Choosing contents and index methods for Eclipse Help on page 420

To specify whether contents, index, or both should be generated for HTML-based Help:
[MSHtmlHelpOptions] or
[OmniHelpOptions] or
[JavaHelpOptions] or
[OracleHelpOptions]
; ListType (for filter to create) = Both (default), Contents, or Index

To specify how contents and/or index should be generated for HTML-based Help,
depending on the value of ListType :

[MSHtmlHelpOptions] or
[OmniHelpOptions] or
[JavaHelpOptions] or
[OracleHelpOptions]
; RefFileType = Full or None

RefFileType values have the following effects:

You might set RefFileType=None if you are repeatedly re-running a conversion to tune
something in text, and you do not want the (small) overhead of writing out the contents
and index information every time.

For HTML Help, you can specify one additional value for RefFileType . See §18.9.1
Choosing how to generate HTML Help contents and index on page 335.

For OmniHelp, whether contents and index are displayed (as opposed to generated) is
determined by another setting; see §19.6 Choosing navigation features for OmniHelp on
page 367

16.3.2 Modifying contents or index production for WinHelp
Contents To specify how (and whether) contents entries are generated for WinHelp:

[HelpContents]
; CntType = None or Full (single file)

CntType values have the following effects:

Index To specify whether index entries are generated for WinHelp from DITA index elements:

Full DITA2Go creates final contents and index files directly, depending on the
value of ListType .

None No contents or index files are produced.

Full DITA2Go creates the final contents file, MyDoc.cnt , directly.

None No .bct , or .cnt files are produced.

CONFIGURING CONTENTS ENTRIES FOR HELP SYSTEMS DITA2GO USER’S GUIDE

250 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[HelpOptions]
; Index = Help (make into K footnotes) or None (rem oved)

See also:
§17.11 Configuring index entries for WinHelp on page 305
§17.12 Configuring contents for WinHelp on page 306

16.4 Configuring contents entries for Help systems
In this section:

§16.4.1 Setting contents levels for WinHelp on page 250
§16.4.2 Including contents entries in HTML-based Help on page 250
§16.4.3 Setting contents levels for HTML-based Help on page 251

16.4.1 Setting contents levels for WinHelp

For WinHelp, you specify the contents levels for your headings here:
[HelpCntStyles]
; format = H (heading), T (topic), or B (both), + l evel (1..9)
Heading 1=B2

See §17.12.2 Specifying heading formats and levels for contents on page 307.

Each entry in [HelpCntStyles] must correspond to an entry with property Contents
in [HelpStyles] ; for example:

[HelpStyles]
Heading 1=Topic Contents

See §17.7.2 Assigning properties to formats for topics and hotspots on page 295.

See also:
§17.12 Configuring contents for WinHelp on page 306

16.4.2 Including contents entries in HTML-based He lp

Headings that start topics are automatically included as contents entries in HTML-based
Help. A paragraph format is included in contents when you assign any of the following to
the format:

[HTMLParaStyles]
ParaFmt = Split

[HTMLParaStyles]
ParaFmt = Contents

[HelpContentsLevels]
ParaFmt = n

Avoid mid-topic
links from TOC

It is best to assign the [HTMLParaStyles]Split property to every heading that you
want to appear in the contents; see §27.3.1 Designating split points on page 526. Contents
links to mid-topic locations can be problematic in some Help systems. For example, you
cannot include mid-topic links in the TOC for HTML Help projects that are to be merged.
In Java Help 1, the viewer cannot find mid-topic links at all.

Splitting on every heading provides faster loading of help topics, because they are shorter.

Include modified
titles in the TOC

To use titles as modified by PI markers or by macros:
[MSHtmlHelpOptions] or [JavaHelpOptions] or [OmniHelpOptions]
; UseNavtitleMarkers = No (default, use literal top ic titles,

16 PRODUCING ON-LINE HELP CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 19, 2013 251

; or Yes (use titles as modified by title marker an d macros
UseNavtitleMarkers = Yes

When UseNavtitleMarkers=Yes , DITA2Go includes in the TOC the <navtitle>
element, if present, or the result of any macro you have specified for the title. See §14.3.4
Including navigation titles from maps in the TOC on page 200.

When UseNavtitleMarkers=No , DITA2Go includes in the TOC the titles present in
topics or in <topichead> elements, without modification. So, for example, if you use a
macro to add a product name to all the titles, that name does not have to clutter the TOC.

See also:

§16.4.3 Setting contents levels for HTML-based Help on page 251
§18.9.5 Configuring contents entries for HTML Help on page 337
§19.7 Configuring contents and index for OmniHelp on page 367
§20.4.1 Configuring contents entries for JavaHelp or Oracle Help on page 395

16.4.3 Setting contents levels for HTML-based Help

To specify contents levels, assign level numbers to heading formats that start topics, and
also to formats to which you have assigned the Contents property; see §16.4.2 Including
contents entries in HTML-based Help on page 250. Level 1 is the top level; each higher
level number represents another level of indentation in the TOC.

For example:
[HelpContentsLevels]
; FM paragraph format name = TOC level
PrefTitle = 1
ChapTitle = 1
AppxTitle = 1
Head1 = 2
Head2 = 3
Head3 = 4
AppxHead1 = 2
AppxHead2 = 3

You can specify any paragraph format, and all text in that format will appear in the table of
contents. You are not restricted to paragraph formats that are mapped to HTML Hn tags
(see §30.2.1 Assigning HTML tags and attributes to paragraph formats on page 566).

16.5 Configuring index entries for Help systems
In this section:

§16.5.1 Understanding how DITA2Go creates Help index entries on page 252
§16.5.2 Preparing index entries for Microsoft Help Viewer on page 252
§16.5.3 Limiting length of index entries for HTML Help or WinHelp on page 252
§16.5.4 Treating commas as potential index level separators on page 252
§16.5.5 Combining index levels for HTML-based Help on page 253
§16.5.6 Configuring See and See also entries for HTML-based Help on page 254
§16.5.7 Specifying index link destinations for HTML-based Help on page 255
§16.5.8 Customizing index sort order on page 256

See also:
§17.11 Configuring index entries for WinHelp on page 305
§18.9.8 Customizing contents and index for HTML Help on page 338

CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS DITA2GO USER’S GUIDE

252 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§20.4.3 Configuring index entries for JavaHelp or Oracle Help on page 396

16.5.1 Understanding how DITA2Go creates Help inde x entries

DITA2Go processes DITA index elements to create the index for a Help system.

For HTML-based Help, DITA2Go usually builds the index, so you can customize several
aspects of index organization.

For WinHelp, Microsoft Help Workshop always builds the index, so there is little
DITA2Go can do to customize it.

16.5.2 Preparing index entries for Microsoft Help Viewer

Microsoft Help Viewer 1.x requires extra meta elements for index terms, so converting
DITA <indexterm> elements to HTML or XHTML is not enough.

To have DITA2Go prepare index entries for eventual use in Microsoft Help Viewer 1.x:
[Index]
; UseHVIndex = No (default) or Yes, prepare meta el ements for use
; with Microsoft Help Viewer 1.x
UseHVIndex = Yes

Index terms for Microsoft Help Viewer 1.x look like this:
<meta name="Microsoft.Help.Keywords" content="Marke r, Plain index" />
<meta name="Microsoft.Help.Keywords" content="Unico de%2C mañana…" />
<meta name="Microsoft.Help.Keywords" content="Index marker, First" />
<meta name="Microsoft.Help.Keywords" content="Index marker, Second" />

16.5.3 Limiting length of index entries for HTML H elp or WinHelp

DITA2Go enforces a limit on length of index entries for the following Help systems:
HTML Help
WinHelp

HTML Help For HTML Help, the default limit is 488 characters:
[MSHtmlHelpOptions]
; KeywordLimit = 488 (default), max length of Help index entries
KeywordLimit=488

WinHelp For WinHelp, the default length is more conservative, because too many characters in a
keyword can negatively affect the Help compiler. WinHelp documentation says the limit is
255 characters. DITA2Go sets the default to 64, based on experience:

[HelpOptions]
; KeywordLimit = max characters total (all levels) in keywords
KeywordLimit=64

You can test the limit yourself, watching for compiler errors as you increase the setting.

16.5.4 Treating commas as potential index level se parators

By default, DITA2Go treats commas in DITA index terms as potential level separators for
indexes. However, DITA2Go breaks an index entry at a comma (or at any other level
separator) only when there is at least one more entry that is an exact match up to the
comma.

You can direct DITA2Go not to treat commas in index entries as level separators. The
method depends on which type of Help system you are generating:

16 PRODUCING ON-LINE HELP CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 19, 2013 253

HTML-based Help
WinHelp

HTML-based
Help

To prevent use of commas as index level separators in HTML-based help:
[Index]
; UseCommaAsSeparator = Yes (default) or No (never break at comma)
UseCommaAsSeparator=No

When UseCommaAsSeparator=Yes , DITA2Go breaks an index entry either at a comma
or at an unescaped colon to add another level, but only if the text of two or more such
index entries match up to the comma or colon.

When UseCommaAsSeparator=No , DITA2Go does not break any index entry at a
comma. Index entries are broken only at unescaped colons, and only when two or more
entries match up to a colon; but also see §16.5.5 Combining index levels for HTML-based
Help on page 253 and §16.5.6.2 Specifying level breaks for See and See also index entries
on page 254.

WinHelp To prevent use of commas as index level separators in WinHelp:
[HelpOptions]
; IdxColon = No (default, allow colon and comma as level delimiters)
; or Yes (use only colon as delimiter, treat comma as regular text)
IdxColon=Yes

See §17.11.1 Designating index level separators on page 305.

16.5.5 Combining index levels for HTML-based Help

Suppose you have a two-level index entry, with only one instance of a second level for the
first-level text. In printed books, the usual practice is to combine the first- and second-
level text into one first-level entry. By default, DITA2Go follows this practice for HTML-
based Help indexes. If you expect to merge indexes from two or more Help projects, you
might not want the levels combined.

To keep DITA2Go from combining levels for such index entries:
[Index]
; CombineIndexLevels = Yes (default) or No (always break at colon)
CombineIndexLevels=No

When CombineIndexLevels=Yes , if there is only one item at the last level of a series of
multi-level index entries, DITA2Go removes the colon before the last item and replaces it
with one of the following, depending on what character immediately precedes (or follows)
the level-break colon:

 • nothing, if a space precedes or follows the colon
 • a space, if punctuation (such as an escaped colon or a comma) precedes the colon
 • a comma followed by a space, if an alphanumeric character precedes the colon.

For example, suppose an index marker contains:
tomatoes:Cherokee Purple

and there are no other first-level index entries for “tomatoes”. This entry would become:
tomatoes, Cherokee Purple

in the Help index.

When CombineIndexLevels=No , DITA2Go breaks index entries at all unescaped
colons.

CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS DITA2GO USER’S GUIDE

254 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

16.5.6 Configuring See and See also entries for HTML-based Help

If you tell DITA2Go the words used to introduce redirect references in your DITA index
entries, DITA2Go can use this information to sort entries, to determine index level breaks,
and (for some Help systems) to create live links to the referenced index entries.

You can direct DITA2Go how to sort and present <index-see> and <index-see-
also> terms.

In this section:
§16.5.6.1 Identifying See and See also index references on page 254
§16.5.6.2 Specifying level breaks for See and See also index entries on page 254
§16.5.6.3 Choosing where to sort See also index references on page 255

16.5.6.1 Identifying See and See also index references

To configure See and See also entries in the index, you can specify the words used as
starting terms in those entries. DITA2Go uses this information for sorting (see §16.5.6.3
Choosing where to sort See also index references on page 255) and for merging (see
§16.11 Setting up a dynamic modular Help system on page 280).

To specify the words to use for See and See also in the index:
[Index]
; SeeTerm = word(s) used as the start of a See inde x entry, default
; "See" without the quotes, case is significant
SeeTerm=See
; SeeAlsoTerm = word(s) used as the start of a See also entry, default
; "See also" without the quotes, case is significan t
SeeAlsoTerm = See also

These settings allow you to designate different terms, perhaps in another language, or to
specify a different case. For example, if you always capitalize both words in your See also
index entries:

[Index]
SeeAlsoTerm = See Also

DITA2Go recognizes See and See also entries that include multiple references, provided
the references are separated by semicolons. For example:

pome fruits, see apples; pears

includes two references, one to the index entry for “apples” and one to the entry for
“pears”.

Links are active in
OmniHelp and

HTML Help

For OmniHelp, DITA2Go redirects both See and See also links to their targets in the index
itself; see §19.7.6 Redirecting See and See also index entries on page 370. Microsoft
HTML Help Workshop also redirects these links. However, there may be no visual clue
that the links are there; you might have to double-click an index entry to activate the link.

Note: See/See also references that are not an exact match to a level 1 index term are
omitted.

16.5.6.2 Specifying level breaks for See and See also index entries

By default, DITA2Go forces an index level break for a See or See also index entry. For
example:

pome fruits, see apples; pears

would become:

pome fruits

16 PRODUCING ON-LINE HELP CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 19, 2013 255

see apples; pears

To prevent arbitrary index level breaks for See and See also entries
[Index]
; LevelBreakForSee = Yes (default, always force a l evel break before
; See and See also entries), or No (break only for explicit colon)
LevelBreakForSee=No

When LevelBreakForSee=No , a level break occurs for a See or See also index entry
only if an unescaped colon precedes the See or See also clause. See §16.5.4 Treating
commas as potential index level separators on page 252.

16.5.6.3 Choosing where to sort See also index references

By default, DITA2Go places See also references last at any given index level. However,
you can change the sort order so that See also references come first at any given index
level.

To make See also entries sort first, ahead of other entries at the same index sublevel:
[Index]
; SortSeeAlsoFirst = No (default, put See also entr ies after any other
; index subentries), or Yes (put them first after the parent entry)
SortSeeAlsoFirst = Yes

Only OmniHelp and HTML Help actually honor this setting; JavaHelp and Oracle Help
ignore it.

16.5.7 Specifying index link destinations for HTML -based Help

To specify where an index-entry link should point:
[Index]
; KeywordRefs = Keyword (default), File, or Para (a t start)
KeywordRefs = Keyword

Selecting an item in the resulting index takes you to one of the locations listed in
Table 16-1, depending on the setting you specified for KeywordRefs .

When you specify KeywordRefs=Keyword or KeywordRefs=Para , DITA2Go
generates index link destinations of the following form:

topicfile.htm# objectID

where objectID is an internally generated ID number.

RoboHelp lacks
mid-topic index

links

RoboHelp does not recognize the mid-topic hash (fragment) identifiers that specify mid-
topic index destinations. Therefore, you must use the following setting if you plan to use
RoboHelp to generate WebHelp:

[Index]
KeywordRefs=File

Table 16-1 Index link options for KeywordRefs in HTML-based Help

Option Destination format Location with respect to in dex marker

Keyword topicfile.htm# objectID Exact location of the PI marker.

Para topicfile.htm# objectID Start of the paragraph containing the PI marker; use when
other index markers occur in the same paragraph.

File topicfile.htm Start of the file containing the PI marker; use if all index
entries are at the end of their topics; also for WebHelp and
for merged HTML Help CHM files.

CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS DITA2GO USER’S GUIDE

256 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

As a result, index links always put you at the beginning of the referenced topic in
WebHelp.

Merged CHM files
cannot use index

anchors

When an index entry in HTML Help points to more than one topic, the viewer displays a
Topics Found dialog box that lists the topics by name. However, in merged CHM files, if
the index entries for a slave file point to anchored locations (topicfile.htm# anchor),
the Topics Found dialog box displays the index entry instead of the destination. To avoid
this problem, use the following setting:

[Index]
KeywordRefs=File

16.5.8 Customizing index sort order

For stand-alone (unmerged) HTML Help and for OmniHelp, as well as for non-Help
HTML (see §14.8.6 Configuring index features for HTML output on page 211),
DITA2Go can control the order of index entries and subentries. Merged HTML Help
requires a binary index, which ignores DITA2Go settings. JavaHelp and Oracle Help tend
to ignore any sort order DITA2Go produces.

In this section:
§16.5.8.1 Listing characters to ignore in index sort order on page 256
§16.5.8.2 Choosing case sensitivity of indexed terms on page 257
§16.5.8.3 Specifying index sort type and locale on page 257

See also:
§16.5.6.3 Choosing where to sort See also index references on page 255

16.5.8.1 Listing characters to ignore in index sor t order

To specify which characters DITA2Go should ignore when ordering index entries for
HTML Help or OmniHelp, use one or both of the following settings:

[Index]
; IgnoreCharsIX = characters to exclude when sortin g index entries
IgnoreCharsIX=-[]()<>_
; IgnoreLeadingCharsIX = characters to exclude if a t the beginning of
; the entry when sorting index entries; multiples like $$ or .. are
; all excluded
IgnoreLeadingCharsIX=.$

By default, when sorting index entries DITA2Go ignores the following characters:

 • anywhere in an entry:
- hyphen
[] left and right square brackets
() left and right parentheses
< > left and right angle brackets
_ underscore .

 • as the leading character(s) in an indexed term:
. period(s)
$ dollar sign(s).

If you do not include any settings for IgnoreCharsIX or IgnoreLeadingCharsIX ,
DITA2Go uses these defaults. Characters specified for IgnoreCharsIX affect the
sorting of sublevels; those specified for IgnoreLeadingCharsIX do not.

Suppose you provide no setting at all for IgnoreCharsIX , and just specify this setting:

16 PRODUCING ON-LINE HELP CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 19, 2013 257

[Index]
IgnoreLeadingCharsIX=?

In this case all of the following characters would be ignored for index sorting:

 • any number of ? at the beginning of any indexed term
 • any number of - , [,] , (,) , <, >, or _ anywhere in any entry.

To have only leading question marks ignored, you would specify:
[Index]
IgnoreCharsIX=
IgnoreLeadingCharsIX=?

To exclude all characters from the “ignore” sets, so all index entries that start with
punctuation appear at the beginning of the Help index:

[Index]
IgnoreCharsIX=
IgnoreLeadingCharsIX=

16.5.8.2 Choosing case sensitivity of indexed term s

If your DITA document is heavily indexed on case-sensitive terms, you might want to
make sure the Help index keeps terms separate if they differ only in case:

[Index]
; CaseSensitiveIndexCompare=No (default)
; or Yes (treat words that differ only in the case of their first
; letter as different)
CaseSensitiveIndexCompare=Yes

The default is to ignore case sensitivity, which can cause terms that differ only in the case
of the first letter to be grouped in the Help index as though they are the same term.

16.5.8.3 Specifying index sort type and locale

To ensure that accented or non-Western characters sort the way you want them to in the
index, you might have to specify a different sort type, or a non-English locale:

[HtmlOptions]
; IndexSortType = Numeric (default, code-point orde r),
; Lexical (using MS strcoll functions), or
; Alpha (sort accented letters as though they are un accented).
IndexSortType=Numeric
; IndexSortLocale = language to use for sorting ind ex.
; When IndexSortType is Lexical, default is current
; OS country setting. Uses MS language names.
;IndexSortLocale=English

For example, to make accented letters sort as though unaccented, specify the following:
[HtmlOptions]
IndexSortType = Alpha

Alpha works only with the Windows Western character set and the Unicode character set.
Specify Lexical for Central European or Cyrillic locales; Alpha does not handle those.
However, DITA2Go does support multibyte sorting when you specify the index locale.

If you use DITA2Go to produce HTML Help in an Asian or Cyrillic language, also
specify the Help-file language; see §18.12 Generating HTML Help in non-Western
languages on page 344.

PROVIDING RELATED-TOPIC LINKS FOR HELP SYSTEMS DITA2GO USER’S GUIDE

258 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

16.6 Providing related-topic links for Help system s
DITA2Go supports dedicated related-topic links:

 • associative links (ALinks) for all Help systems except WinHelp 3 and JavaHelp
 • keyword links (KLinks) for HTML Help and OmniHelp.

Dedicated related-topic links are typically displayed in a menu or pop-up window, or in a
navigation pane. With limited screen estate, they offer the advantage of not cluttering the
topic pane with See and See also entries.

In this section:
§16.6.1 Understanding related-topic links on page 258
§16.6.2 Understanding how ALinks work on page 259
§16.6.3 Understanding how KLinks work on page 259
§16.6.4 Adding related-topic link keywords in DITA XML on page 260
§16.6.5 Adding ALink and KLink jumps in DITA XML on page 261
§16.6.6 Creating target-and-jump ALinks for HTML-based Help on page 262
§16.6.7 Specifying ALink and KLink list-link destinations on page 262

16.6.1 Understanding related-topic links

Related-topic links you can produce with DITA2Go come in two flavors:

 • associative link (ALink)
 • keyword link (KLink).

Each consists of a jump from one topic to a list of links to other topics. The listed links are
members of a set of links that share a common identifier, or link keyword. KLink
keywords are actually index entries, while ALink keywords are subject terms. ALink
keywords are not ordinarily visible to users, except in OmniHelp (see §19.8 Providing
related-topic links in OmniHelp on page 370).

Link keywords ALink and KLink keywords are case sensitive. Each ALink keyword must consist of a
single alphanumeric term. Punctuation is not allowed; however, spaces are allowed in
ALink keywords in some Help systems.

Related-topic
jumps

You can generate ALinks from DITA related-links and reltables; or, you can insert ALinks
in DITA XML with ALink PI markers. Use one or the other method; do not use both.

Bullet-proof links Why use ALinks and KLinks if your document already includes cross references, See also
lists, and other hypertext links? Unlike other links, an ALink or KLink jump can go (via
the list of links) to multiple target topics, yet does not require the presence of any topic.
Therefore, you can do the following without disturbing related-topic links:

Run-time
activation

ALinks and KLinks are especially useful if you expect to merge Help projects (see §16.11
Setting up a dynamic modular Help system on page 280), for the following reasons:

 • If other Help projects are merged with the main project at run time, and topics in the
merged projects contain KLink or ALink keywords that appear in the main project,
links to those topics are included in the relevant ALink and KLink lists in the main
project.

Add a topic: Existing ALink and KLink jumps automatically pick up any
relevant link keywords in the new topic.

Remove a topic: If no link keywords exist in the remaining topics for a given
ALink or KLink jump, instead of triggering an error message, the
jump does nothing.

16 PRODUCING ON-LINE HELP PROVIDING RELATED-TOPIC LINKS FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 19, 2013 259

 • If a section (or a whole subproject) is not found at run time because it was not
installed, any ALink or KLink references to topics in that section quietly disappear
from the main project, whereas regular links would yield error messages.

KLinks access
merged topics

If you merge your Help project with another Help project built by someone else, possibly
using other tools, KLinks can provide the only way to add links to topics in the other
project, assuming the other project has a thorough index.

16.6.2 Understanding how ALinks work

Associative links (ALinks) connect a given topic to one or more other topics that share the
same ALink keyword. When you are viewing a topic that contains an ALink jump, you
can click the ALink jump hotspot (or related-topics button) to see a list of links to
associated topics. The list of links is displayed either in a navigation pane (as in
OmniHelp), or in a pop-up menu or dialog (as in WinHelp 4, HTML Help, and Oracle
Help for Java).

The following DITA2Go -generated Help systems support ALinks:
WinHelp 4
HTML Help
OmniHelp
Oracle Help for Java

ALink keyword You insert an ALink keyword (via ALink PI marker) at the start of a topic, to accomplish
the following:

 • assign membership of that topic in an ALink set
 • provide a destination for corresponding links from an ALink list, which is accessed

from an ALink jump.

The ALink set is identified by the ALink keyword. In effect, you label the topic with an
ALink keyword.

ALink jump At the start of some other topic, you insert an ALink jump (via ALinkJump PI marker) that
specifies the same ALink keyword; when a user clicks that ALink jump, the
corresponding ALink list of links to all topics in the set is displayed.

Bi-directional
ALinks

OmniHelp supports a variation: all topics that share the same ALink keyword belong to
the same “pool” of topics. When any topic that is a member of a pool is displayed, links to
all other members of that pool are automatically listed in the navigation pane when you
click Related . See §16.6.4.1 Adding related-topic link keywords via PI markers on
page 260.

For a similar approach in HTML Help and Oracle Help for Java, see §16.6.6 Creating
target-and-jump ALinks for HTML-based Help on page 262.

16.6.3 Understanding how KLinks work

Keyword links (KLinks) are based on index entries. When you are viewing a topic that
contains a KLink jump, you can click the jump hotspot (or related-topics button) to
display a list of links to all topics that are indexed on the keyword(s) specified in the jump.

The following DITA2Go -generated Help systems nominally support KLinks, though only
for index entries that meet assorted restrictions:

HTML Help
OmniHelp
WinHelp 4

PROVIDING RELATED-TOPIC LINKS FOR HELP SYSTEMS DITA2GO USER’S GUIDE

260 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

You insert at the start of a topic a KLink jump (via KLinkJump PI marker) that specifies
the content of one or more entries in the index. When a user selects the KLink jump, all
index entries with the same content, and with the same links as in the index, are displayed
in a list.

Use KLinks only
as a last resort

KLinks are high-maintenance items for documents where index entries are subject to
change when the document is revised. An index term in a KLink jump must match exactly
a term in the index itself; if the term is changed in the index, you must make the identical
change in any KLink jump that references that index term, or the jump will not generate a
link to the corresponding topic; and in some systems, it might yield an error message
instead. Help-system implementation of KLinks is uneven. KLinks have proved to be
problematic in all DITA2Go -generated Help systems where they are nominally supported.

16.6.4 Adding related-topic link keywords in DITA XML

In this section:
§16.6.4.1 Adding related-topic link keywords via PI markers on page 260
§16.6.4.2 Adding related-topic keywords via format properties on page 260

See also:
§16.6.6 Creating target-and-jump ALinks for HTML-based Help on page 262

16.6.4.1 Adding related-topic link keywords via PI markers

You can use DITA ALink PI markers to insert ALink keywords. The content of the PI
marker is an ALink keyword that identifies the ALink set to which the topic belongs. An
ALink keyword is case sensitive, and must consist of a single alphanumeric term, without
punctuation. However, in OmniHelp (only), spaces are allowed in ALink keywords, and
you can include as many keywords as you want in a single ALink PI marker, separated by
semicolons.

You can provide ALink PI markers to use for ALink keywords by inserting PIs in DITA
XML with the following content:

ALink=" keyword"

16.6.4.2 Adding related-topic keywords via format properties

You can assign a property to a format to make the text of every instance of that format act
as a related-topic keyword. Create a special @outputclass to use for this purpose.

WinHelp For WinHelp, you can use either a character format or a paragraph format for related-topic
keywords. For example, if an ALink keyword (“A” footnote) appears as a word in topic
text, you can apply an inline element with a special @outputclass to the word, and in
the configuration file assign property AKey to the resulting format:

[HelpStyles]
ALinkCharFmt = AKey

Or, you can insert a block element containing only the keyword, add a special
@outputclass , and also assign property Delete to the resulting format:

[HelpStyles]
ALinkParaFmt = AKey Delete

See §17.10 Creating related-topic links in WinHelp on page 303.

HTML-based
Help

For HTML-based Help you must use a block element (as opposed to an inline element) a
for related-topic keywords. For example, you can put an ALink keyword in a block
element by itself, add a special @outputclass , and in the configuration file assign

16 PRODUCING ON-LINE HELP PROVIDING RELATED-TOPIC LINKS FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 19, 2013 261

property ALink to the resulting format (and property Delete , if you do not want the
paragraph to appear in topic text):

[HTMLParaStyles]
; ALink, effective for MS HTML, OH, and Oracle Help , uses the contents
; of the para for the value of the ALink Name parame ter of an ALink
; object.
ALinkParaFmt = ALink Delete

16.6.5 Adding ALink and KLink jumps in DITA XML

You can use DITA PI markers to insert ALink and KLink jumps in your document, or you
can direct DITA2Go to generate ALinks from related links; see §13.5 Generating
associative links for Help output on page 192.

In this section:
§16.6.5.1 Configuring ALink jumps on page 261
§16.6.5.2 Configuring KLink jumps on page 261

See also:
§16.6.6 Creating target-and-jump ALinks for HTML-based Help on page 262

16.6.5.1 Configuring ALink jumps

An ALink jump specifies one or more ALink keywords; clicking an ALink jump hotspot
displays a list of links to any other topics that contain any of the same ALink keywords.
Some restrictions:

 • WinHelp and Oracle Help for Java restrict each ALink jump to a single ALink
keyword.

 • HTML Help and Oracle Help for Java restrict each ALink keyword to a single word
(no spaces).

To add an ALink jump in DITA XML, insert a PI marker with content like the following:
ALinkJump=" keyword"

If you specify multiple ALink keywords (which you can for OmniHelp or HTML Help),
separate the identifiers with semicolons (no spaces!). For example:

ALinkJump="curry;chicken;turmeric"

16.6.5.2 Configuring KLink jumps

A KLink jump can specify one or more index terms; this should give you, in effect, one or
more links to any other topics for which there are index entries that consist of those terms.

JavaHelp and Oracle Help for Java do not support KLink jumps. Although HTML Help,
OmniHelp, and WinHelp 4 nominally support KLink jumps, the jumps actually work only
in restricted circumstances. KLink jumps are problematic at best, and should be tested
individually.

To add a KLink jump in DITA XML, insert a hypertext Go to URL marker with content
like the following:

KLinkJump=" index term1; index term2;..."

Separate index terms from each other with semicolons (no spaces). Index terms can
contain spaces

Exact match
required

The text of each index term in a KLink jump must match exactly, including case, the text
of the corresponding entry in the index, with the following restrictions:

alink:ALinks
klink:KLinks:understanding;KLinks:OmniHelp, support for;backslash:escape character:in KLink jumps;links:related-topic:ALinks and KLinks;KLinks:WinHelp, limitations of;KLinks:maintenance issues

JUMPING TO SECONDARY WINDOWS IN HELP SYSTEMS DITA2GO USER’S GUIDE

262 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • Escape double quotes. If an index entry contains double quotes, you must escape
each double quote with a backslash in the KLink jump

 • Eschew semicolons as punctuation. Because semicolons are always index-term
separators, a KLink jump cannot specify an index term that contains a semicolon; the
semicolon cannot be escaped with a backslash.

16.6.6 Creating target-and-jump ALinks for HTML-ba sed Help

You can insert ALink information in DITA XML that serves as both an ALink-list target
and an ALink jump, so that all ALink instances with the same keyword belong to a “pool”
of ALinks; clicking any one of them displays a list of links to all other topics that have the
same keyword.

OmniHelp For OmniHelp, just inserting ALink keyword PI markers has this effect. Whenever the
OmniHelp navigation control is set to Related , if the currently displayed topic contains an
ALink keyword PI marker, the navigation pane displays a list of links to all other topics
that contain ALink PI markers with the same keyword.

HTML Help,
Oracle Help for

Java

For HTML Help or Oracle Help for Java, you use a block element with a special
@outputclass to specify ALink keywords, and supply macro code to surround the
resulting paragraph for the ALink jump. When you assemble ALink jumps using macros,
you are not making use of any DITA2Go code to interpret the alink protocol; whatever
you build is passed through to the Help system, unaltered.

HTML Help For HTML Help, the ALink jump code can produce a button; see §18.7.4 Rolling your
own macros for ALink jumps in HTML Help on page 328.

Oracle Help for
Java

For Oracle Help for Java, the ALink jump code creates a hotspot; see§20.10 Creating
ALinks for Oracle Help on page 409.

16.6.7 Specifying ALink and KLink list-link destin ations

For WinHelp 4, HTML Help, and OmniHelp, links from related-topic lists always go to
the beginning of the topic.

For Oracle Help for Java, you can determine whether ALinks go to the beginning of the
referenced topic file, or to the beginning of the paragraph that contains the ALink
keyword; see §20.10 Creating ALinks for Oracle Help on page 409.

16.7 Jumping to secondary windows in Help systems
To cause a jump to go to a secondary window, assign the name of the target window to the
character or paragraph format you use for the jump hotspot. Any jumps from text in the
specified format go to the window you assigned rather than to the current window.

In this section:
§16.7.1 Assigning secondary windows for WinHelp on page 262
§16.7.2 Assigning secondary windows for HTML-based Help on page 263

16.7.1 Assigning secondary windows for WinHelp

For WinHelp, assign the name of a secondary window to a hotspot paragraph or character
format in [HelpWindowStyles] , and assign the Window property to the same format in
[HelpStyles] ; for example:

[HelpStyles]
JumpToExtra = JumpHot Green Window

16 PRODUCING ON-LINE HELP CREATING POP-UP TOPICS FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 19, 2013 263

[HelpWindowStyles]
JumpToExtra = extra

See §17.8.6 Specifying jumps to secondary windows in WinHelp on page 302.

16.7.2 Assigning secondary windows for HTML-based Help

For HTML-based Help, assign the name of a secondary window to a hotspot paragraph or
character format in [SecWindows] ; for example:

[SecWindows]
; doc format = name of secondary window to use for jumps from
; within the span marked by this style (same as Wi nHelp usage).
ProcWin = proc

For Oracle Help, JavaHelp, and OmniHelp, reserved window name Popup specifies a
pop-up window; see §16.8 Creating pop-up topics for Help systems on page 263. For
OmniHelp, you can include optional window parameters in the assignment.

See also:
§18.8 Using secondary windows in HTML Help on page 332
§19.9 Jumping to secondary windows in OmniHelp on page 370
§20.8.3 Jumping to secondary windows in JavaHelp or Oracle Help on page 408
§28.4 Creating jumps to particular windows for HTML on page 550

16.8 Creating pop-up topics for Help systems
You can use DITA2Go to create pop-up topics in any of the Help formats.

In this section:
§16.8.1 Understanding pop-up hotspots, links, and topics on page 263
§16.8.2 Defining a pop-up hotspot on page 264
§16.8.3 Displaying a topic in a pop-up window on page 264

16.8.1 Understanding pop-up hotspots, links, and t opics

In DITA XML, you delimit a pop-up hotspot by applying a dedicated @outputclass to
text from which the topic is to be accessed. You provide a link to the pop-up topic with
either of the following:

 • a cross reference (except for HTML Help) from the hotspot
 • a hypertext link inserted in the hotspot.

Do not place any other markers within the hotspot area.

Properties you assign to the hotspot format cause a new window to pop up, displaying the
referenced topic, when you click the hotspot.

Except in HTML Help, you define pop-up topics like any other topics; only the way they
are displayed makes them different from “normal” topics.

Note: If you are using JavaHelp 2 to view this information, the only active part of the
hotspot is an icon that immediately precedes the hotspot text. See §20.8.1.4
Specifying window-access object properties on page 405.

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS DITA2GO USER’S GUIDE

264 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

16.8.2 Defining a pop-up hotspot

To define a hotspot, in DITA XML apply a dedicated @outputclass to either of the
following:

 • the text of a cross reference
 • text that contains a hypertext link.

If you want content (or an autonumber, or a page reference) from the pop-up material to
appear as a hotspot, use a cross reference; if not, use a hypertext link.

16.8.3 Displaying a topic in a pop-up window
WinHelp For WinHelp, to make a topic pop up, assign property PopOver to the hotspot format:

[HelpStyles]
PopCharFmt = PopOver

See §17.8 Creating jumps and pop-ups for WinHelp on page 299.

HTML-based
Help

If your HTML-based Help system has a DITA2Go -generated browse sequence, to avoid
including pop-up topics in the browse sequence you must declare these topics to be
extracts instead of splits; see §27.4 Extracting files on page 528.

HTML Help For HTML Help, all you get is plain-text pop-ups, unless you use a third-party tool. To
create a pop-up link in HTML Help, put the entire pop-up content (plain text only) in a
DITA hypertext alert PI marker embedded in the hotspot.

See §18.5 Creating pop-ups for HTML Help on page 322.

OmniHelp,
JavaHelp, Oracle

Help for java

For OmniHelp, JavaHelp, and Oracle Help for Java, you can use any HTML in pop-up
topics, including graphics and jumps. To make a topic pop up, assign reserved window
name popup to the hotspot format:

[SecWindows]
PopCharFmt = popup

See:
§19.9 Jumping to secondary windows in OmniHelp on page 370
§20.8 Defining windows for JavaHelp or Oracle Help on page 403.

16.9 Including expandable sections in Help topics
For OmniHelp and HTML Help (and for HTML and XHTML), you can use a combination
of JavaScript and DITA2Go macros to create one or more expandable drop-down sections
in a topic.

In this section:
§16.9.1 Understanding DITA2Go expandable drop-down sections on page 265
§16.9.2 Setting up expandable sections for your document on page 265
§16.9.3 Delimiting expandable drop-down sections on page 266
§16.9.4 Configuring drop-down links on page 268
§16.9.5 Configuring drop-down blocks on page 271
§16.9.6 Providing CSS for drop-down links and blocks on page 271
§16.9.7 Deploying JavaScript code for drop-down sections on page 271
§16.9.8 Emulating Web Works Publisher drop-down hotspots on page 275

16 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 19, 2013 265

16.9.1 Understanding DITA2Go expandable drop-down sections

An expandable drop-down section allows a user to click a link to optionally display
additional material; then click the link again (or click the displayed material) to collapse
the section and hide the material.

For DITA2Go output, the link can be based on any of the following:

 • a special block-element @outputclass dedicated to drop-down links
 • an existing block element in your document, such as a figure title or table title
 • a graphic icon, with or without accompanying text
 • a button, instead of text
 • a fixed text string.

A drop-down section has four main parts: link start, link end, block start, and block end.
Each new drop-down link gets a new value for predefined macro variable <$$_DropID> ,
which is used in all following blocks until the next link, or until the end of the HTML file.
This means that a single link can optionally control multiple blocks; the blocks do not
have to be contiguous.

Each link/block set is independent of other sets. Opening one block does not close other
blocks that might have been opened from other links.

DITA2Go provides built-in macros to use for drop-down sections, and settings to enable
and deploy the macros. To use the built-in DITA2Go macros as is for drop-down sections,
you do not have to include their definitions in your configuration file. Include a drop-
down macro definition only to edit or replace the macro.

In its simplest form, a DITA2Go drop-down section needs only one [HTMLParaStyles]
format property assigned in the configuration file, and rarely more than two; but has
enough configurable options to do almost anything you might want.

16.9.2 Setting up expandable sections for your doc ument

To enable expandable drop-down sections in the HTML output from your DITA
document:

[DropDowns]
; UseDropDowns = No (default) or Yes (enable use of dropdowns)
UseDropDowns = Yes

Simple drop-
down sections

To provide simple drop-down sections:

 • Use a dedicated block-element @outputclass for material you want to allow users
to expand.

 • Assign property DropDown to the resulting format.
 • Let DITA2Go supply the drop-down links.

For example, suppose you apply @outputclass="ExpandThis" to each paragraph to
be expanded. You would include the following setting in your project configuration file:

[HTMLParaStyles]
ExpandThis = DropDown

With this setting, DITA2Go would insert a drop-down link in HTML output just before
each ExpandThis paragraph, and hide the paragraph when a user first displays the topic.
The user clicks the link to show the paragraph; then clicks the link again (or clicks the
paragraph) to hide it again.

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS DITA2GO USER’S GUIDE

266 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Multiple drop-
down paragraphs

To include multiple paragraphs in an expandable section, or to include material in some
other format, surround the material to be expanded with Code PI markers in otherwise
empty paragraphs; see §16.9.3 Delimiting expandable drop-down sections on page 266.

Customized drop-
down section

To position drop-down links yourself, or to use existing text in your document for the
links, or both:

 • Place a paragraph with a dedicated @outputclass wherever you want a drop-down
link; or choose an existing paragraph format (such as a heading or figure title) for this
purpose, or even a character format.

 • Assign a drop-down link format property to the format, and a corresponding drop-
down block format property to the format of material to be expanded; see §16.9.3.1
Delimiting drop-down links and blocks with paragraph formats on page 266.

 • For any existing link text that is not in the drop-down link format, surround the link
text with Code PI markers that invoke drop-down link macros; do the same for blocks
that are not in the drop-down block format, invoking the corresponding drop-down
block macros. See §16.9.3.2 Delimiting drop-down links and blocks with markers on
page 267.

 • Specify display options for drop-down links and blocks; see §16.9.4 Configuring
drop-down links on page 268 and §16.9.5 Configuring drop-down blocks on
page 271.

16.9.3 Delimiting expandable drop-down sections

Creating drop-down links and expandable blocks involves surrounding material in your
document with built-in DITA2Go macros for link start, link end, block start, and block
end. You can assign these macros as properties of paragraph formats, or you can use Code
markers to insert the macros, or alternate the use of both methods.

In this section:
§16.9.3.1 Delimiting drop-down links and blocks with paragraph formats on page 266
§16.9.3.2 Delimiting drop-down links and blocks with markers on page 267

16.9.3.1 Delimiting drop-down links and blocks wit h paragraph formats

The following settings use built-in DITA2Go macros to surround paragraphs in the
designated formats with code to produce the link and expanding block:

[HTMLParaStyles]
; Paragraph format = DropDown, DropDownLink, DropDo wnBlock,
; DropDownStart, or DropDownEnd.

or, for the link, to surround character spans:
[HTMLCharStyles]
; Character format = DropDownLink, DropDownStart

Which format properties to assign depends on the type of link and arrangement of material
to be expanded:

 • Use DropDownLink (for the link) and DropDownBlock (for the block) together.
 • Use DropDownStart (for the link) and DropDownEnd (for the block) together.
 • Use DropDown (for the block) by itself; DITA2Go generates the link paragraph.

To expand a single-paragraph block using a DITA2Go -inserted link:
[HTMLParaStyles]
BlockFormat = DropDown

To use an existing paragraph for the link, and a single paragraph for the block:

16 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 19, 2013 267

[HTMLParaStyles]
LinkFormat = DropDownLink
BlockFormat = DropDownBlock

To make a single- or multiple-paragraph drop-down block start right after the link
paragraph:

[HTMLParaStyles]
LinkFormat = DropDownStart
BlockEndFormat = DropDownEnd

If you use empty paragraphs for BlockEndFormat, assign format property Raw to the
format:

[HTMLParaStyles]
BlockEndFormat = DropDownEnd Raw

Format property Raw is needed only if you are using an empty paragraph to delimit the
drop-down block.

Table 16-2 shows the effects of these format properties.

16.9.3.2 Delimiting drop-down links and blocks wit h markers

You can use Code PI markers to surround drop-down links and expandable blocks with
built-in DITA2Go macro code.

To delimit links and blocks with Code markers, place a Code PI marker in each of the
following places, with the indicated content:

 • At the beginning of the link paragraph before any text, with content that depends on
the type of drop-down link:

Table 16-2 Effects of drop-down format properties

Drop-down style Format property Effect

DITA2Go-supplied
link, single-paragraph
block

DropDown Treats the current paragraph as the block to be expanded.
Places macros <$DropLinkPara> and
<$DropBlockStart> before the paragraph,
<$DropBlockEnd> after the paragraph.

Variable-text link,
single-paragraph block

DropDownLink Treats the current paragraph or character span as the link.
Places macro <$DropLinkStart> before the text in the
paragraph or character span, <$DropLinkEnd> after the
text.

DropDownBlock Treats the current paragraph as the block to be expanded.
Places macro <$DropBlockStart> before the
paragraph, outside its tags, and <$DropBlockEnd> after
the closing tags of the paragraph.

Variable-text link,
multiple-paragraph
block

DropDownStart Treats the current paragraph as the link, and the next
paragraph or paragraphs as the block. Places macro
<$DropLinkStart> before the text in the current
paragraph, <$DropLinkEnd> after the text, then
<$DropBlockStart> after the paragraph.

DropDownEnd Treats the current paragraph as the last paragraph in the
block to be expanded. Places macro <$DropBlockEnd>
after the current paragraph.

DropLinkType Starting Code marker content
Icon <$DropLinkStart><$DropOpenIcon><$DropCloseIcon>

Button <$DropLinkStart><$DropButton>

Text <$DropLinkStart>

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS DITA2GO USER’S GUIDE

268 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

(See §16.9.4.1 Specifying the type of link for drop-down sections on page 268.)

 • At the end of the link paragraph, after any text:
<$DropLinkEnd>

 • In a dedicated paragraph before the block:
<$DropBlockStart>

 • In a dedicated paragraph after the block:
<$DropBlockEnd>

The macros for a drop-down block must be outside any drop-down content tags. Put the
Code PI markers in otherwise empty paragraphs of their own, just before the first block
paragraph and just after the last block paragraph. Use a dedicated paragraph format for the
PI markers, and assign the following property to the format:

[HTMLParaStyles]
CodeMarkerFmt = Raw

See §30.2.4 Stripping paragraph properties on page 568.

16.9.4 Configuring drop-down links

By default, DITA2Go uses icons for the drop-down link for an expandable section.
Optionally, an icon can be followed by text: either fixed text, or an existing paragraph or
character span in your document. Instead of icons or icons plus text, you can use text only,
or buttons.

In this section:
§16.9.4.1 Specifying the type of link for drop-down sections on page 268
§16.9.4.2 Configuring icons for drop-down links on page 269
§16.9.4.3 Configuring buttons for drop-down links on page 269
§16.9.4.4 Configuring text for drop-down links on page 270
§16.9.4.5 Modifying code for drop-down links on page 270

16.9.4.1 Specifying the type of link for drop-down sections

To specify the type of drop-down link to use for an expandable section:
[DropDowns]
; DropLinkType = Icon (default, optional text), But ton, or Text (only)
DropLinkType = Icon

When DropLinkType=Icon , DITA2Go inserts an icon at the start of each drop-down
link paragraph. You can specify the graphics to use for icons, and you can modify the alt
text; see §16.9.4.2 Configuring icons for drop-down links on page 269.

When DropLinkType=Button , DITA2Go inserts a button in each drop-down link
paragraph. You can specify the label on the button; see §16.9.4.3 Configuring buttons for
drop-down links on page 269.

When DropLinkType=Text , the link consists only of text: either default text, or the text
of a paragraph or character span in your document; see §16.9.4.4 Configuring text for
drop-down links on page 270.

Regardless of link type, DITA2Go inserts icon, button, or default text ahead of whatever
text is already present in each drop-down link paragraph. If you have not designated a
drop-down link paragraph, DITA2Go creates a paragraph for the link, just before each
drop-down block.

16 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 19, 2013 269

By default, DITA2Go includes JavaScript code that works for all types of drop-down
links. However, you can choose to have DITA2Go include JavaScript code only for the
type of link you specify via DropLinkType ; this results in slightly less JavaScript code.

To restrict JavaScript drop-down code to the link type specified by DropLinkType :
[DropDowns]
; UseCompositeDropJS = Yes (default, use JS that wo rks for all
; settings of DropLinkType), or No (use JS specifi c to current
; DropLinkType setting, slightly less JS code)
UseCompositeDropJS = No

When UseCompositeDropJS=No , all drop-down sections must use the same type of
drop-down link, because the type determines the JavaScript that is included or referenced
in the output. See §16.9.7 Deploying JavaScript code for drop-down sections on page 271.

16.9.4.2 Configuring icons for drop-down links

When DropLinkType=Icon , each drop-down link starts with an icon. If you provide text
content for the link paragraph or character span, the text follows the icon.

DITA2Go can provide a default icon pair:

To have DITA2Go write these default icon files to the project directory:
[DropDowns]
; WriteDropIconFiles = No (default) or Yes (write t o project
directory)
WriteDropIconFiles = Yes

When WriteDropIconFiles=Yes , DITA2Go creates default drop-down icons in the
project directory. When WriteDropIconFiles=No , you must provide the icon files. If
you want the icons in a directory other than the project directory, perhaps with other
graphics, you must place the icon files there yourself, and specify a relative path to their
location.

To rename or relocate drop-down icon files:
[DropDowns]
DropOpenIconFile = path/to/dropopen.gif
DropCloseIconFile = path/to/dropclose.gif

The default location is the project directory. If you specify a relative path, it is relative to
the project directory. Do not use an absolute path.

To specify different alt text for the icons:
[DropDowns]
DropOpenIconAlt = Click to open.
DropCloseIconAlt = Click to close.

To change the macro code that displays icons, see §16.9.4.5 Modifying code for drop-
down links on page 270.

16.9.4.3 Configuring buttons for drop-down links

When DropLinkType=Button , each drop-down link consists of a button, with a text
label on the button itself. The default label text is More when the drop-down section is
closed, Less when the section is open.

Icon Icon graphic file Alternate text
dropopen.gif Click to open.
dropclose.gif Click to close.

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS DITA2GO USER’S GUIDE

270 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To change the default button labels:
[DropDowns]
DropButtonOpenLabel = More
DropButtonCloseLabel = Less

To change the macro code that displays buttons, see §16.9.4.5 Modifying code for drop-
down links on page 270.

16.9.4.4 Configuring text for drop-down links

When DropLinkType=Text , the link consists only of text: either fixed text, or existing
text in a paragraph or character span in your document.

Fixed text For fixed text, by default DITA2Go inserts a paragraph with content “Click here. ” as the
link. To specify different fixed text for the link:

[DropDowns]
DropText = Click here.

Existing text To use existing text for the link, delimit the text with link-start and link-end macros; see
§16.9.3 Delimiting expandable drop-down sections on page 266.

To change the macro code that displays fixed text, see §16.9.4.5 Modifying code for drop-
down links on page 270.

16.9.4.5 Modifying code for drop-down links

You can redefine any of the built-in drop-down link macros by changing the default code
that is assigned to the macro name. Each macro name serves as a keyword in your project
configuration file; you change the definition by assigning replacement code to the macro
name. When you assign code to a macro name in the configuration file, the entire setting
must be all on one line, even if it does not look that way here.

Ordinarily you should not need to include any of the settings described in this section.

Link ID prefix Because an ID used in JavaScript must start with a letter, by default DITA2Go prefixes
the incremental value of the drop-down link ID with drop . To change the drop-down link
ID prefix:

[DropDowns]
DropIDPrefix = drop

Link macros To change the code for creating drop-down links, include the following settings to redefine
the built-in macros:

[DropDowns]
; Default macros for link start/end:
DropLinkStart = <a class="<$DropClass>"\n <$DropLin kAttr>>
DropLinkAttr = href="javascript:doSection('<$$_Drop ID>');void 0;"
DropLinkEnd =

If you use DropLinkStart , include CSS for the text to match its content; also
see:§16.9.6 Providing CSS for drop-down links and blocks on page 271:

[DropDowns]
DropLinkParaStart = <p class="<$DropClass>">
DropLinkParaText = <$DropText>
DropLinkParaEnd = </p>

<$DropLinkStart> follows <$DropLinkParaStart> . If DropLinkType=Icon , both
icons follow <$DropLinkStart> . Unless DropLinkType=Button , next come
<$DropLinkParaText> then <$DropLinkEnd> .

Icon macros To change the code for drop-down icons:

16 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 19, 2013 271

[DropDowns]
DropOpenIcon = <img\n src="<$DropOpenIconFile>" id= "io<$$_DropID>"

style="border:0;" alt="<$DropOpenIconAlt>">
DropCloseIcon = <img\n src="<$DropCloseIconFile>" i d="ic<$$_DropID>"

style="display:none;border:0;" alt="">\n

Button macros To change the code for drop-down buttons:
[DropDowns]
DropButton = \n<button type="button" class="<$DropC lass>" id=

"bu<$$_DropID>" <$DropButtonAttr>><$DropButtonOpenL abel></button>\n
DropButtonAttr = onclick="doSection('<$$_DropID>')"

Text macro To change the code for fixed-text links:
[DropDowns]
DropLinkPara = <p class="<$DropClass>">

<$DropLinkStart><$DropText><$DropLinkEnd></p>

16.9.5 Configuring drop-down blocks

To specify whether clicking inside an open drop-down block should close the block:
[DropDowns]
; ClickBlockToClose = Yes (default)
; or No (use if any links inside block)
ClickBlockToClose = Yes

If any of your drop-down blocks contain links, set ClickBlockToClose=No .

To change the code for creating drop-down blocks, include the following settings to
redefine the built-in macros:

[DropDowns]
DropBlockStart = <div class="<$DropClass>" id="<$$_ DropID>"

style="display:none;" <$DropDivAttr>>\n
; If ClickBlockToClose=No, this is omitted:
DropDivAttr = onclick="noSection('<$$_DropID>')"
DropBlockEnd = </div>\n

Each setting must be all on one line in your configuration file, even if it does not look that
way here. Ordinarily you should not need to include these settings.

16.9.6 Providing CSS for drop-down links and block s

By default, the CSS class for links and blocks is dropdown . To specify a different class:
[DropDowns]
DropClass = dropdown

The same class name can serve for all link types, and also for blocks. Use CSS to
differentiate:

p. dropdown { drop-link text stuff }
a. dropdown { drop-link icon stuff }
button. dropdown { drop-link button stuff }
div. dropdown { drop block stuff }

See §31 Setting up CSS for HTML on page 591.

16.9.7 Deploying JavaScript code for drop-down sec tions

Based on the configuration settings you specify for drop-down links and blocks,
DITA2Go creates a macro that contains the JavaScript code for the drop-down sections.
You can modify this code, and rename, relocate, or replace the code.

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS DITA2GO USER’S GUIDE

272 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

In this section:
§16.9.7.1 Naming the JavaScript macro for drop-down sections on page 272
§16.9.7.2 Locating JavaScript code for drop-down sections on page 272
§16.9.7.3 Directing DITA2Go to write drop-down JavaScript code on page 273
§16.9.7.4 Inspecting the JavaScript code for drop-down sections on page 273

16.9.7.1 Naming the JavaScript macro for drop-down sections

By default, the name of the JavaScript macro is $DropJS . To specify a different name for
this macro, and by implication, to supply your own macro body:

[DropDowns]
; This is the code that goes in the <head> or in a JS file:
DropJSCode = <$DropJS>

Enclose the macro name in angle brackets. Including this setting is tantamount to saying:
Do not write this macro; I am supplying my own version.

If you specify a value for DropJSCode , you must provide the named macro in your
configuration file or in a macro library.

If you do not specify a value for DropJSCode , or if you do not provide the named macro,
DITA2Go includes either the composite JavaScript code (see §16.9.4.1 Specifying the
type of link for drop-down sections on page 268) or one of four built-in versions of this
macro; see §16.9.7.4 Inspecting the JavaScript code for drop-down sections on page 273.

16.9.7.2 Locating JavaScript code for drop-down se ctions

By default, for most output types DITA2Go inserts JavaScript code for drop-down
sections in the <head> section of each HTML file that contains one or more drop-down
sections. For OmniHelp, DITA2Go includes the JavaScript code in viewer files
ohctrl.js and ohmain.js . For any output type, you can direct DITA2Go to reference
the code in a separate JavaScript library instead.

To specify where the JavaScript code resides:
[DropDowns]
; DropJSLocation = Head (to insert the code in <scr ipt> tags),
; None (if the code is included elsewhere, as for OmniHelp),
; or a filename to reference in a JS link in the <h ead>.
DropJSLocation = Head

When DropJSLocation=Head , DITA2Go places JavaScript code in the <head> section
of each output HTML file that includes at least one drop-down section:

<script language="JavaScript" type="text/javascript ">
<!--
<$DropJS>
//-->
</script>

Macro $DropJS is expanded when DITA2Go writes the output HTML file.

When DropJSLocation=None , DITA2Go assumes you are supplying a JavaScript
library for which a reference already exists, possibly configured as part of a value for
Head in the [Inserts] section. See §37.9.2 Invoking macros at predetermined points in
output on page 710.

When DropJSLocation= filename, DITA2Go places the following reference in the
<head> section:

16 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 19, 2013 273

<script language="JavaScript" type="text/javascript "
 src="<$DropJSLocation>"></script>

Macro $DropJSLocation is expanded when DITA2Go writes the output HTML file.
The file specification you provide for filename can include a path relative to the project
directory. Although you can specify an absolute path, we advise against it. Also, a path
that includes a drive specification will not work.

16.9.7.3 Directing DITA2Go to write drop-down Java Script code

By default, DITA2Go does not create an external version of the drop-down JavaScript
code. To have DITA2Go write the JavaScript code to a file in the project directory, when
you specify a file for DropJSLocation :

[DropDowns]
; WriteDropJSFile = No (default, you provide it) or Yes
WriteDropJSFile = Yes

When WriteDropJSFile=No , DITA2Go assumes that the file you specified for
DropJSLocation is an existing JavaScript library that you do not want overwritten.

When WriteDropJSFile=Yes , DITA2Go overwrites the file you specified for
DropJSLocation if it is in the project directory, or creates the file if it does not already
exist in the project directory.

WriteDropJSFile takes effect only when DropJSLocation= filename (see §16.9.7.2
Locating JavaScript code for drop-down sections on page 272). And while any path
information included in filename is used in the link in the <head> section, DITA2Go
writes the file itself to the project directory, for security reasons. This means that if
DropJSLocation specifies a location other than the project directory, you must move
the file to the other directory.

16.9.7.4 Inspecting the JavaScript code for drop-d own sections

The JavaScript functions included in macro $DropJS differ according to whether
UseCompositeDropJS=Yes or No; and if No, according to the link type.

In this section:
§16.9.7.4.1 JavaScript code when UseCompositeDropJS=Yes on page 273
§16.9.7.4.2 JavaScript code when DropLinkType=Icon on page 274
§16.9.7.4.3 JavaScript code when DropLinkType=Button on page 274
§16.9.7.4.4 JavaScript code when DropLinkType=Text on page 275

See also:
§16.9.4.1 Specifying the type of link for drop-down sections on page 268.

16.9.7.4.1 JavaScript code when UseCompositeDropJS =Yes
[DropJS]
function doSection(id){
 var but = document.getElementById("bu" + id)
 var imop = document.getElementById("io" + id)
 var imcl = document.getElementById("ic" + id)
 var idiv = document.getElementById(id)
 if (idiv.style.display=="none") {
 idiv.style.display=""

if (but != null)
but.innerHTML="<$DropButtonCloseLabel>"

if (imop != null)
imop.style.display="none"

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS DITA2GO USER’S GUIDE

274 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

if (imcl != null)
imcl.style.display=""

 } else {
 idiv.style.display="none"

if (but != null)
but.innerHTML="<$DropButtonOpenLabel>"

if (imop != null)
imop.style.display=""

if (imcl != null)
imcl.style.display="none"

 }
 return false;
}
function noSection(id){
 var but = document.getElementById("bu" + id)
 var imop = document.getElementById("io" + id)
 var imcl = document.getElementById("ic" + id)
 var idiv = document.getElementById(id)
 if (idiv.style.display=="") {
 idiv.style.display="none"

if (but != null)
but.innerHTML="<$DropButtonOpenLabel>"

if (imop != null)
imop.style.display=""

if (imcl != null)
imcl.style.display="none"

 }
}

16.9.7.4.2 JavaScript code when DropLinkType=Icon
[DropJS]
function doSection(id){
 var imop = document.getElementById("io" + id)
 var imcl = document.getElementById("ic" + id)
 var idiv = document.getElementById(id)
 if (idiv.style.display=="none") {

idiv.style.display=""
imop.style.display="none"

 imcl.style.display=""
} else {

idiv.style.display="none"
imop.style.display=""

 imcl.style.display="none"
}
 return false;
}
function noSection(id){
 var imop = document.getElementById("io" + id)
 var imcl = document.getElementById("ic" + id)
 var idiv = document.getElementById(id)
 if (idiv.style.display=="") {

idiv.style.display="none"
imop.style.display=""

 imcl.style.display="none"
}
}

16.9.7.4.3 JavaScript code when DropLinkType=Butto n
[DropJS]
function doSection(id){
 var but = document.getElementById("bu" + id)

16 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 19, 2013 275

 var idiv = document.getElementById(id)
 if (idiv.style.display=="none") {
 idiv.style.display=""

but.innerHTML="<$DropButtonCloseLabel>"
 } else {
 idiv.style.display="none"

but.innerHTML="<$DropButtonOpenLabel>"
 }
 return false;
}
function noSection(id){
 var but = document.getElementById("bu" + id)
 var idiv = document.getElementById(id)
 if (idiv.style.display=="") {
 idiv.style.display="none"

but.innerHTML="<$DropButtonOpenLabel>"
 }
}

16.9.7.4.4 JavaScript code when DropLinkType=Text
[DropJS]
function doSection(id){
 var idiv = document.getElementById(id)
 if (idiv.style.display=="none") {
 idiv.style.display=""
 } else {
 idiv.style.display="none"
 }
 return false;
}
function noSection(id){
 var idiv = document.getElementById(id)
 if (idiv.style.display=="") {
 idiv.style.display="none"
 }
}

16.9.8 Emulating Web Works Publisher drop-down hot spots

To create expandable drop-down sections in Web Works Publisher, you map a paragraph
that you want to be expandable to one of two WWP styles:

 • DropDownClosed to make the hotspot closed by default
 • DropDownOpen to make the hotspot open by default.

Everything following the hotspot paragraph is included in the drop-down content up to the
next paragraph mapped to DropDownClosed, DropDownOpen, or one of the standard WWP
heading styles. You can emulate this method using DITA2Go macros, either with or
without built-in DITA2Go drop-down controls. Jim Owens has kindly allowed us to
present the macros he developed for this purpose.

In this section:
§16.9.8.1 Creating drop-down hotspots with DITA2Go controls and macros on
page 275
§16.9.8.2 Creating drop-down hotspots with DITA2Go macros only on page 276

16.9.8.1 Creating drop-down hotspots with DITA2Go controls and macros

The following settings use DITA2Go format property DropDownLink and two macros to
handle open/close actions for dedicated drop-down paragraph format DropPara.

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS DITA2GO USER’S GUIDE

276 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[HTMLParaStyles]
DropPara = DropDownLink CodeBefore CodeAfter

[ParaStyleCodeBefore]
; At the start of any of the following paragraphs,
; close any open drop-down blocks:
DropPara = <$DropDownBlockClose>
; List any other paragraphs that should end a drop- down block:
H1 = <$DropDownBlockClose>
H2 = <$DropDownBlockClose>
H3 = <$DropDownBlockClose>
H4 = <$DropDownBlockClose>
H5 = <$DropDownBlockClose>

[ParaStyleCodeAfter]
DropPara = <$DropDownBlockOpen>

[Inserts]
; At end of body, close any open drop-down blocks:
Bottom = <$DropDownBlockClose>

[DropDownBlockOpen]
; After DropPara, insert javascript to open a new d rop-down block,
; and set a flag to signify that the block is open. The javascript
; includes a counter to identify the drop-down sect ion:
<$$DropDownCount++>
; Strip leading zeroes:
<div class="dropdown" id="drop<$$DropDownCount as % 0.1d>"
style="display:none;"
onclick="noSection('drop<$$DropDownCount as %0.1d>')">
<$$Flag_DropDownBlockOpen = 1>

[DropDownBlockClose]
; Before DropPara or H1 through H5 or </body>,
; check a flag to see if a drop-down block is open;
; if so, close the drop-down block and clear the fl ag:
<$_if ($$Flag_DropDownBlockOpen)>
</div>
<$$Flag_DropDownBlockOpen = 0>
<$_endif>

[MacroVariables]
; Put any macro definition sections before this sec tion.
Flag_DropDownBlockOpen = 0
DropDownCount = 0

16.9.8.2 Creating drop-down hotspots with DITA2Go macros only

The following settings use three macros to handle open/close actions for dedicated drop-
down paragraph format DropPara.

[HTMLParaStyles]
DropPara = CodeBefore CodeStart CodeAfter

[ParaStyleCodeBefore]
; At the start of any of the following paragraphs,
; close any open drop-down blocks:
DropPara = <$DropDownBlockClose>
; List any other paragraphs that should end a drop- down block:
H1 = <$DropDownBlockClose>
H2 = <$dropdownblockclose>
H3 = <$DropDownBlockClose>
H4 = <$DropDownBlockClose>
H5 = <$DropDownBlockClose>

16 PRODUCING ON-LINE HELP SETTING UP CONTEXT SENSITIVE HELP (CSH)

ALL RIGHTS RESERVED. MAY 19, 2013 277

[ParaStyleCodeStart]
; Before the DropPara text, insert a drop-down link :
DropPara = <$DropDownLinkOpen>
[ParaStyleCodeAfter]
DropPara = <$DropDownBlockOpen>

[Inserts]
; At end of body, close any open drop-down blocks:
Bottom = <$DropDownBlockClose>
[DropDownLinkOpen]
; Before DropPara text, set a new drop-down link:
<$$DropDownCount++>
<a class="dropdown"
 href="javascript:doSection('drop<$$DropDownCount>');void 0;">
<img src="dropopen.gif" id="iodrop<$$DropDownCount> "
 style="border:0;" alt="Click to open.">
<img src="dropclose.gif" id="icdrop<$$DropDownCount >"
 style="display:none;border:0;" alt="Click to close .">

[DropDownBlockOpen]
; After DropPara, insert javascript to open a new d rop-down block,
; and set a flag to signify that the block is open. The javascript
; includes a counter to identify the drop-down sect ion:
<div class="dropdown" id="drop<$$DropDownCount>" st yle="display:none;"
onclick="noSection('drop<$$DropDownCount>')">
<$$Flag_DropDownBlockOpen = 1>

[DropDownBlockClose]
; Before DropPara or H1 through H5 or </body>,
; check a flag to see if a drop-down block is open;
; if so, close the drop-down block and clear the fl ag:
<$_if ($$Flag_DropDownBlockOpen)>
</div>
<$$Flag_DropDownBlockOpen = 0>
<$DropDownLinkOpen>
<$_endif>

[MacroVariables]
; Put any macro definition sections before this sec tion.
Flag_DropDownBlockOpen = 0
DropDownCount = 0

16.10 Setting up Context Sensitive Help (CSH)
Creating a link from an application program to a topic in your Help file is pretty much the
same process for all flavors of WinHelp and HTML-based Help. Differences among the
tools used to develop the application dictate minor differences in the process.

In this section:
§16.10.1 Understanding how CSH works on page 278
§16.10.2 Specifying CSH mappings on page 278

See also:
§18.11 Setting up CSH for HTML Help on page 340
§19.11 Setting up CSH for OmniHelp on page 375
§20.12 Setting up CSH for JavaHelp or Oracle Help on page 410

SETTING UP CONTEXT SENSITIVE HELP (CSH) DITA2GO USER’S GUIDE

278 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

16.10.1 Understanding how CSH works

When an application program calls on a Help system to display a topic, the program might
pass a number to the Help system to identify the requested topic; this is usually the case
for HTML Help, and always for WinHelp. The Help system, however, uses a name to
identify a topic; in fact, a topic can have any number of names. In the application for
which you are creating CSH, each click of a Help button calls a number (a numeric ID),
and each number has to be mapped to a Help topic name (a symbolic ID). A map file
provides the necessary links from program to Help system; for some Help systems, an
alias file associates each symbolic ID with the name of the Help file:

For HTML Help, the program can pass a file name instead of a number, eliminating the
need for map and alias files, but this is rarely done. For JavaHelp, Oracle Help for Java,
and OmniHelp, the program can pass a name instead of a number.

Numeric ID A numeric ID is usually an integer. You might specify the numeric IDs for the developer
of the application program, or the developer might specify them; which way depends on
development tools and project work flow. If the application program is developed in
Visual Basic, the developer enters the numbers on a form; if in Visual C/C++, what the
developer does depends on which API call variant is in use.

Symbolic ID A symbolic ID consists of the following:

 • a special prefix, either IDH_ or HIDC_, that identifies the symbolic ID as a CSH
destination

 • a name, usually furnished by the application developer, for the application feature
involved (such as a button, dialog, or text box).

Each symbolic ID must be unique in your Help project.

Compilers have built-in support for IDH_ , so use that prefix if possible. If the developers
are using Microsoft Foundation Classes, HIDC_ works also. For HTML Help and
OmniHelp, you specify in the configuration file which prefix(es) you are using. WinHelp
also uses prefixes, IDH_ in particular; and reports any such entries in your map file for
which you did not provide a destination in a topic.

Map file A map file is an ASCII file that contains a line for each link from program to Help system.
In some programming environments, such as Visual C/C++, this file is produced for you;
in others, such as Visual Basic, you create the map file yourself. For C or C++ the map file
is usually named resource.h . For JavaHelp and Oracle Help for Java, DITA2Go creates
the map file (with extension .jhm), and writes the symbolic IDs to the file. No map file is
needed for OmniHelp.

Alias file An alias file is an ASCII file that contains a line for each symbolic ID, associating that ID
with the name of the Help file that contains the relevant CSH destination. For HTML Help
and OmniHelp, you identify each symbolic ID as an alias, which gets listed in the alias
file; DITA2Go can generate the alias file for you. WinHelp links automatically, without an
alias file; no additional author actions are required. Help Workshop provides the prefixes.

16.10.2 Specifying CSH mappings

To provide CSH when DITA2Go generates Help files for your project:

1. Give each target topic a <data /> element that contains a symbolic ID.
In your DITA document, insert a <data /> element in each topic that will be the
target of a call from the application program. The name is topicalias and the value

Program Map file Help file
Numeric ID > Symbolic ID > Help topic

16 PRODUCING ON-LINE HELP SETTING UP CONTEXT SENSITIVE HELP (CSH)

ALL RIGHTS RESERVED. MAY 19, 2013 279

is the symbolic ID for the topic. Insert a separate <data /> element with a unique
symbolic ID for each call from the application. Put the <data /> element in the
topic, after the root and before the title. For example:

<topic id="framistans">
<data name="topicalias" value="IDH_framistan" />
<title>Framistan maintenance</title>
 ...
</topic>

DITA2Go also supports Omni Systems TopicAlias PI markers of the form:
<?dthtm TopicAlias="IDH_ about" ?>

and native FrameMaker DITA CSH PI markers of the form:
<?FM MARKER [TopicAlias] IDH_ about?>

as well as DITA-FMx <data /> elements of the form:
<data datatype="fm:marker" name="TopicAlias" value= "IDH_ about" />

2. Create or obtain a map file (possibly except JavaHelp and Oracle Help for Java; see
§20.12 Setting up CSH for JavaHelp or Oracle Help on page 410).

3. Specify prefixes that identify CSH links (HTML Help or OmniHelp).
List topic-name prefixes in the configuration file, to identify TopicAlias PI markers
intended for CSH use. If you do not specify any prefixes, all TopicAlias PI markers
are included.

4. Map the appropriate application-provided number to each symbolic ID.
For C/C++ applications, usually the developer provides a map file. If not, for WinHelp
or HTML Help you can use a simple syntax described in the Help provided for those
Help systems. Otherwise, for each Help call in the program, add a line of the
following form to the map file:

#define symbolic_ID numeric_ID

You cannot map multiple numeric IDs to the same symbolic ID; each entry in the map
file must specify a different symbolic ID. If you need CSH links to the same Help
topic from more than one point in the application, include in the topic a separate
TopicAlias PI marker with a unique symbolic ID for each such Help call.

5. Add a map-file entry to the Help project file (WinHelp or HTML Help).
In the [MAP] section of the Help project file (MyDoc.hpj or MyDoc.hhp), add a line
of the following form to identify the map file:

#include MapFileName.h

DITA2Go creates a CSH link destination from each TopicAlias PI marker whose name
starts with one of the prefixes you specified in Step 3, or all the TopicAlias PI markers if
you did not specify any prefixes. Make sure the symbolic IDs in the TopicAlias PI markers
are spelled the same way as in the map file.

By default, DITA2Go removes punctuation and spaces from the TopicAlias PI marker
content. If your HTML-based Help system requires CSH IDs that use characters such as
periods, set the following option:

[HTMLOptions]
; UseRawNewlinks = No (default, remove punctuation, spaces)
; or Yes (as is)
UseRawNewlinks=Yes

SETTING UP A DYNAMIC MODULAR HELP SYSTEM DITA2GO USER’S GUIDE

280 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

16.11 Setting up a dynamic modular Help system
Suppose you are providing Help for a product with several optional modules, and you
want to supply each customer with information only about the modules licensed by that
customer. Or, suppose a user decides not to install a module, or adds a new module later.
Or, suppose you have created reusable Help modules that can be incorporated into any of a
number of main Help systems, such as “Help on Help”.

Any Help system that DITA2Go generates can be made to access more than one module,
yet appear to the user as a single unit. The user accesses a single Help file, and sees
integrated contents, index, and related-topic links, containing information only for the
relevant modules. Additional modules are loaded dynamically, when a user clicks a
Contents , Index , Related Topics , or Search entry that references a separate module.

Methods and configuration settings vary according to which type of Help system you are
generating. See the following for more information:

(No illustrations)

Help system Reference
WinHelp §17.2.8 Providing multiple .hlp files on page 285
MS HTML Help §18.14 Mapping and merging CHM files on page 348
OmniHelp §19.12 Merging OmniHelp projects on page 377

JavaHelp, Oracle Help for Java §20.11 Merging JavaHelp or Oracle Help systems on page 410
Eclipse Help §21.6 Merging Eclipse Help projects on page 423

ALL RIGHTS RESERVED. MAY 19, 2013 281

17 Generating WinHelp

DITA2Go produces RTF topic files, CNT (contents) files, and WMF graphics files for
WinHelp. Most format conversion options are the same as for print RTF. This section
addresses issues that are specific to WinHelp. Topics covered:

§17.1 Obtaining tools for WinHelp on page 281
§17.2 Setting up a WinHelp project on page 281
§17.3 Converting text on page 286
§17.4 Converting cross references on page 288
§17.5 Converting tables to WinHelp RTF on page 290
§17.6 Managing graphics for WinHelp on page 292
§17.7 Configuring WinHelp topics on page 294
§17.8 Creating jumps and pop-ups for WinHelp on page 299
§17.9 Invoking WinHelp macros on page 302
§17.10 Creating related-topic links in WinHelp on page 303
§17.11 Configuring index entries for WinHelp on page 305
§17.12 Configuring contents for WinHelp on page 306
§17.13 Creating browse sequences on page 310

See also:
§15 Converting to print RTF on page 219, for information about settings that work the
same way for print RTF and for WinHelp.
§16 Producing on-line Help on page 243, for information about configuring contents
and index, providing related-topics links, supporting context-sensitive help, and
merging help projects.

17.1 Obtaining tools for WinHelp
To generate WinHelp you need Microsoft Help Workshop, hcw.exe . However, this
program is no longer available. If you have Microsoft Visual Studio 2008, Help Workshop
was reportedly included in that version. If you do not have access to Help Workshop, you
must choose a Help output type other than WinHelp; see §16.1 Weighing Help-system
alternatives on page 243.

To view WinHelp, users with systems running Windows Vista or Windows 7 will have to
download a new WinHelp engine from Microsoft:

Note: The WinHelp engine, winhlp32.exe , cannot be distributed by third parties, so
do not include it when you distribute a WinHelp system. Every installation of
winhlp32.exe requires Microsoft validation.

17.2 Setting up a WinHelp project
When you specify WinHelp for output, DITA2Go produces the .hpj , the .cnt , the .wmf
graphics, and the WinHelp-coded .rtf files. You open the .hpj in Help Workshop, and
click Compile . You can view the result in Help Workshop.

Windows Vista: http://tinyurl.com/4pkahu2
Windows 7: http://tinyurl.com/67qt76f

http://tinyurl.com/4pkahu2
http://tinyurl.com/67qt76f

SETTING UP A WINHELP PROJECT DITA2GO USER’S GUIDE

282 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

In this section:
§17.2.1 Setting up a WinHelp project on page 282
§17.2.2 Deciding where to locate configuration settings on page 282
§17.2.4 Deciding whether to regenerate the WinHelp project file on page 282
§17.2.5 Accommodating platform differences on page 283
§17.2.6 Setting basic WinHelp options in the configuration file on page 284
§17.2.7 Handling page breaks and section breaks on page 285
§17.2.8 Providing multiple .hlp files on page 285
§17.2.9 Integrating WinHelp from RoboHelp on page 285
§17.2.10 Compiling a WinHelp project on page 285
§17.2.11 Checking WinHelp RTF files for DITA2Go version on page 286

17.2.1 Setting up a WinHelp project

To set up a WinHelp project:

1. Create a project directory for WinHelp RTF files, separate from the directory where
your DITA document is located.

2. Use a text editor to specify settings in configuration file _d2winhelp.ini (see §3.1
Working with DITA2Go configuration files on page 49).

17.2.2 Deciding where to locate configuration sett ings

When you set up a WinHelp project, if configuration file _d2winhelp.ini is not already
present in the project directory, you must copy this file from your DITA2Go
config\local directory (see §1.3.1 Set up a framework for Omni Systems applications
on page 29).

Which
configuration file?

To configure WinHelp output, add settings to one of the following files, depending on the
desired scope of each setting:

See §39.4 Deciding which configuration file to edit on page 734.

17.2.3 Preparing a document for conversion to WinH elp

To generate WinHelp from a DITA document, observe the following guidelines:

 • Keep file names short; very long names might exceed limits in WinHelp, especially
the 64-character limit on lines in the .cnt file.

 • Provide versions of graphics in BMP or WMF format.

17.2.4 Deciding whether to regenerate the WinHelp project file

When you use DITA2Go to generate WinHelp, DITA2Go writes an .hpj project file
during set-up, and rewrites it later only under certain conditions.

To specify whether DITA2Go should generate the .hpj project file anew each time you
run the conversion:

Scope Configuration file Location

Current project
only

_d2winhelp.ini Current project directory

All WinHelp
projects

local_d2winhelp_config.ini %omsyshome%\d2g\local\con fig\

17 GENERATING WINHELP SETTING UP A WINHELP PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 283

[HelpOptions]
; WriteHelpProjectFile = Yes (write each time) or N o; if no setting,
; write only if the file does not already exist.
WriteHelpProjectFile = Yes

The values you can specify for WriteHelpProjectFile have the following effects:

DITA2Go closes the .hpj file after writing it; however, if you had the .hpj file open in
Help Workshop when DITA2Go rewrote it, you could get an access violation. (Notepad
would just rewrite the old file over the rewritten one.)

If you set WriteHelpProjectFile=Yes and then later decide to modify the .hpj file,
be sure to set WriteHelpProjectFile=No ; otherwise your edits will be wiped out the
next time you convert.

If you use Help Workshop to make changes that are not reflected in the configuration file,
and they are changes you want to keep, you can prevent DITA2Go from overwriting them
by setting WriteHelpProjectFile=No .

17.2.5 Accommodating platform differences

You must specify a few [HelpOptions] settings according to the platform on which your
WinHelp file will be used:

[HelpOptions]
; Altura = No (default) or Yes (Altura QuickHelp fo r Mac)
Altura=No
; HyperHelp = No (default) or Yes (Bristol HyperHel p for UNIX)
HyperHelp=No
; ForceBmc = No (default) or Yes (use bmc, not bml, for HyperHelp)
ForceBmc=No
; HelpSectionBreaks = Yes (default) for sect break before each topic,
; or No for Altura (filter strips table format fro m topic titles)
HelpSectionBreaks=Yes

Windows
9x/ME/NT/2000

The default settings work for all 32-bit Windows platforms:
[HelpOptions]
Altura=No
HyperHelp=No
ForceBmc=No
HelpSectionBreaks=Yes

Macintosh If you are targeting the Macintosh platform, and you are using Altura QuickHelp, set
Altura=Yes . This setting does not work for regular Windows versions, so expect to run
DITA2Go twice to produce both forms. However, you might find that Altura QuickHelp
does work when you set HelpSectionBreaks=No and Altura=No , in which case you
can get by with one version instead of two.

UNIX For UNIX users, DITA2Go has a setting for Bristol HyperHelp: HyperHelp=Yes .
Unfortunately, HyperHelp has trouble with WMF graphics. You must use a graphics
conversion program to convert all WMF graphics to BMP graphics. Also set
[HelpOptions] ForceBmc=Yes , to change all bml references to bmc.

Yes If the .hpj file is present, DITA2Go overwrites it.

No DITA2Go does not overwrite the .hpj file.

(none) If the configuration file contains no WriteHelpProjectFile setting
at all, DITA2Go writes an .hpj file, but only if the .hpj file is not
already present.

SETTING UP A WINHELP PROJECT DITA2GO USER’S GUIDE

284 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

If you are using HyperHelp you might need to prevent multiple interword spacing when
there are index markers in text. If you see extra space at index markers, try
EndFtnWithSpace=No :

[HelpOptions]
; EndFtnWithSpace = Yes (Help default) or No (Hyper Help default)
EndFtnWithSpace=Yes
; FootnoteSpace = After (the } after the symbol, de fault),
; Before, or None
FootnoteSpace=After

17.2.6 Setting basic WinHelp options in the config uration file

When you set up a WinHelp project, you must provide your own WinHelp.hpj file, and
add or modify the configuration settings as follows:

1. For each heading format that starts a topic, specify properties:
[HelpStyles]
; style = key list, where list members are separate d
; by spaces only
ParaFmt = Property1 Property2 Property3 ...

where:

2. For each topic-starting heading format that should appear in the .cnt file, specify a
Contents level. For example:

[HelpCntStyles]
ParaFmt=Contents level

See §17.12.2.1 Understanding WinHelp contents level numbers on page 307.

3. Specify whether you want a combined .cnt file:
[HelpOptions]
; MakeCombinedCnt = Yes (default, when processing f rom open book)
MakeCombinedCnt=Yes

4. Specify whether you want to run the help compiler automatically as the last
conversion step (not recommended for large projects); if so, provide a name for the
help project file:

[Automation]
; CompileHelp = No (default, run help compiler sepa rately), or Yes
CompileHelp=Yes

[HelpOptions]
; HPJFileName = name of .hpj to use when compiling help
HPJFileName= myproj.hpj

To have DITA2Go copy the .hpj file to another directory after generating output files,
specify the following:

[Automation]
WrapAndShip=Yes
; WrapPath = path to dir for compiling and distribu tion,
; default is output dir
WrapPath=.\help

See §44.6 Assembling files for distribution on page 792.

ParaFmt is the name of the heading format

PropertyN is a help style attribute, such as Topic , Browse , or Key.

17 GENERATING WINHELP SETTING UP A WINHELP PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 285

17.2.7 Handling page breaks and section breaks

WinHelp uses page and section breaks for a radically different purpose from print RTF.
Page breaks are reinterpreted to mean “start of topic”, and a definite sequence of codes
must follow the topic start in the prescribed order. DITA2Go creates this sequence
automatically when you specify [HelpStyles] ParaFmt=Topic (see §17.7.2 Assigning
properties to formats for topics and hotspots on page 295).

Section breaks are used as an undocumented modifier to page breaks; they permit the help
compiler to avoid going into convulsions if the first thing after a page break is a table.
Unless you are converting to WinHelp on an Altura system, use the default setting for
section breaks:

[HelpOptions]
; HelpSectionBreaks = Yes (default) for sect break before each topic,
; or No for Altura (filter strips table format fro m topic titles)
HelpSectionBreaks=Yes

The following options have no use in WinHelp; set them as indicated (the WinHelp
defaults):

[HelpOptions]
PageBreaks=Remove
KeepSectBreaks=No

17.2.8 Providing multiple .hlp files

You can provide multiple .hlp files instead of a single .hlp file. You must set
configuration options to ensure the links between .hlp files work as expected. See:

§17.4.2 Specifying cross-reference destination files on page 289
§17.12.2.5 Referencing multiple help files from contents on page 309

As an alternative, you can provide a main .hlp file with contents entries that link to other
.hlp files; see §16.11 Setting up a dynamic modular Help system on page 280.

For more information, see Designing your Help system > Planning your Help sys tem
> Designing for multiple Help files in Help Workshop Help Topics: Help Author’s
Guide.

17.2.9 Integrating WinHelp from RoboHelp

If you have RoboHelp installed on your system, you can integrate a WinHelp DLL created
with RoboHelp into your DITA2Go -produced WinHelp project.

1. Use RoboHelp to generate a WinHelp 2000 project of any size, even one short file.

2. Open the resulting .hpj file in a text editor, and look for the sections that specify the
start-up code.

3. Copy the start-up code sections, unaltered, into the .hpj file produced by DITA2Go .

17.2.10 Compiling a WinHelp project

To compile the RTF files DITA2Go produces, you need Microsoft Help Workshop
(hcw.exe). Make sure you have the latest version of Help Workshop. If hcw.exe is not
on your system PATH, you must tell DITA2Go where to find it:

[HelpOptions]
; Compiler = path\to\hcw; can include run parameters
Compiler = hcw /c /e

CONVERTING TEXT DITA2GO USER’S GUIDE

286 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

You can have the compiler display a copyright statement and a compile date in the
WinHelp Version Information dialog:

[HelpOptions]
HelpCopyright = your copyright statement
HelpCopyDate = Yes

For example:
[HelpOptions]
HelpCopyright = (c) 2001-2012 Omni Systems, Inc.
HelpCopyDate = Yes

These settings resulted in the following, displayed in the WinHelp Version Information
dialog:

(c) 2001-2012 Omni Systems, Inc.
Monday, February 20, 2012 18:24:39

When you specify the following options in the configuration file, DITA2Go automatically
runs the WinHelp compiler after generating output files:

[Automation]
; CompileHelp = No (default, run Help compiler sepa rately), or Yes
CompileHelp=Yes

To have DITA2Go copy the .hpj file to another directory for compiling, specify the
following:

[Automation]
; WrapPath = path to dir for compiling and distribu tion,
; default is output dir
WrapPath=.\help

See §44.6 Assembling files for distribution on page 792.

Tell the Help
compiler where to

find graphics

If your graphics are in more than one place, you can add multiple BMROOT= entries to the
[OPTIONS] section of your Help Project (.hpj) file. For example:

[OPTIONS]
BMROOT=..\MyGraphics
BMROOT=..\Test\Graphics

17.2.11 Checking WinHelp RTF files for DITA2Go ver sion

If you recently installed a DITA2Go upgrade or beta version, after you run DITA2Go ,
check to make sure the latest version was actually used to produce RTF output. Windows
sometimes caches DLLs, and does not always use a newly replaced DLL until after the
system is rebooted.

Open an RTF output file in Word and choose File > Properties > Comments . You should
see a line like the following:

DCL filter dwrtf, Ver 3.3 m194b r278b

The last two entries identify the build numbers of the DITA2Go drmif.dll and
dwrtf.dll components that were used to create the RTF file. See §A.1.5 Check your
version of DITA2Go on page 820.

17.3 Converting text
In this section:

§17.3.1 Suppressing unwanted paragraphs on page 287
§17.3.2 Converting autonumbers on page 287

17 GENERATING WINHELP CONVERTING TEXT

ALL RIGHTS RESERVED. MAY 19, 2013 287

§17.3.3 Replacing paragraph or character content on page 287
§17.3.4 Converting footnotes on page 288

17.3.1 Suppressing unwanted paragraphs

To prevent text from appearing in RTF output:

1. Assign a special paragraph format to all instances of the text in your document.

2. In the configuration file, assign property Delete to the paragraph format:
[HelpStyles]
; Delete is used to remove displayable text
Continuation=Delete

Note: If a table or graphic is anchored in a paragraph whose format is assigned the
Delete property, the table or graphic is retained, and only the text of the
paragraph is deleted.

17.3.2 Converting autonumbers

By default, DITA2Go includes paragraph autonumbers as text in WinHelp output. To omit
autonumbers:

[HelpOptions]
; WriteAnums = Yes (default) or No (omit autonumber s)
WriteAnums = No

When WriteAnums=Yes (the default), DITA2Go adds numbering prefixes to text
paragraphs, according to numbering properties you assign to paragraph formats (see §8.5
Configuring output numbering properties on page 146) and format definitions you specify
in a format configuration file (see §7.5 Understanding text output formats on page 119).

When WriteAnums=No , DITA2Go -supplied numbering is omitted.

17.3.3 Replacing paragraph or character content

You can direct DITA2Go to replace the content of a paragraph, or of a character-formatted
span of text, with arbitrary RTF code. For example, to replace page numbers with graphics
in a generated file to be included in WinHelp output:

[HelpStyles]
; Replace deletes, and also puts out the RTF in [He lpReplacements]
IOMpgnum=Replace

You specify the replacement RTF code as a property of the format in question, in the
following section. For example:

[HelpReplacements]
; Replace causes the insertion of the corresponding raw RTF code below
; in place of the original content of the named p ara or char format
IOMpgnum=\ .{bmc document.bmp\ .}

This feature is used in the WinHelp version of the DITA2Go User’s Guide, to replace
page numbers in keyword indexes with bitmap graphics.

CONVERTING CROSS REFERENCES DITA2GO USER’S GUIDE

288 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

17.3.4 Converting footnotes

DITA2Go can convert a DITA footnote to a WinHelp jump (the default) or to a WinHelp
pop-up, instead of leaving it as a footnote:

The default is to convert footnotes to jumps. You can also specify that footnotes should
remain as is, or appear embedded in the text between brackets in place of the footnote
number:

[HelpOptions]
; Footnotes = Standard, Embed (between []), Jump, P opup, or None
; default is Jump, which looks more normal than Pop up
Footnotes=Jump

To separate footnotes from text at the end of the topic when Footnotes=Standard :
[HelpOptions]
; FootnoteSeparator = RTF to use for separator abov e footnotes at the
; bottom of the page, can be a macro reference, def ault none
FootnoteSeparator=
\n\\pard\\plain\\fs20\\emdash\\emdash\\emdash\\emda sh\\par\n

This setting must be all on one line, even though it might not appear that way here.

17.4 Converting cross references
By default, DITA2Go converts cross references into jumps, including interfile jumps
where needed.

In this section:
§17.4.1 Creating help context markers on page 288
§17.4.2 Specifying cross-reference destination files on page 289
§17.4.3 Specifying cross-reference jump destinations on page 289
§17.4.4 Specifying WinHelp options for cross-reference formats on page 290
§17.4.5 Limiting cross-reference text on page 290

17.4.1 Creating help context markers

DITA2Go can convert cross references to help context markers; this is the default for
WinHelp:

[HelpOptions]
; Xrefs = Help (make context markers) or None (plai n text)
Xrefs=Help

You can specify whether to use the cross-reference ID (the default), or the full text of the
cross reference:

[HelpOptions]
; XrefType = = Numeric (default) or Full (use only to eliminate dupes)
XrefType=Numeric

Jump: The footnote number is a hotspot; click it, and you jump to the footnote,
which is placed at the bottom of the topic. You can also view the
footnote by scrolling to the bottom of the page; if the topic is short, you
might not need to scroll.

Pop-up: The footnote appears in a pop-up window by itself when you click the
footnote number; it does not appear on the topic page at all. This might
be desirable in long tables, to give added bits of information for selected
items without scrolling.

17 GENERATING WINHELP CONVERTING CROSS REFERENCES

ALL RIGHTS RESERVED. MAY 19, 2013 289

If you specify XrefType=Full , you get the complete referenced text in the WinHelp
context marker. Such text can easily exceed the 63-character size limit for cross-reference
IDs in WinHelp, and might contain characters that are not valid in WinHelp IDs.

If you specify XrefType=Numeric (or if you omit the setting entirely) DITA2Go uses
internally generated object IDs instead of the full cross-reference text.

17.4.2 Specifying cross-reference destination file s

If all your cross references are to sources within the same .hlp file, DITA2Go can
process them without further information from you. If you have cross references to other
files, you must specify into which .hlp files the original source files will be placed.

Single file When all source files are going into the same .hlp file, you can use a one-step setting:
[HelpOptions]
XrefFileDefault= helpfilename

Multiple files When you create multiple interlinked .hlp files, you must specify a mapping for each
external file name that is specified in the helpset (but not in the current .hlp file) to the
name of the .hlp file that contains the corresponding topic. You must insert this
information in the configuration file for each helpset in the interlinked group of helpsets.
Do not include paths or file extensions. For example:

[HelpXrefFiles]
; file name in xref = file name for .hlp
intro=help1
chap1=help1
chap2=help2

Default file DITA2Go checks [HelpXrefFiles] for each cross reference to another file; if the file
name is not listed, DITA2Go retains the original file name. Therefore, it is important to
list the names of all source files included in each .hlp file.

Links to file
names

What this does is cause the .hlp file name to be added to any links that reference the
other files named. You do not need the mappings for the files going into the .hlp file you
are constructing, because those do not require the extra information. You do need the
mapping for files outside the .hlp file you are currently constructing. However, having
the entire set present for all files is harmless.

Links from
contents

If you are merging multiple help files into a set, also consider contents entries; see
§17.12.2.5 Referencing multiple help files from contents on page 309.

17.4.3 Specifying cross-reference jump destination s

DITA2Go uses a reference number to produce a jump from a cross reference. For interfile
cross references to or from the help file you are producing, you must specify the names of
all the topic files involved, in the form topicfile=helpfile; for example:

[HelpXrefFiles]
; file name in xref = file name for .hlp
chap1=chaphelp

You can specify a file extension for the destination help file; the default is hlp :
[Setup]
; FileSuffix = suffix to use (no leading dot)
; when converting [HelpXrefFiles] xrefs
FileSuffix=hlp

You can specify a name (without file extension) to use for any topic files not listed, as
XrefFileDefault= helpfilename. You can use this setting for your own usual help-

CONVERTING TABLES TO WINHELP RTF DITA2GO USER’S GUIDE

290 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

file name, so you do not have to name this file explicitly under [HelpXrefFiles] . For
example:

[HelpOptions]
; XrefFileDefault = name of file to use for missing XrefFiles
XrefFileDefault = dita2go

17.4.4 Specifying WinHelp options for cross-refere nce formats

You might not want every cross reference in your document to become a link in WinHelp.
You can choose to have DITA2Go delete cross references of a certain format, or convert
them to text. For example:

[XrefStyles]
; xref format name = properties (Delete or Text)
; if omitted treated as link
Heading & Page=Text
Page=Delete

In this example, DITA2Go would render any cross reference that uses the Heading & Page
format as plain text rather than as a link. DITA2Go would also delete any cross reference
that uses the Page format.

17.4.5 Limiting cross-reference text

DITA cross references can be quite long. If you are using the full text, not just the number
part, referencing them can be a problem in WinHelp. You can specify a limit to the length
of cross-reference text, and DITA2Go will truncate any that are longer. Set the limit
shorter to save space, or longer to eliminate duplication when text is truncated:

[HelpOptions]
; XrefLenLimit = 64 (default max length
; for xref identifiers, truncate)
XrefLenLimit = 64

See also §17.8.2 Creating hotspots for jumps and pop-ups in WinHelp on page 299.

17.5 Converting tables to WinHelp RTF
You can adjust the way tables appear in WinHelp, to a limited extent; the RTF way of
making tables is primitive, and WinHelp takes away most of the few options. You can also
disassemble tables and convert the rows to topics.

In this section:
§17.5.1 Positioning tables and table titles on page 290
§17.5.2 Adjusting table appearance on page 291
§17.5.3 Converting table rows to topics and table cells to pop-ups on page 292

17.5.1 Positioning tables and table titles

To adjust how tables are positioned in relation to surrounding text in WinHelp:
[Tables]
; ShiftWideTablesLeft=Yes (default, unindent overwi dth tables) or No
ShiftWideTablesLeft=Yes
; TableWidthsFixed=Yes (default) or No (centered ta bles are variable)
TableWidthsFixed=Yes

17 GENERATING WINHELP CONVERTING TABLES TO WINHELP RTF

ALL RIGHTS RESERVED. MAY 19, 2013 291

Set TableWidthsFixed=No to cause tables to be adaptively sized to the window width
in WinHelp. All other converted tables are left-aligned; WinHelp does not support right-
aligned tables.

Note: Setting TableWidthsFixed=No makes only centered tables adaptive in size.
This is a WinHelp rule; no other table alignment results in adaptive sizing.

Titles To position table titles:
[Tables]
; TableTitles = 0 to leave alone, 1 to put at top, 2 to put at bottom
; put at top when used as topic titles or jump targ ets
TableTitles=1

Usually the best position for WinHelp is above the table.

17.5.2 Adjusting table appearance

Before you attempt the fine tuning described in this section:

 • To specify output formats and general options for DITA table types, see §6.9
Specifying formats and options for tables on page 103.

 • To map table elements to output formats using attributes, see §6.3.2 Mapping table
outputclass attributes to formats on page 90.

 • To define properties for each table format, see §7.7 Configuring table output formats
on page 129.

You can fine-tune a few aspects of table appearance in WinHelp:
Rules, fill, line breaks
Graphics
Column width
Column straddles

Rules, fill, line
breaks

These settings apply to all tables in the document:
[Tables]
; TableRules = None (help default), or one of the B ox types:
; Box, Double, Thick, Shadow, Para, or Variable
TableRules=None
; TableFill = AsIs (default, shading is unavailable), ColorOnly, None
TableFill=AsIs
; ForceTableLineBreaks = No (default) or Yes (make soft breaks hard)
ForceTableLineBreaks=No

TableRules and TableFill determine whether corresponding values set in a table-
format configuration file take effect:

 • If TableRules=None , DITA2Go does not write borders.
 • If TableRules=Box , Double , Thick , or Shadow, DITA2Go ignores the

corresponding table-format configuration values.
 • If TableFill=None or ColorOnly , DITA2Go ignores the table-format

configuration settings for shading.

When ForceTableLineBreaks=Yes , DITA2Go turns line wraps in table cells into line
breaks in WinHelp, which often does a poor job of wrapping text in table cells.

Graphics If you have frames anchored inside a table cell that do not appear in the output, specify the
following:

[Tables]
; TableGraphics = Standard (default, in cell), None , or Outside
; applies only to non-inline and non-runin frames a nchored in cell
TableGraphics=Outside

MANAGING GRAPHICS FOR WINHELP DITA2GO USER’S GUIDE

292 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Column width DITA2Go has two settings available to fine tune the cell size. You can adjust the table
column width as a percentage of the original width, or change the width by a number of
twips (twentieths of a point):

[Tables]
; TblColWid* rescales all table column widths in th e file, using:
; Pct as the percentage to apply to the original size, 0-32766
; Add as the twips to add to the scaled result; n eg to subtract
TblColWidPct=100
TblColWidAdd=0

You can use both in combination; for example, to add 20% + 360 twips:
[Tables]
TblColWidPct=20
TblColWidAdd=360

To specify the full width of tables for which column widths are percentages:
[Tables]
; TblFullWidth is the size in twips used to compute column widths when
; widths are given as percentages, default of 9360 twips (6.5 inches).
TblFullWidth=9360

Column straddles By default, DITA2Go combines table cells that straddle columns into a single cell in
WinHelp; however, you can override the default:

[Tables]
; MergeStradCells = Yes (default, combine col-strad dling cells) or No
MergeStradCells=No

Note: For Word output, the default value of MergeStradCells is No (the opposite of
the default for WinHelp); see §15.6 Converting tables to print RTF on page 232.

17.5.3 Converting table rows to topics and table c ells to pop-ups

DITA2Go can remove the formatting from a table and make each row into a topic:
[Tables]
; StripTables = No (default) or Yes (when every row is a new topic)
StripTables=Yes

This setting applies to all tables in a document (or in a single file, if you convert that file
separately); use it only to disassemble all the tables. The text in the first column of each
table row becomes the topic title if you designate the paragraph format used in the first
column as Topic :

[HelpStyles]
First_column_format=Topic

Before stripping a table, DITA2Go adds an RTF paragraph break (\par) to each cell to
mark the end of the cell content after the table formatting is gone. If you are using the cell
content for a pop-up (see §17.7.1 Creating WinHelp topics on page 294), the presence of
the \par causes extra space around the pop-up text. To reduce the space, you can set the
following option:

[Tables]
; StrippedCellPar = Yes (default, add \par after ce lls)
; or No (omit it)
StrippedCellPar=No

17.6 Managing graphics for WinHelp
WinHelp understands only two graphics formats: WMF and BMP. Graphics in other
formats must be converted. Although it may seem that other formats such as GIF work for

17 GENERATING WINHELP MANAGING GRAPHICS FOR WINHELP

ALL RIGHTS RESERVED. MAY 19, 2013 293

WinHelp, actually any format other than WMF or BMP is converted by the WinHelp
compiler, using a Microsoft Office filter; not the best process.

To exclude graphics entirely, or display only graphics file names, see §40.2.2.3 Excluding
graphics from RTF output on page 751.

In this section:
§17.6.1 Choosing a graphics format for WinHelp on page 293
§17.6.2 Displaying graphics in pop-ups for WinHelp on page 293

See also:
§17.8.2.3 Embedding hotspots in graphics for WinHelp on page 300

17.6.1 Choosing a graphics format for WinHelp

The format WinHelp likes best is WMF, which can contain both vector and bitmap
elements. For screenshots, use the same resolution at which they were taken, 96DPI; more
or less will result in unreadable text.

For non-Windows WinHelp, created via Altura on Macintosh or Bristol HyperHelp on
UNIX, only BMP is supported; see §17.2.5 Accommodating platform differences on
page 283.

17.6.2 Displaying graphics in pop-ups for WinHelp

Suppose you want one or more of the illustrations in your document to appear only in pop-
ups, instead of in line with the text; and suppose you want the illustrations to appear only
when a user clicks the figure caption. DITA2Go provides two ways to accomplish this:

 • Insert hypertext PI markers in the anchor and caption paragraphs.
 • Assign additional format properties to the anchor and caption paragraphs.

The results of either method are as follows:

 • The caption becomes a hotspot.
 • The illustration appears in a pop-up window, and is displayed only when the caption is

clicked.

Note: For either method to work, graphics to appear in pop-ups must have captions
positioned below the graphics.

Using hypertext
markers

To use hypertext PI markers for pop-up graphics (see §17.8.4 Using hypertext links for
jumps and pop-ups on page 301):

1. Embed a HyperAnchor PI marker with a unique name in the paragraph that holds the
anchor for the graphic.

2. Embed a corresponding HyperJump PI marker in the caption paragraph for the
graphic.

3. In the configuration file, set the following:
[HelpStyles]
FigAnchor=Topic Slide Scroll NoXScroll
FigCaption=PopOver Green Resume

For this to work, every graphic must have a caption paragraph after the graphic, or at least
some distinct paragraph format immediately following the graphic that can be assigned
property Resume. Otherwise, the rest of the topic also appears in the pop-up.

Using format
properties

To use format properties for pop-up graphics:

1. Assign property MakeRef to the paragraph format that anchors the graphic.

CONFIGURING WINHELP TOPICS DITA2GO USER’S GUIDE

294 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

2. Assign property PrevRef to the caption paragraph, which must follow the graphic.

Configuration settings are as follows:
[HelpStyles]
FigAnchor=Topic Slide Scroll NoXScroll MakeRef
FigCaption=PopOver Green Resume PrevRef

17.7 Configuring WinHelp topics
To produce the organization and navigation features of WinHelp, you assign topic and
hotspot properties to paragraph, character, and cross-reference formats assigned to DITA
elements. The first property assigned to each format identifies the role that all text in that
format will play in the Help system.

In this section:
§17.7.1 Creating WinHelp topics on page 294
§17.7.2 Assigning properties to formats for topics and hotspots on page 295
§17.7.3 Configuring topic titles for WinHelp on page 297

17.7.1 Creating WinHelp topics

To create topics, in the configuration file assign property Topic to the paragraph format
of the heading (or other paragraph) that starts material to be included in a topic:

[HelpStyles]
; style = key list, where list members are separate d by spaces only
Heading_format=Topic

You can start a topic within a table only if you eliminate table structure for all tables in
your document:

[Tables]
StripTables=Yes

See §17.5.3 Converting table rows to topics and table cells to pop-ups on page 292.

The format to which you assign property Topic becomes the title of the topic in WinHelp;
see §17.7.3 Configuring topic titles for WinHelp on page 297.

You can create three kinds of WinHelp topics with DITA2Go :

Normal topics A normal topic has properties such as the following:
[HelpStyles]
Heading 1=Topic Browse Key Contents

See §17.7.2 Assigning properties to formats for topics and hotspots on page 295 for
information about these and other topic properties.

Sliding topics A sliding topic has property Slide in addition to Topic and any other properties. For
example:

[HelpStyles]
TableTitle =Topic Slide Browse Key Contents

Normal
topics

Usually begins with a heading in your document and continues to the next
heading; appears in a full window when you jump to it.

Sliding
topics

Occurs in the middle of a normal topic in DITA XML, but has to look like
a separate topic in WinHelp; often a table or figure.

Pop-up
topics

Appears in a small window over the current normal topic when selected;
use for definitions or glossary entries.

17 GENERATING WINHELP CONFIGURING WINHELP TOPICS

ALL RIGHTS RESERVED. MAY 19, 2013 295

Sliding topics are meant for embedded glossary terms, tables, or figures, where you want
to lift something out of the middle of another topic and make that something a topic itself.
A sliding topic does not end the previous topic (unless it too was a sliding topic), but just
suspends the previous topic. A sliding topic ends at the next sliding topic, normal topic, or
paragraph with a format to which you have assigned property Resume. For example:

[HelpStyles]
Body=Resume

If the previous topic was a normal topic, that topic continues. This lets you handle tables,
figures, or “lifts” within normal topics separately, without breaking the flow of the normal
topic. If a sliding topic includes Browse , it appears in the browse sequence immediately
after the enclosing normal topic.

Pop-up topics A pop-up topic is a single paragraph, usually not a heading. For example:
[HelpStyles]
Description=Topic Scroll NoXScroll NoTitle

A topic designated for use as a pop-up cannot have a non-scrolling region, or it will pop up
looking empty. Pop-up topics do not have titles; however, if you do not want pop-up topic
text to appear in full-text search, you must assign property NoTitle .

See also §17.8.1 Configuring pop-up topics on page 299.

17.7.2 Assigning properties to formats for topics and hotspots

Assign properties for topics and hotspots as follows:
[HelpStyles]
; style = key list, where list members are separate d by spaces only
Format=StartingProperty FollowingProperty1 FollowingProperty2 ...

Properties for topics and hotspots are assigned to the following formats:

Table 17-1 shows which properties you can assign to formats as starting and following
properties for topics and hotspots. Table 17-2 shows the effects of the properties you
assign.

Topic Starting paragraph format; see §17.7.1 Creating WinHelp topics on
page 294

Hotspot Delimiting character (or paragraph) format; see §17.8.2 Creating hotspots
for jumps and pop-ups in WinHelp on page 299.

Table 17-1 Starting and following format properties for topics and hotspots

 Type Starting Following

Topic PopContent AKey Delete Key SpKey Suffix

JumpTarget AKey Contents Delete Key Local 1 Resume SpKey Suffix

Topic AKey Browse Build Contents Delete Key Macro Ma keRef
NoScroll NoTitle NoXScroll Refer Scroll Slide SpKey
Suffix TitleSuf Window XScroll

CONFIGURING WINHELP TOPICS DITA2GO USER’S GUIDE

296 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Hotspot AKey Delete Key Resume SpKey

Delete AKey Key Resume SpKey Suffix

JumpHot AKey Delete File Green Key Local Resume SpKe y Suffix
Uline Window

Key AKey Delete Resume SpKey

MacroHot AKey Delete Green Key Resume SpKey Uline

ParaLink Resume

PopHot AKey Delete File Green Key Local Resume SpKey Suffix
Uline

PopOver AKey Delete Green 2 Key ParaLink PrevRef Resume SpKey
Suffix Uline 2

Replace AKey Key Resume SpKey Suffix

Resume Delete

SpKey AKey Delete Key Resume
1 Within current topic only. 2 Applied to cross references or hypertext links.,

Table 17-2 Effects of format properties on topics and hotspots

Property Effect

AKey Adds the topic title as an “A” footnote. See §17.10.2 Adding ALinks and KLinks with PI
markers on page 304.

Browse Includes the topic in the browse sequence; DITA2Go creates the “+” footnote. See §17.13
Creating browse sequences on page 310.

Build Specifies a “build tag” for the topic, defined in the .hpj file, which is used to enable
conditional compilation of different Help-file versions. The build tag name is in the
[HelpTopicBuildStyles] section, as format=buildtag ; DITA2Go creates the “* ”
footnote.

Contents Includes the topic (as a page, book, or both) in the WinHelp .cnt file produced by
DITA2Go. See §17.12 Configuring contents for WinHelp on page 306.

Delete Suppresses appearance in the output of text in the assigned format. Tables and graphics
anchored in a suppressed paragraph are retained; see §17.3.1 Suppressing unwanted
paragraphs on page 287.

File Directs the jump or pop-up to a topic in a different .hlp file.
Green Makes a hotspot green and underlined. See §17.8.2.1 Configuring jump vs. pop-up

hotspots on page 300.

Key Adds the topic title as a keyword, so it appears in the WinHelp index. See §17.10.3 Adding
related-topic keywords with formats on page 304.

Local Produces a reference string that is local to the topic, so the same term can be used in more
than one topic in the same .hlp file.

Macro Specifies an entry macro for the topic; this macro is run whenever the topic is selected. The
macro text appears in the [HelpMacroStyles] section, as format=macro ; DITA2Go
creates the “! ” footnote. See §17.9 Invoking WinHelp macros on page 302.

MakeRef Creates a unique reference tag for the current paragraph, to use as a pop-up or jump
destination for a PrevRef paragraph; see §17.6.2 Displaying graphics in pop-ups for
WinHelp on page 293.

NoScroll Prevents the topic title from scrolling; overrides [HelpOptions]TitleScroll=Yes . See
§17.7.3.2 Deciding whether to scroll titles on page 298

NoTitle Prevents the topic title from being displayed; when applied to a pop-up topic, prevents the
topic from appearing in full-text search.

Table 17-1 Starting and following format properties for topics and hotspots

 Type Starting Following

17 GENERATING WINHELP CONFIGURING WINHELP TOPICS

ALL RIGHTS RESERVED. MAY 19, 2013 297

17.7.3 Configuring topic titles for WinHelp

In this section:

§17.7.3.1 Categorizing titles on page 297
§17.7.3.2 Deciding whether to scroll titles on page 298
§17.7.3.3 Fine-tuning title appearance on page 298

17.7.3.1 Categorizing titles

To further define or categorize a topic—for example, for glossary terms—you can add a
suffix to each topic title created with a particular format, by assigning the TitleSuf
property to the format. For example:

[HelpStyles]
GlosTerm=Topic Key TitleSuf

NoXScroll Overrides [HelpOptions]ExtendHelpNoScroll=No for pop-ups. See §17.7.3.2
Deciding whether to scroll titles on page 298.

PrevRef Uses the previous unique reference (MakeRef) tag as a pop-up or jump destination for the
whole paragraph or character span; if also PopOver , it is a pop-up. See §17.6.2 Displaying
graphics in pop-ups for WinHelp on page 293.

Replace Deletes the content, which is replace by the RTF code in [HelpReplacements] .

Refer Includes the topic name in a slightly modified form as a reference string for the topic. The
modification consists of removing spaces and any characters other than letters, numbers,
and underscores. DITA2Go creates the “#” footnote for you. Omit this property if the topic is
accessed only from cross references or hypertext links, and from the Contents.

Resume If the topic being processed is a sliding topic, causes that topic to end and the topic that
preceded the sliding topic to continue. See §17.7.1 Creating WinHelp topics on page 294.

Scroll Causes the topic title to scroll; overrides [HelpOptions]TitleScroll=No . See
§17.7.3.2 Deciding whether to scroll titles on page 298.

Slide Makes the topic a sliding topic. See §17.7.1 Creating WinHelp topics on page 294.

SpKey Produces a keyword footnote designated with a different letter (neither “A” nor “K”) See
§17.10.3 Adding related-topic keywords with formats on page 304.

Suffix Differentiates character formats that use the same hotspot text but different references, by
adding a suffix string; use the keyword Suffix for the formats, and add entries for those
formats in [HelpSuffixStyles]format=Suffix text.

TitleSuf Becomes a suffix to the topic title, to further define or categorize the topic; for example, for
glossary terms. In [HelpStyles] , use the keyword TitleSuf for the format, and add an
entry for the format in [HelpTitleSufStyles]format=Suffix text. See §17.7.3.1
Categorizing titles on page 297.

Topic Ends any prior topics and starts a new topic. DITA2Go creates the WinHelp topic start
coding, a page break, and a title ($) footnote, using the tagged text as the title. See §17.7.1
Creating WinHelp topics on page 294.

Uline Underlines a hotspot without turning it green.
Window Makes the topic appear in a specific window, defined in the .hpj file, when it is accessed

from the Index or Find tabs, or from an ALink or KLink macro; but not when it is selected
from a jump or from the Contents. The name of the window appears in the
[HelpWindowStyles] section, as format=Window; DITA2Go creates the “>” footnote.
See §17.8.6 Specifying jumps to secondary windows in WinHelp on page 302.

XScroll Overrides [HelpOptions]ExtendHelpNoScroll=Yes for pop-ups. See §17.7.3.2
Deciding whether to scroll titles on page 298.

Table 17-2 Effects of format properties on topics and hotspots (continued)

Property Effect

CONFIGURING WINHELP TOPICS DITA2GO USER’S GUIDE

298 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To specify the text of the suffix, add an entry for the format in [HelpTitleSufStyles] :
[HelpTitleSufStyles]
GlosTerm=Suffix text

17.7.3.2 Deciding whether to scroll titles

Keep title from
scrolling

A title can either scroll with the text, or remained fixed in a no-scroll region at the top of
the page. The default is for the title to remain fixed:

[HelpOptions]
; TitleScroll = Yes (title para scrolls with text),
; or No (fixed at top)
TitleScroll=No

Add to no-scroll
region

You can extend the no-scroll region to include text that follows the title by setting the
additional paragraphs to have the Keep With Next property, and by specifying the
following:

[HelpOptions]
; ExtendHelpNoScroll = No (default),
; or Yes (allow Keep With Next paras)
ExtendHelpNoScroll=Yes

Override no-scroll
extension

To keep the ExtendHelpNoScroll=Yes setting but override it for particular paragraph
formats, for each such format specify the following:

HelpStyles]
YourFormat=NoXScroll

Note: If a paragraph format is already listed under [HelpStyles] , just add the
NoXScroll property to its current list of properties; do not repeat the format
name.

Scroll title To make titles scroll with the text, specify the following:
[HelpOptions]
TitleScroll=Yes

Override scrolling You can still create a no-scroll region for such topics with this setting:
[HelpOptions]
ExtendHelpNoScroll=Yes

Pop-ups cannot
be scrolled

Pop-up topics do not have scroll bars, so you might have to override the TitleScroll
and ExtendHelpNoScroll settings. For each pop-up-topic paragraph format, add
properties Scroll and NoXScroll . For example:

[HelpStyles]
PopTopic=Topic Scroll NoXScroll

17.7.3.3 Fine-tuning title appearance

Spaces and
indents

You can allow or disallow spacing and indentation in topic titles:
[HelpOptions]
; TitleSpace = Yes (help title para can have space above/below),
; or No
TitleSpace=No
; TitleIndent = Yes (help title para can have left/ right indents),
; or No
TitleIndent=No

Hard returns in
titles

By default, DITA2Go recognizes a hard return as the end of a topic title. If any topic titles
continue past the first hard return, you can prevent this behavior:

[HelpOptions]
; HelpLineBreak = Yes (default, end topic title at hard return) or No
HelpLineBreak=No

17 GENERATING WINHELP CREATING JUMPS AND POP-UPS FOR WINHELP

ALL RIGHTS RESERVED. MAY 19, 2013 299

17.8 Creating jumps and pop-ups for WinHelp
To invoke a jump or a pop-up in WinHelp, you click a hotspot: usually green underlined
text. Clicking a hotspot causes one of the following:

 • a jump, if the underline is solid: another topic replaces the topic in the current window
 • a pop-up, if the underline is dotted: a smaller window pops up over the current

window.

In this section:
§17.8.1 Configuring pop-up topics on page 299
§17.8.2 Creating hotspots for jumps and pop-ups in WinHelp on page 299
§17.8.3 Using cross references for jumps and pop-ups on page 300
§17.8.4 Using hypertext links for jumps and pop-ups on page 301
§17.8.5 Disallowing hypertext links for jumps and pop-ups on page 301
§17.8.6 Specifying jumps to secondary windows in WinHelp on page 302
§17.8.7 Specifying jumps to external files on page 302

See also:
§16.7 Jumping to secondary windows in Help systems on page 262
§16.8 Creating pop-up topics for Help systems on page 263
§17.4.3 Specifying cross-reference jump destinations on page 289
§17.5.3 Converting table rows to topics and table cells to pop-ups on page 292
§17.6.2 Displaying graphics in pop-ups for WinHelp on page 293

17.8.1 Configuring pop-up topics

WinHelp pop-up topics (the contents of the small window that pops up) can be created just
like any other topic. Assign the following properties to the paragraph format for a pop-up
topic:

[HelpStyles]
Poptopicfmt=Topic Scroll NoXScroll

See also:
§17.7.1 Creating WinHelp topics on page 294
§17.8.4.2 Using alert or alerttitle markers for embedded pop-ups on page 301

17.8.2 Creating hotspots for jumps and pop-ups in WinHelp

To create a hotspot, in DITA XML specify a dedicated @outputclass for either of the
following:

 • the text of a cross reference
 • text that contains a hypertext link.

Note: If hotspot text is followed immediately by a space, when your WinHelp project is
compiled the space disappears, even though it is present in the RTF output. The
workaround is to make the space a hard space in DITA XML.

In this section:
§17.8.2.1 Configuring jump vs. pop-up hotspots on page 300
§17.8.2.2 Controlling hotspot appearance on page 300
§17.8.2.3 Embedding hotspots in graphics for WinHelp on page 300

CREATING JUMPS AND POP-UPS FOR WINHELP DITA2GO USER’S GUIDE

300 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

See also:
§16.8.1 Understanding pop-up hotspots, links, and topics on page 263

17.8.2.1 Configuring jump vs. pop-up hotspots

Pop-up hotspot For a pop-up hotspot, assign property PopOver to the hotspot character format:
[HelpStyles]
Hotspotfmt=PopOver

Specify PopOver as the first property to the right of the equals sign. Additional properties
can follow PopOver ; see §17.7.2 Assigning properties to formats for topics and hotspots
on page 295.

Jump hotspot For a jump hotspot, you do not have to assign a property to the hotspot character format;
jump is the default action for a hotspot.

Cross reference
as a hotspot

When you use a cross reference for a hotspot, make sure @outputclass is applied to the
reference string in the cross-reference definition. If another inline element intervenes, the
PopOver property is turned off before it can be used.

Hypertext link for
a hotspot

When you use a hypertext link to designate character-formatted text as a hotspot, do not
place any other PI markers within the hotspot area.

17.8.2.2 Controlling hotspot appearance

By default, hotspot text is green and underlined. To leave the appearance of hotspot text as
is in WinHelp, set the following option:

[HelpOptions]
;UseGreen = Yes (default) or No (remove green color from all links)
UseGreen=No

When UseGreen=No , hotspot character formats to which you have not assigned jump or
pop-up properties in [HelpStyles] retain their original appearance. If you have
assigned such properties, when UseGreen=No some automatically generated links appear
underlined, but retain their original text color.

17.8.2.3 Embedding hotspots in graphics for WinHel p

To embed jump or pop-up hotspots in a graphic, you must first convert the graphic to a
WinHelp “hypergraphic” with the Help Workshop Hotspot Editor, shed.exe , to create a
.shg file from the graphic. Use the Hotspot Editor to set Hotspot IDs to the targets you
want, typically names you inserted in your DITA document as HyperAnchor PI markers
(see §17.8.4 Using hypertext links for jumps and pop-ups on page 301), and specify
whether each hotspot should be a pop-up or a jump.

After you create a .shg file, to make DITA2Go reference the hypergraphic, specify the
following configuration settings:

[Graphics]
FilePaths=None
FileNames=Map

[GraphFiles]
myold.bmp=mynew.shg

17.8.3 Using cross references for jumps and pop-up s
Cross references

as jumps
By default, DITA2Go converts all DITA cross references into jumps for WinHelp,
including interfile jumps where needed.

17 GENERATING WINHELP CREATING JUMPS AND POP-UPS FOR WINHELP

ALL RIGHTS RESERVED. MAY 19, 2013 301

Cross references
as pop-ups

To make a cross reference into a pop-up instead of a jump, assign property PopOver to the
hotspot character format; see §17.8.2.1 Configuring jump vs. pop-up hotspots on
page 300. The span of the hotspot is determined by the character format applied to the
reference string.

Disallowing cross
references as

pop-ups

To disallow using cross references for pop-ups:
[HelpOptions]
; NoXrefPopups = No (default, allow override to pop up) or yes
NoXrefPopups=Yes

17.8.4 Using hypertext links for jumps and pop-ups

By default, DITA2Go converts all DITA hypertext links into jumps for WinHelp,
including interfile jumps where needed. You can insert hypertext PI markers in your DITA
document to create additional jumps and pop-ups.

In this section:
§17.8.4.1 Using HyperPopup and HyperJump PI markers on page 301
§17.8.4.2 Using alert or alerttitle markers for embedded pop-ups on page 301

17.8.4.1 Using HyperPopup and HyperJump PI markers

Use a DITA HyperPopup or HyperJump PI marker to identify a hotspot, and type the
reference string as the PI marker text. Place the marker anywhere in the hotspot; the span
of the hotspot is determined by the character format applied to text containing the marker.
If no character format is applied, the entire paragraph becomes a hotspot; see §17.8.2
Creating hotspots for jumps and pop-ups in WinHelp on page 299.

Note: Do not place any other PI markers within the hotspot area.

17.8.4.2 Using alert or alerttitle markers for emb edded pop-ups

Instead of creating a pop-up topic, you can use a HyperAlert or HyperAlertTitle PI marker,
and provide pop-up content in the text of the marker itself.

You designate a hotspot the same way as for other hypertext links; see §17.8.4.1 Using
HyperPopup and HyperJump PI markers on page 301. Type the marker text in the PI
marker as a reference string consisting of the base file name, followed by Alert , followed
by a number, starting with 0001 in each file. For example:

chap1.hlp Alert 0012

The pop-up text appears in the default format; you cannot specify a different format.

17.8.5 Disallowing hypertext links for jumps and p op-ups

If you do not want DITA2Go to use the hypertext links in your document for jumps or
pop-ups, specify the following option:

[HelpOptions]
; UseHyperlinks = Yes (default) or No (ignore all h yperlinks)
UseHyperlinks=No

This setting causes all hypertext links to be ignored; instead the link locations are treated
as plain text in WinHelp, and are not used as hotspots.

Note: This setting does not affect cross-reference hotspots and links.

INVOKING WINHELP MACROS DITA2GO USER’S GUIDE

302 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

17.8.6 Specifying jumps to secondary windows in Wi nHelp

Normally jumps make the topic you are jumping to appear in the main WinHelp window,
replacing the previous content. If you want to make the new topic appear in a different
window, assign the Window property to the hotspot character format. For example:

[HelpStyles]
JumpToExtra=JumpHot Green Window

Also add the JumpHot character format to [HelpWindowStyles] , specifying the name
of the target window, exactly as specified in the .hpj file:

[HelpWindowStyles]
JumpToExtra=extra

This works for jumps, local and otherwise, but not for pop-ups.

When you specify a secondary window, you get only one instance; the next time you target
that window, you replace its previous contents and leave it in place.

17.8.7 Specifying jumps to external files

DITA2Go produces links to external sources from HyperLink and HyperFile PI markers:

When a HyperFile link specifies an absolute path (which must start with a drive letter),
DITA2Go removes any “file:/// ” URL prefix to the path, which is not needed in RTF.
For example:

HyperFile="file:///g:/omnisys/ug/out/dita2go.pdf"

becomes:
!EF('g:/omnisys/ug/out/dita2go.pdf')

HyperLink and HyperFile are implemented in WinHelp with the !EF macro; see §17.9.1
Using a hypertext marker to invoke a macro on page 302.

17.9 Invoking WinHelp macros
You can invoke a WinHelp macro from a hotspot. You can use this feature to create a jump
to an external location, or to run another application from within WinHelp.

To create a macro hotspot, apply an inline element with a special @outputclass to the
hotspot text in DITA XML, the same way you would for a jump or a pop-up; see §17.8.2
Creating hotspots for jumps and pop-ups in WinHelp on page 299.

In this section:
§17.9.1 Using a hypertext marker to invoke a macro on page 302
§17.9.2 Assigning a hotspot property to invoke a macro on page 303

17.9.1 Using a hypertext marker to invoke a macro

The simplest way to create a jump to an external file is to insert a DITA HyperLink PI
markerwhere you want the link. For example, to run an .avi video clip:

HyperLink= "yourname.avi"

Indicate the hotspot area with a character format that includes the marker; see §17.8.2
Creating hotspots for jumps and pop-ups in WinHelp on page 299. DITA2Go converts the
marker text to produce the required WinHelp macro invocation:

!EF(' yourname.avi')

17 GENERATING WINHELP CREATING RELATED-TOPIC LINKS IN WINHELP

ALL RIGHTS RESERVED. MAY 19, 2013 303

Clicking the hotspot should display the .avi file.

See also:
§17.8.7 Specifying jumps to external files on page 302

17.9.2 Assigning a hotspot property to invoke a ma cro

If you reference the same external file from several places in your document, you can
dedicate a hotspot character format to this purpose. You assign property MacroHot to the
character format, and provide a definition for the macro. For example:

[HelpStyles]
ShowAvi=MacroHot

[HelpMacroStyles]
ShowAvi=EF(' yourname.avi')

DITA2Go provides a predefined WinHelp macro. For example:
[HelpStyles]
FarTarget=MacroHot

[HelpMacroStyles]
; Topic Macro and MacroHot have a required macro co ntent
FarTarget=EF(http://www.omsys.com/)

DITA2Go supplies the leading “! ” for the macro invocation.

17.10 Creating related-topic links in WinHelp
You can create ALink target topics in WinHelp by assigning “A” footnotes to formats, and
provide links to those topics by embedding WinHelp ALink macros in the text of your
document. Or, you can use PI markers for both ALink jumps and ALink-list targets.

DITA2Go constructs KLinks for WinHelp 4 automatically, from DITA index entries. You
can add other “K” footnotes that do not appear in the DITA2Go -generated index, either
with formats or with PI markers.

Advantages of
markers

Using PI markers for related-topic links has some advantages:

 • The same markers work for ALinks and KLinks in all other DITA2Go -generated Help
systems that support related-topic links.

 • DITA2Go creates the WinHelp ALink or KLink macros for you when you use PI
markers.

In this section:
§17.10.1 Understanding KLink limitations on page 303
§17.10.2 Adding ALinks and KLinks with PI markers on page 304
§17.10.3 Adding related-topic keywords with formats on page 304
§17.10.4 Inserting WinHelp macros for ALink jumps on page 305

See also:
§16.6 Providing related-topic links for Help systems on page 258

17.10.1 Understanding KLink limitations

Although WinHelp 4 nominally supports KLinks, the following restrictions apply:

 • Only the first index term in a KLink jump results in an active link, unless another
.hlp file is linked in the .cnt file for your project. For example:

CREATING RELATED-TOPIC LINKS IN WINHELP DITA2GO USER’S GUIDE

304 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

:Link other.hlp
:Index title= other.hlp

 • When two index terms in the same KLink jump reference the same topic, the link
appears twice in the KLink list.

 • Multi-level index terms do not result in links.

17.10.2 Adding ALinks and KLinks with PI markers

To create ALinks and KLinks in WinHelp with PI markers, use the methods described in
the following sections:

§16.6.4.1 Adding related-topic link keywords via PI markers on page 260
§16.6.5 Adding ALink and KLink jumps in DITA XML on page 261

17.10.3 Adding related-topic keywords with formats

You can mark text in your document to produce the “A” footnotes used by ALinks, “K”
footnotes for KLinks, or any other kind of WinHelp keyword footnote. You assign a
related-topic keyword property to a paragraph or character format, along with other
properties.

Keyword properties produce the following:

You can apply these properties in any of the following ways:
Assign a keyword property to a paragraph format
Assign a keyword property to a character format
Assign a keyword property to hidden content
Assign a “special” keyword property to a format

Assign a keyword
property to a

paragraph format

To create a “K” footnote for each level-2 topic heading (for example), you could assign
property Key to the topic-heading paragraph format:

[HelpStyles]
Heading 2=Topic Browse Key

Assign a keyword
property to a

character format

To designate keywords in topic text, apply an inline element with a special
@outputclass to the relevant text, and assign a keyword property to the resulting
character format. For example, if the name of an “A” footnote subject appears as a word in
topic text, you can apply a special character format to that word, and assign the AKey
property to the format:

[HelpStyles]
Related=AKey

Assign a keyword
property to hidden

content

To add to a paragraph a footnote that does not appear in topic text:

1. Place the footnote text at the end of the paragraph, after the last period.

2. Apply an inline element with a special @outputclass to the footnote text.

3. Assign properties AKey (for example) and Delete to the resulting character format:

AKey an “A” footnote, for an ALink; see §16.6.2 Understanding how ALinks
work on page 259

Key a “K” footnote, for a KLink; see §16.6.3 Understanding how KLinks work
on page 259

SpKey a “special” footnote, designated by a letter other than “A” or “K”, for a
separate index that is searchable only when WinHelp is called from a
program.

17 GENERATING WINHELP CONFIGURING INDEX ENTRIES FOR WINHELP

ALL RIGHTS RESERVED. MAY 19, 2013 305

[HelpStyles]
Atag=AKey Delete

The Atag text would be put into an “A” footnote, but would not appear in the topic.

Assign a “special”
keyword property

to a format

To create a “special” footnote, assign property SpKey to a format, and also assign a letter,
other than A or K, to the same format. For example:

[HelpStyles]
xlink=SpKey

[HelpKeywordStyles]
; SpKey requires a key letter (A..Z, except K and A)
xlink=X

17.10.4 Inserting WinHelp macros for ALink jumps

You can create an authorable button (or just a hotspot) for “Related Topics” (usually either
in the no-scroll region at the top, or at the end of the topic text), and provide a WinHelp
ALink macro that lists the subject(s) to which you want link(s).

To create a jump to one or more ALink lists, insert a WinHelp ALink macro in text
wherever you want a jump to appear. For example, to add a “Related Topics” button:

{button Related Topics:AL(subject1, subject2,...)}

17.11 Configuring index entries for WinHelp
DITA2Go converts DITA index entries into WinHelp “K” footnotes. You can add to the
WinHelp index other text that is not part of the DITA index, by assigning properties to
formats or by inserting markers.

In this section:
§17.11.1 Designating index level separators on page 305
§17.11.2 Eliminating duplicate keywords on page 305
§17.11.3 Keeping or discarding “See also” entries on page 306

See also:
§16.5 Configuring index entries for Help systems on page 251

17.11.1 Designating index level separators

To have DITA2Go treat commas in DITA index entries as regular characters instead of
index level separators, specify the following option:

[HelpOptions]
; IdxColon = No (default, allow colon and comma as level delimiters)
; or Yes (use only colon as delimiter, treat comma as regular text)
IdxColon=Yes

You must also edit the WinHelp project file, yourdoc.hpj , to specify this option:
[OPTIONS]
INDEX_SEPARATORS=":"

Use Notepad or any other plain-text editor.

17.11.2 Eliminating duplicate keywords

When a first-level index entry has second-level entries under it, to avoid repeats of the
same topic, set DisambiguateIndex=Topic :

CONFIGURING CONTENTS FOR WINHELP DITA2GO USER’S GUIDE

306 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[HelpOptions]
; DisambiguateIndex = Yes (default, always write fi rst-level keys),
; Strip (no first-level keys), Topic (only write f irst instance of
; a first-level key in each topic), No (only write first in doc)
DisambiguateIndex=Topic

The DisambiguateIndex options work as follows:

17.11.3 Keeping or discarding “See also” entries

You can choose to discard “See also” entries in the index; the default is to keep them:
[HelpOptions]
; NoSeeAlso = No (default, leaves See also entries in index)
; or Yes (removes them)
NoSeeAlso=No

17.12 Configuring contents for WinHelp
WinHelp 4 uses a contents, or .cnt , file for each .hlp file. When you invoke Help, the
system brings up a contents page, where you see little book icons (headers) and page icons
(topics). If you click a book icon, it expands to show you the books and pages it contains;
if you click a page icon, the associated topic is displayed in a Help window.

In this section:
§17.12.1 Naming and configuring Help files and titles on page 306
§17.12.2 Specifying heading formats and levels for contents on page 307
§17.12.3 Assembling WinHelp contents from the command line on page 309

See also:
§16.3.2 Modifying contents or index production for WinHelp on page 249
§16.4 Configuring contents entries for Help systems on page 250

17.12.1 Naming and configuring Help files and titl es

DITA2Go creates a WinHelp contents file for you, unless you specify no contents.
Whether the contents file is created from a single topic file or from multiple files, and how
the contents file and Help file are named, depend on the following settings:

[HelpContents]
; the optional .cnt file for HelpVer 4 is always na med after the rtf
; CntType = None, Full (single file), or Body (head ings, topics only)
; the Body type is used when combining .cnt files i n a .bat file

Topic Prevents duplication by suppressing repeated index markers within a
topic. When you have the same index marker in two or more places, and
pick that item in the WinHelp index, you get a dialog with a list of all the
places the item is referenced. If the same marker occurs twice in the same
topic, you get two identical entries for that topic in the dialog list.

Yes Prevents duplication by eliminating repeated first-level headings in the file
(not just in the topic). When you have second-level topics under the same
first-level topic, and you click the first-level heading, you get duplication.
You need only one of the first-level headings in the file to make the index
work right (avoiding a WinHelp defect).

No Generates a first-level heading only for the first of its second-level topics.

Strip Eliminates generated first-level headings, so that only explicit headings
remain.

17 GENERATING WINHELP CONFIGURING CONTENTS FOR WINHELP

ALL RIGHTS RESERVED. MAY 19, 2013 307

CntType=Full
; CntBase = helpfile.hlp (default is rtfname.hlp; s pecify for Body)
CntBase= myfile.hlp
; CntName = helpfile.cnt (default is rtfname.cnt; s pecify for Body)
CntName=myfile.cnt
; CntStartFile = helpfile.bct (default is to use Cn tBase and CntTitle)
CntStartFile= myfile.bct
; CntTitle = Title for Contents (for Full .cnt)
;CntTitle= Project Name
; CntTopic = starting topic for .hpj (default: book or chapter name)
;CntTopic= myfile
; CntTopHead = 1 Text for Optional Top Head (Full . cnt, for a H1)
;CntTopHead=1 Book Title

If you have only one topic file in your Help project, in the [HelpContents] section
leave the default value, CntType=Full ; DITA2Go creates the .cnt file for you.

If you have more than one topic file in your Help project, set CntType=Body ; DITA2Go
creates part of the .cnt file for each topic file, and also produces a file named after your
topic file, with extension .bct , which contains only the header and topic lines. If you
specify CntType=Body , you can also specify the name of the contents file and the base
name of the help file. If you do not specify a base name, DITA2Go uses your topic file
name for the help file base name.

Alternatively, for multiple topic files you can set the first topic file to CntType=Full , so
it contains the Base, Title, and Top Head (if any). Or you can just prepare the first bit of
the final .cnt separately, in a text editor.

Use CntTitle to specify the text of the title for the contents file; to specify a starting
topic, set CntTopic . If you do not specify a value for CntTitle , DITA2Go uses the help
file title (in the .hpj file). The value you specify (if any) for CntTopHead is added before
the actual .cnt entry lines.

You can also create a .cnt heading for a topic file even though that heading is not in the
topic file itself:

[HelpContents]
CntType=Body

[BctFileHeads]
myfile=Text for optional top head

17.12.2 Specifying heading formats and levels for contents

In this section:
§17.12.2.1 Understanding WinHelp contents level numbers on page 307
§17.12.2.2 Listing topics for contents with and without subheadings on page 308
§17.12.2.3 Using different names in contents for heading and topic on page 308
§17.12.2.4 Renaming or eliminating the contents “Overview” topic on page 309
§17.12.2.5 Referencing multiple help files from contents on page 309
§17.12.2.6 Displaying contents targets in the main window on page 309

17.12.2.1 Understanding WinHelp contents level num bers

In a WinHelp .cnt file, each heading line begins with a level number, 1 to 9, followed by
the text to display. Each topic line includes the same, and adds an equals sign, followed by
the reference string for the topic to be displayed. DITA2Go produces these lines for each
format value in [HelpStyles] that starts with Topic and includes Contents .
DITA2Go determines the type of line from the [HelpCntStyles] section where

CONFIGURING CONTENTS FOR WINHELP DITA2GO USER’S GUIDE

308 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

formatname=H for top-level headings, formatname=T2 for second-level topics, or
formatname=B2 to create a second-level heading with a third-level topic of the same
name immediately following:

[HelpStyles]
Heading 1=Topic Contents

[HelpCntStyles]
; format = H (heading), T (topic), or B (both), + l evel (1..9), as in:
; Heading 2=B3 which creates both a level 3 head an d a level 4 topic
; format V adjusts itself to be either T or B, depe nding on subheads
; all formats here must be listed in [HelpStyles] w ith Contents set
ChapName=H1
Heading 1=B2

17.12.2.2 Listing topics for contents with and wit hout subheadings

Suppose you use the same format for topics with subheadings and for topics without
subheadings. The possibilities include:

All “book” entries
All “page” entries
Mixed “book” and “page” entries
No subheadings? You get “page” entries
Force “book” entries

All “book” entries To list all such topics as “books” in the contents file, assign to the format a B (“both”)
level: one of [HelpCntStyles] properties B1 through B9. DITA2Go creates a “book”
contents entry and a subordinate “page” entry for each.

All “page” entries To list all such topics as “pages” in the contents file, assign to the format a T (“topic”)
level: one of [HelpCntStyles] properties T1 through T9. DITA2Go creates a “page”
contents entry for each.

Mixed “book” and
“page” entries

To list topics without subheadings as “pages”, and topics with subheadings as “books”,
assign to the format a V (“variable”) level: one of [HelpCntStyles] properties V1
through V9. You can adjust the level numbers to fit the way you use your headings; this
might take a bit of experimenting to get the effect you want.

No subheadings?
You get “page”

entries

When you assign V1 through V9, DITA2Go determines whether the format should be a
heading or a topic, based on the existence of subheadings. However, a defect in WinHelp
causes V entries without subheadings to be treated as though they were T. For example, a
chapter heading for a single-topic chapter would appear as a “page” entry under the
preceding chapter.

Force “book”
entries

To list topics without subheadings as “books” (for example, if you have a single-topic
chapter), you must assign a B level to the heading format instead of V.

17.12.2.3 Using different names in contents for he ading and topic

When you code a format to create both a heading and a topic, the default is to use the same
text for both. To give the topic a more generic name, such as Overview or Summary, in
[HelpContents] set CntBStyleText= other topic name:

[HelpContents]
; CntBStyleText = text to use for topics created as "B" HelpCntStyles
CntBStyleText= Overview

17 GENERATING WINHELP CONFIGURING CONTENTS FOR WINHELP

ALL RIGHTS RESERVED. MAY 19, 2013 309

17.12.2.4 Renaming or eliminating the contents “Ov erview” topic

When a heading has subheadings under it (so that it becomes a “book” in WinHelp),
WinHelp provides no way to get from the contents entry to any text that comes after the
heading and before the first subheading. Therefore DITA2Go adds a dummy topic “page”
called (by default) “Overview” to permit access to this otherwise orphaned text.

You can change the name of this dummy topic to something other than “Overview”; for
example, to name it “Introduction” instead:

[HelpContents]
CntBStyleText=Introduction

If you do not want to provide access to any text in this area, you can change the setting for
the heading from V to H, keeping the same level number; for example:

[HelpCntStyles]
Heading1=H1

Then there would be no “Overview” for text that immediately follows a Heading1
paragraph. You would be able to access the text between that heading and the next only as
part of a browse sequence; see §17.13 Creating browse sequences on page 310.

17.12.2.5 Referencing multiple help files from con tents

The lines in a .cnt file that are clickable links contain equals signs (“=”). The part to the
right of the equals sign is the reference string. For example, suppose you are making a
contents file called merged.cnt , which is your master contents file modified by inclusion
of lines such as the following:

:include someother.cnt

The reference strings in someother.cnt must specify that the topics they identify are in
someother.hlp , else they will be looked for in merged.hlp when they are accessed via
merged.cnt . This is done for you if you specify the following, in each configuration file
for a secondary .hlp file; it is not needed for the master .hlp file:

[HelpContents]
; AddCntFileName = No (default) or Yes (add to topi c ref strings)
AddCntFileName=Yes

17.12.2.6 Displaying contents targets in the main window

If you are using multiple windows (secondary windows), to force material called from the
contents into the main window, set AddCntWindowName=Yes ; otherwise that material
goes into the last secondary window used:

[HelpContents]
; AddCntWindowName = No (default)
; or Yes (add def >main to ref strings)
AddCntWindowName=No

Specify the name of the primary window, if it is not main :
[HelpContents]
; CntMainWindow = name for primary window in .cnt i f not "main"
;CntMainWindow= myhelpmain

17.12.3 Assembling WinHelp contents from the comma nd line

When you have generated all topic files for WinHelp, so that you have all the .bct files,
you can put them together to form the full .cnt file; either with a text editor, or with the
Windows copy command. For example:

copy intro.cnt+chap1.bct+chap2.bct+appx.bct mybook.cnt

CREATING BROWSE SEQUENCES DITA2GO USER’S GUIDE

310 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

If you have set up a batch file with other DCL conversion commands, add the copy line
after the last dcl line and before the hcw line.

See §45 Converting via DCL on page 809.

17.13 Creating browse sequences
WinHelp supports browse sequences among topics, and provides a pair of browse buttons,
<< and >>, on the toolbar. Each topic can belong to only one browse sequence; if you want
branching, you must use a jump to get to the first topic in the branch.

In this section:
§17.13.1 Setting up an automatic browse sequence on page 310
§17.13.2 Specifying browse numbers on page 310
§17.13.3 Setting up multi-file browse sequences on page 311
§17.13.4 Setting up branching browse sequences on page 311

17.13.1 Setting up an automatic browse sequence

The easiest way to provide a browse sequence is to use the WinHelp auto-browse feature,
which strings together all the topics in your document in their order of appearance in the
RTF files listed under [FILES] in the .hpj file.

To set up an automatic browse sequence:
[HelpBrowse]
; AutoBrowse = No (default) or Yes (an "auto" brows e
; sequence is generated with topics in the order sh own
; under [FILES] in the .hpj, in the order present w ithin
; each file; no numbers are used, and Prefix is "au to").
AutoBrowse=Yes

When AutoBrowse=Yes , you do not have to maintain browse numbers in the
configuration file. However, be aware of the following:

 • Auto-browse works only when you have a single browse sequence.
 • The browse sequence includes every topic, even pop-up topics.

17.13.2 Specifying browse numbers

You can specify a starting browse number in the configuration file; if you have more than
one file in your project, you can specify a starting number for each. You can also specify a
starting browse number in the document itself, in a configuration PI marker (see §42.2.2
Overriding settings with configuration PI markers on page 767).

To activate browse sequences for topic titles, in [HelpBrowse] specify TitleBrowse=
Yes. Specify the interval to use between browse numbers as Step=5 , or just Step=1 if
you will never need to interpolate any new ones by hand. Specify the number of digits to
use so that you have enough numbers available: Digits=3 allows for 999 topics,
Digits=4 allows 9,999. Specify the starting browse number as Start= N, and the browse
prefix as Prefix= XX. The default values are as follows:

[HelpBrowse]
; these defaults are for all files processed
; override as needed in individual filename.ini fil es
; or using configuration markers in the documents t hemselves
Step=5
Digits=4
; make sure each RTF file has a different Start val ue

17 GENERATING WINHELP CREATING BROWSE SEQUENCES

ALL RIGHTS RESERVED. MAY 19, 2013 311

; allowing room for the numbers used in the earlier files
Start=5
Prefix=HLP

17.13.3 Setting up multi-file browse sequences

If your help project contains more than one topic file, and you want to be able to browse
from one to the next (as users generally expect), you will need to specify a different
Start number for each file. You can do this in three places:

 • in the [BrowseStart] section
 • in a configuration PI marker in the DITA file (see §42.2.2 Overriding settings with

configuration PI markers on page 767)
 • in a configuration file specifically for each .ditamap file (see §42.1 Using a

different configuration for selected files on page 765).

To place the start numbers in the [BrowseStart] section:
[BrowseStart]
; overrides the [HelpBrowse] Start above for the fi le named
; filename (no extension) = start number

To use a file-specific configuration file, create a plain text file with the same base name as
the RTF file you are producing, but with extension .ini . All it needs to contain is:

[HelpBrowse]
Start= nnnn

Allow enough numeric room between successive Start settings to accommodate the
maximum number of topics you might have in each file. You can include any settings
specific to a particular file in such a configuration file; they override the corresponding
settings in the d2winhelp.ini file.

17.13.4 Setting up branching browse sequences

For branching browse schemes, use a different prefix for each branch. You can specify a
prefix in the configuration file, in a marker, or in a specific configuration file, as for start
numbers (see §17.13.3 Setting up multi-file browse sequences on page 311):

[BrowsePrefix]
; overrides the [HelpBrowse] Prefix for the file na med
; filename (no extension) = prefix string
; is overridden itself by usage in [HelpBrowsePrefi xStyles]

[HelpBrowsePrefixStyles]
; Topic Browse can have an optional prefix

CREATING BROWSE SEQUENCES DITA2GO USER’S GUIDE

312 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 313

18 Generating Microsoft HTML Help

This section addresses issues that are specific to creating Microsoft HTML Help. HTML
settings described in section 22 and sections 27 through 43 apply also. Topics include:

§18.1 Understanding how DITA2Go produces HTML Help on page 313
§18.2 Understanding why Unicode is not the answer on page 314
§18.3 Setting up an HTML Help project on page 315
§18.4 Customizing HTML Help display features on page 319
§18.5 Creating pop-ups for HTML Help on page 322
§18.6 Creating links and hypertext jumps in HTML Help on page 323
§18.7 Creating related-topic links for HTML Help on page 325
§18.8 Using secondary windows in HTML Help on page 332
§18.9 Generating contents and index for HTML Help on page 334
§18.10 Providing full-text search (FTS) for HTML Help on page 339
§18.11 Setting up CSH for HTML Help on page 340
§18.12 Generating HTML Help in non-Western languages on page 344
§18.13 Compiling and testing HTML Help on page 346
§18.14 Mapping and merging CHM files on page 348

See also:
§16 Producing on-line Help on page 243

To determine which configuration settings will produce the appearance and functionality
you want, see also:

§22 Converting to HTML/XHTML on page 429
§27 Splitting and extracting files on page 523
§30 Mapping text formats to HTML/XML on page 565
§31 Setting up CSS for HTML on page 591
§32 Including graphics in HTML on page 611
§33 Converting tables to HTML on page 625

For more information about HTML Help, see the Microsoft HTML Help home page,
accessible through the Microsoft Library:

http://msdn.microsoft.com/library

18.1 Understanding how DITA2Go produces HTML Help
Microsoft HTML Help is specialized for use with Microsoft HTML Help Workshop,
which is used to compile the HTML files DITA2Go generates.

Note: HTML Help does not always perform as documented; there are many defects,
some pieces are missing, and the software is no longer maintained. These are
issues that DITA2Go cannot address.

To produce HTML Help, DITA2Go does the following:

 • creates an HTML Help project file
 • generates HTML topic files from your DITA document
 • optionally runs HTML Help Workshop to compile the HTML Help project.

http://msdn.microsoft.com/library

UNDERSTANDING WHY UNICODE IS NOT THE ANSWER DITA2GO USER’S GUIDE

314 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Initial project file When you create a DITA2Go HTML Help project, DITA2Go automatically generates a
starting Microsoft HTML Help project file. This file is named for your DITA document,
with extension .hhp , and placed in the project directory. For example, if you are
converting MyDoc.map, DITA2Go creates an HTML Help project file named
MyDoc.hhp .

Project file can be
regenerated

The HTML Help project file contains the basic information needed to compile your
HTML Help project. Once created, DITA2Go does not touch the HTML Help project file
again, though you can tell DITA2Go to regenerate it each time you run a conversion; see
§18.3.8 Regenerating the HTML Help project file on page 318.

Project file can be
edited

You can edit the HTML Help project file yourself, either in a plain-text editor such as
Notepad, or in HTML Help Workshop. Editing in HTML Help Workshop is risky, because
the editing facility has known defects.

Compiled CHM
file is the final

output

The HTML Help project file and the generated HTML files become input for HTML Help
Workshop, which compiles all the HTML topic files into a single “Compiled HTML File”
named for your DITA document, with extension .chm . The CHM file is the file you
distribute, for use with the Microsoft HTML Help viewer. You can direct DITA2Go to run
the compilation, or you can use HTML Workshop yourself to compile.

CHM files must
be “unblocked”

Microsoft introduced “security” features that require each CHM file to be explicitly
“unblocked”, something you will have to tell your users. To unblock a CHM, right-click
its icon in Windows Explorer, select Properties , and click Unblock , then click Apply ,
then OK. After that, when you double-click the CHM, it opens fine. If you select
Properties again, the area where the Unblock button was is now blank.

View compiled file
with the viewer

The only way to access all features of HTML Help is to use the HTML Help viewer; you
cannot view a CHM file with a Web browser. Neither Internet Explorer nor Firefox is able
to display the tri-pane and search windows, although Internet Explorer (but not Firefox)
can be persuaded to look inside a .chm on your local system. This is true regardless of the
tool used to generate HTML Help.

View uncompiled
files with a

browser

If you are interested only in viewing HTML topic files, without the Contents, Index,
Search, or the toolbar buttons, you can use a browser. If that is your intention, when you
use DITA2Go to generate HTML Help, choose configuration options that do not produce
<object> tags (which means no pop-ups or secondary windows); those tags appear in
Firefox as extra spaces, and do not work as intended. You are better off converting to
XHTML (or, if necessary, standard HTML); and adding navigation (see §29 Providing
navigation in HTML on page 555) to the top and bottom of each output page. Also see
§18.6.2 Specifying href link syntax for HTML Help on page 324.

18.2 Understanding why Unicode is not the answer
Microsoft HTML Help does not use Unicode; instead it uses Windows code pages. This
means that characters with glyphs that are not present in the default code page (for
Western languages this is ANSI code page 1252) might not display correctly, and will
interfere with use of TOC, index, and search functions

People often think they can get away with using Unicode encoding instead of code-page
encoding, because the HTML Help viewer uses Internet Explorer to display the topic
pane, and Internet Explorer does understand Unicode. However, if you use any non-ANSI
(above U+007F) characters, search will not work right, and if any of your non-ANSI
characters appear in titles or in index terms, the TOC and index will not work right, either.
If you are processing a language with accented characters, such as German, you cannot get
away with Unicode in the topic pane. For example, Unicode represents code points from

18 GENERATING MICROSOFT HTML HELP SETTING UP AN HTML HELP PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 315

hexadecimal A0 to FF as two-byte UTF-8 sequences, and code page 1252 represents them
as single characters. So even though the code points are the same, and the display looks
fine, search fails because the single byte in the search string does not match the two bytes
in the UTF-8 encoding.

With a few isolated symbols, you might get away with Unicode content, but it is not good
practice. DITA2Go goes to considerable lengths to convert from Unicode to code page for
HTML Help. It is not trivial; for Asian languages, DITA2Go uses enormous look-up
tables and dozens of lines of C++ code. It is a Bad Idea to blow it off and use Unicode in
any form (including numeric character references) instead.

It might be easy to dismiss all this when your language is English, but the rest of the world
feels differently.

See also:
§18.12 Generating HTML Help in non-Western languages on page 344
§30.4 Assigning properties to text formats on page 570

18.3 Setting up an HTML Help project
To produce an HTML Help system you will need HTML Help Workshop, which you can
download from the Microsoft Library:

http://msdn.microsoft.com/en-us/library/ms669985.aspx

Documentation for HTML Help Workshop is available from the same site.

If you plan to generate HTML Help in non-Western languages, you will also need the ICU
library; see §18.12 Generating HTML Help in non-Western languages on page 344.

In this section:
§18.3.1 Creating an HTML Help project on page 315
§18.3.2 Deciding where to locate configuration settings on page 316
§18.3.3 Organizing source files for HTML Help on page 316
§18.3.4 Specifying a project title for HTML Help on page 316
§18.3.5 Deciding whether to compile HTML Help on page 317
§18.3.6 Naming project and compiled files for HTML Help on page 317
§18.3.7 Specifying a starting topic file for HTML Help on page 317
§18.3.8 Regenerating the HTML Help project file on page 318
§18.3.9 Locating graphics files for HTML Help on page 318

18.3.1 Creating an HTML Help project

To create an HTML Help project:

1. Create a project directory for HTML files, separate from the directory where your
DITA document is located. Optionally, create a subdirectory for graphics files.

2. Copy configuration file _d2htmlhelp.ini from your DITA2Go config directory
(see §1.3.1 Set up a framework for Omni Systems applications on page 29), or from
an existing DITA2Go project, to your newly created output directory:

3. Use a text editor to edit _d2htmlhelp.ini (see §3.1 Working with DITA2Go
configuration files on page 49).

http://msdn.microsoft.com/en-us/library/ms669985.aspx

SETTING UP AN HTML HELP PROJECT DITA2GO USER’S GUIDE

316 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

4. Important: All the files you include in a compiled HTML Help system must be
located in or below the directory that contains the .hhp project file. See §18.3.2
Deciding where to locate configuration settings on page 316.

18.3.2 Deciding where to locate configuration sett ings

When you set up an HTML Help project, if configuration file _d2htmlhelp.ini is not
already present in the project directory, you must copy this file from your DITA2Go
config\local directory (see §1.3.1 Set up a framework for Omni Systems applications
on page 29).

Which
configuration file?

To configure HTML Help output, add settings to one of the following files, depending on
the desired scope of each setting:

See §39.4 Deciding which configuration file to edit on page 734.

To determine which configuration settings will produce the appearance and functionality
you want, also see:

§22 Converting to HTML/XHTML on page 429
§27 Splitting and extracting files on page 523
§30 Mapping text formats to HTML/XML on page 565
§32 Including graphics in HTML on page 611
§33 Converting tables to HTML on page 625

18.3.3 Organizing source files for HTML Help

Compiled HTML Help has the following limitation on file placement: a CHM can contain
files located only in the same directory as the .hhp file (HTML Help project file) or in a
subdirectory. Sibling directories, parent directories, and absolute paths elsewhere do not
work. CHM content is organized in an internal file system that duplicates the external file
structure, but with the directory containing the .hhp file as the root. Therefore, references
to directories outside this structure do not work.

If your project includes DITA files on different paths that reference each other, you might
have to reorganize them to conform to this HTML Help limitation. If your project includes
referenced graphics files, DITA2Go can copy the graphics files to the project directory (or
a subdirectory) before beginning the conversion. See §18.3.9 Locating graphics files for
HTML Help on page 318.

18.3.4 Specifying a project title for HTML Help

The title of your HTML Help project appears in the title bar of the HTML Help viewer.

To specify a title for your help project:
[MSHtmlHelpOptions]
; HelpFileTitle = title to put in project file;
; default is filename or bookname
HelpFileTitle= Title of my project

Scope Configuration file Location

Current project
only

_d2htmlhelp.ini Current project directory

All HTML Help
projects

local_d2htmlhelp_config.ini %omsyshome%\d2g\local\co nfig\

18 GENERATING MICROSOFT HTML HELP SETTING UP AN HTML HELP PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 317

If your CHM file will be used in locales other than US English, also see §18.12 Generating
HTML Help in non-Western languages on page 344.

18.3.5 Deciding whether to compile HTML Help

The HTML Help compiler does not support Unicode, and instead uses code-page
mappings. For compiled HTML Help, DITA2Go maps Unicode characters to the correct
code page.

If what you need is uncompiled HTML Help files in Unicode, possibly including contents,
index, and search files, you can direct DITA2Go not to compile HTML Help:

[Automation]
CompileHelp = No

To omit code-page mapping when you are not going to compile HTML Help:
[MSHtmlHelpOptions]
; UseCodePage = Yes (default, required for CHM comp ile), or No
; (for use in further processing where other encodi ngs are OK)
UseCodePage = No

To produce Japanese, Chinese, or Korean code-page output, such as for HTML Help in
Japanese, you need ICU DLLs: icudt40.dll (13MB) and icuuc40.dll (1MB). These
DLLs are available in archive icu401.zip (6 MB), which you can download from the
Omni Systems Web site. See:

§1.1.4 Languages and character sets on page 27
§18.12 Generating HTML Help in non-Western languages on page 344
§18.13 Compiling and testing HTML Help on page 346.

18.3.6 Naming project and compiled files for HTML Help

By default, DITA2Go uses the name of your DITA document for both the project file
(.hhp) and the compiled file (.chm).

Help project file To specify the .hhp file name:
[MSHtmlHelpOptions]
; HHPFileName = MS HTML Help project file used for compilation
HHPFileName = myproj.hhp

The default value is the name of your DITA document.

Note: Neither the name of the file nor the path to the file may contain spaces. Do not
enclose the name in quotes.

Compiled file To specify the CHM file name:
[MSHtmlHelpOptions]
; DefaultChmFile = name of .chm for project if not in [ChmFiles]
DefaultChmFile = myproj

If your project includes links to other HTML Help projects, also see §18.14 Mapping and
merging CHM files on page 348.

18.3.7 Specifying a starting topic file for HTML H elp

By default, DITA2Go puts the name of your DITA document in the .hhp as the name of
the first page. If the first page really should be the first split file (see §27 Splitting and
extracting files on page 523), you must edit the .hhp (either in Notepad or in HTML Help
Workshop) to insert the actual name of the first-page file (which might be something like
aa123456.htm):

SETTING UP AN HTML HELP PROJECT DITA2GO USER’S GUIDE

318 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[OPTIONS]
Default topic= realfilename.htm

Also specify the starting topic in configuration file d2htmlhelp.ini :
[MSHtmlHelpOptions]
; DefaultTopicFile = starting topic file name (no e xtension)
DefaultTopicFile= realfilename

Then if your .hhp is rewritten, it will have the correct value.

After compiling your project, if you open the .chm in HTML Help and the first page
produces an error such as “This page cannot be displayed”, you might have to edit the
.hhp to specify the correct name for the first-page file.

18.3.8 Regenerating the HTML Help project file

When you use DITA2Go to generate HTML Help, DITA2Go writes an .hhp project file
during set-up, and rewrites it later only under certain conditions.

To specify whether DITA2Go should generate the .hhp project file anew each time you
run the conversion:

[MSHtmlHelpOptions]
; WriteHelpProjectFile = Yes (write each time) or N o; if no setting,
; write only if the file does not already exist.
WriteHelpProjectFile = Yes

The values you can specify for WriteHelpProjectFile have the following effects:

DITA2Go closes the .hhp file after writing it; so, if you had the .hhp file open in HTML
Help Workshop when DITA2Go rewrote it, you could get an access violation. If you were
using Notepad to edit the .hhp file, on save Notepad would just write the old file over the
rewritten one.

If you use HTML Help Workshop to make changes that are not reflected in the
configuration file, and they are changes you want to keep, you can prevent DITA2Go
from overwriting them by setting WriteHelpProjectFile=No .

If you set WriteHelpProjectFile=Yes and then later decide to modify the .hhp file
directly, be sure to set WriteHelpProjectFile=No ; otherwise your edits will be wiped
out the next time you run the conversion.

If the changes you make via HTML Help Workshop are limited to defining windows, you
can add those definitions to your DITA2Go configuration file to preserve them; see
§18.8.1 Defining secondary windows for HTML Help on page 333.

18.3.9 Locating graphics files for HTML Help

A .chm file can include only files that are located in the same directory as the .hhp file,
or in a subdirectory of that directory. If your graphics files are located elsewhere, they
must be copied to the .hhp directory or subdirectory. DITA2Go can do this for you.

To tell DITA2Go to fetch your referenced graphics:

Yes If the .hhp file is present, DITA2Go overwrites it.

No DITA2Go does not overwrite the .hhp file.

(none) If the configuration chain contains no WriteHelpProjectFile setting
at all, DITA2Go writes an .hhp file, but only if the .hhp file is not
already present.

18 GENERATING MICROSOFT HTML HELP CUSTOMIZING HTML HELP DISPLAY FEATURES

ALL RIGHTS RESERVED. MAY 19, 2013 319

[Automation]
WrapAndShip = Yes
CopyOriginalGraphics = Yes

When CopyOriginalGraphics=Yes , DITA2Go follows the file paths in your DITA
source to find the graphics files to copy.

To tell DITA2Go where to put copies of the graphics (for example):
[Graphics]
GraphPath = ./graphics

The path you specify for GraphPath should be relative to the wrap directory (see §44.3
Understanding path values for deliverables on page 788). This path will be used in HTML
output, as the relative path from the HTML files to their referenced graphics. If you use
backslashes in the path, DITA2Go converts them to forward slashes before inserting the
references in your HTML output. If you specify CopyOriginalGraphics=Yes ,
DITA2Go copies graphics files to the directory specified by GraphPath , after generating
HTML files.

See also:
§18.13 Compiling and testing HTML Help on page 346
§32.1 Locating graphics files for HTML on page 611
§44.7 Placing graphics files for distribution on page 796

18.4 Customizing HTML Help display features
In this section:

§18.4.1 Using CSS and font tags with HTML Help on page 319
§18.4.2 Adding tabs and toolbar buttons to HTML Help on page 319
§18.4.3 Adding expandable sections to HTML Help on page 321

18.4.1 Using CSS and font tags with HTML Help

The Microsoft HTML Help viewer, which is based on Internet Explorer, supports CSS
(cascading style sheets); however, not every CSS feature is supported. Although CSS is
probably the best way to set display properties for HTML Help, you might have to
experiment. If a CSS feature you try does not seem to work, check the HTML Help
Workshop on-line Help, or check with Microsoft to make sure HTML Help supports that
feature.

For on-demand font resizing via the Font button (see §18.4.2 Adding tabs and toolbar
buttons to HTML Help on page 319), CSS font sizes must be in relative units: em, ex , or
%. For best practice, use em. By default, DITA2Go generates CSS entries using absolute
pt units for font size and line height. To change the units, see §31.8.2 Specifying CSS size
values and units of measurement on page 607.

See also:
§31.4.1 Specifying CSS options in a DITA2Go configuration file on page 593

18.4.2 Adding tabs and toolbar buttons to HTML Hel p

You can use HTML Help Workshop to enable additional tabs and toolbar buttons for
navigation and other features. For example, rather than create links for Prev and Next , you
can enable built-in browse buttons for this purpose.

CUSTOMIZING HTML HELP DISPLAY FEATURES DITA2GO USER’S GUIDE

320 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Note: Enabling browse buttons requires a binary TOC, which can cause problems with
mid-topic TOC links; see §18.9.6 Providing mid-topic contents links in HTML
Help on page 337. Also, a binary TOC is not compatible with merged CHM files;
see §18.14.5 Comparing HHW settings for stand-alone vs. merged CHMs on
page 351.

To enable additional HTML Help tabs and toolbar buttons:

1. Set the following option in your project configuration file, to avoid overwriting the
changes you are about to make to the HTML Help .hhp project file:

[MSHtmlHelpOptions]
WriteHelpProjectFile=No

See §18.3.8 Regenerating the HTML Help project file on page 318

2. In HTML Help Workshop, click File > Open .

3. In the Open dialog, type:
I'm MSDN

(straight single quote, not curly) and click Open .

4. Select your .hhp project file.

Figure 18-1 HTML Help Workshop Project tab

5. On the Project tab toolbar, click Add/Modify window definitions , as shown in
Figure 18-1.

6. If the Add a New Window Type dialog opens, type main , and click OK; the Window
Types dialog opens, as shown in Figure 18-2 on page 321.

7. For window type choose (or specify) main .

8. To add a favorites tab to your project, select the Navigation Pane tab and check
Favorites tab .

9. To add toolbar buttons, select the Buttons tab.

18 GENERATING MICROSOFT HTML HELP CUSTOMIZING HTML HELP DISPLAY FEATURES

ALL RIGHTS RESERVED. MAY 19, 2013 321

Figure 18-2 HTML Help Workshop Window Types

10. Check the button types you want HTML Help to display in the toolbar. For example:

 • to add Previous and Next buttons for browsing, check Prev and Next

 • to add a Font button for text resizing, check Zoom .

Note: If you check Zoom , also specify relative units for font sizes in CSS; see
§18.4.1 Using CSS and font tags with HTML Help on page 319.

11. Click OK.

12. Click File > Save Project .

Browse buttons
require a binary

TOC

To use Prev and Next browse buttons in your help file, you must also compile a binary
table of contents. Under [Options] in the .hhp file, add the following line:

Binary TOC=Yes

Or, you can set this option in HTML Help Workshop:

1. Select the Project tab.

2. On the Project tab toolbar, click Change project options ; the Options dialog opens.

3. Select the Compiler tab.

4. Check Create a binary TOC .

5. Click OK.

6. Click File > Save Project .

18.4.3 Adding expandable sections to HTML Help

The HTML Help Workshop help file explains how to add the required HTML and
JavaScript code for expanding sections. With DITA2Go macros you can automate
insertion of this code in the output.

For example, suppose you want to use a link:
Click for more

which, when clicked, displays additional text:
Here is a more detailed explanation.

You could apply a special paragraph format to the link text (for example, ClickLink) and
another format to the expandable text (for example, ClickText). In your configuration file
you would include macros that contain the required HTML code for each paragraph type.

CREATING POP-UPS FOR HTML HELP DITA2GO USER’S GUIDE

322 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

If the link text was always the same, you could include that in the macro too, and just have
the text for the expanded part in DITA XML. Or, you could use a button (see §18.7.6
Creating buttons for other types of related-topic links on page 332).

18.5 Creating pop-ups for HTML Help
HTML Help supports only text pop-ups. By itself, HTML Help does not allow any font
changes in pop-ups, not even bold or italics; nor any images; nor any HTML code. To
include these features in an HTML Help pop-up, you need a third-party plug-in or
program, such as WinHelp.

In this section:
§18.5.1 Using HTML Help for pop-ups on page 322
§18.5.2 Using KeyHelp for pop-ups on page 322
§18.5.3 Using WinHelp for pop-ups on page 323

18.5.1 Using HTML Help for pop-ups

Although you cannot specify font or text property changes within an HTML Help pop-up,
you can specify text attributes for the entire pop-up. The following settings apply to all
pop-ups. For example:

[MSHtmlHelpOptions]
; MS HTML Help Popup options, for use with Hypertex t Alert markers
; PopFont = Facename[,point size[,charset[,color
; [,PLAIN BOLD ITALIC UNDERLINE]]]]
PopFont=Helvetica,10,,PLAIN
; PopMargins = left margin, right margin (in pixels)
PopMargins=9,9
; PopColors = foreground, background (in decimal RG B, -1 is default)
PopColors=-1,-1

HTML Help text pop-ups are limited to 243 characters in length. You put the pop-up text
itself inside a PI alert marker, and indicate the span of the hotspot with a character format
that includes the marker. If you do not use a character format, the entire paragraph
becomes the hotspot. If you are viewing this text in HTML Help, this is an example .

You can put pop-ups in image maps.

18.5.2 Using KeyHelp for pop-ups

KeyHelp is a freeware DLL that is part of Ralph Walden’s Key Tools. KeyHelp allows you
to embed better pop-ups in HTML Help. For information about Key Tools, see:

http://grainge.org/pages/authoring/reverse_engineering/reverse_engineering.htm

For KeyHelp pop-ups to work, the KeyHelp ActiveX control, keyhelp.ocx , must be
installed and registered on each user’s system.

You must use DITA2Go macros (see §37 Working with macros on page 679) to construct
the HTML code that is needed around the content. For example, in your configuration file,
you could include the following settings:

[Inserts]
Head=<$KeyPopup>

[KeyPopup]
<script language="JavaScript" type="text/javascript ">
var KeyPopup;

This is what a text popup looks like in HTML Help; maximum 243 characters, single text style, no images or links.

http://grainge.org/pages/authoring/reverse_engineering/reverse_engineering.htm

18 GENERATING MICROSOFT HTML HELP CREATING LINKS AND HYPERTEXT JUMPS IN HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 323

function KeyDisplayPopup(URL) {
 if (!KeyPopup){

 KeyPopup = new ActiveXObject("KeyHelp.KeyPopup");
 }
 KeyPopup.DisplayURL(URL,-1,-1);

}
</script >

The cross-reference format you use to reference the pop-up should apply a character
format; for example, PopText:

<PopText><$paratext></>

To make the cross references call the KeyHelp DLL, include the following settings:
[XrefStyles]
PopText=LinkSrc

[XrefStyleLinkSrc]
PopText=JavaScript:KeyDisplayPopup(' myproj.chm::<$$_linksrc>')

Make sure the material to be popped up is in a file of its own. For example, if you are
using glossary entries as pop-up topics:

[HtmlStyles]
GlossaryTerm=Split Title

18.5.3 Using WinHelp for pop-ups

This is the method Microsoft uses for Office 2000. WinHelp works best when pop-ups are
called from the application, rather than from other topics in the HTML Help file. See
§17.8 Creating jumps and pop-ups for WinHelp on page 299.

18.6 Creating links and hypertext jumps in HTML He lp
In this section:

§18.6.1 Creating hypertext jumps to other CHM files on page 323
§18.6.2 Specifying href link syntax for HTML Help on page 324
§18.6.3 Linking to external files from compiled HTML Help on page 325

See also:
§18.7 Creating related-topic links for HTML Help on page 325

18.6.1 Creating hypertext jumps to other CHM files

If you are using hypertext links to link to HTML files created from a different DITA
document and compiled into a different .chm , you must specify how the CHM files are
mapped; see §18.14.1 Interlinking multiple CHM files on page 348. Then DITA2Go can
generate the proper jump reference for you.

Opening topic of
first file

To jump to the opening topic of another CHM file, the simplest method is to insert a link
in your document:

<xref href=" someother.chm" scope="external"></xref>

If someother.chm is not registered in the Windows registry, also include the path,
possibly relative. (For commercial use, it is best to register .chm s in the Windows registry
during installation.)

Opening topic of
any file

To jump to a file that is within someother.chm , add the name of the target file to the link
content; for example, to get to the “a” anchor inside letters.htm in someother.chm :

CREATING LINKS AND HYPERTEXT JUMPS IN HTML HELP DITA2GO USER’S GUIDE

324 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

<xref href=" someother.chm::/letters.htm#a" scope="external"></xref>

Specific topic To jump to a specific topic in someother.chm , when the topic comes from a DITA file
that is being split (so you do not know the .htm file name ahead of time), insert a regular
DITA cross reference. Run the DITA2Go conversion to someother.chm first, then copy
the .ref file for someother.chm into your conversion project directory, and add this
setting to the configuration file:

[ChmFiles]
letters= someother

For links to non-CHM files, see §18.6.3 Linking to external files from compiled HTML
Help on page 325.

18.6.2 Specifying href link syntax for HTML Help

Links in HTML Help can be of two forms: generic HTML href links for jumps within a
single CHM file, or href links with a special syntax that includes the target.chm name for
jumps to locations in other CHM files. If you are using framesets in HTML Help, target
content might be displayed differently for these two forms of links.

By default, DITA2Go uses both forms for HTML Help:

 • generic HTML links for jumps within the CHM file you are generating
 • special syntax for jumps to other CHM files.

For links to non-CHM files, see §18.6.3 Linking to external files from compiled HTML
Help on page 325.

If your configuration file lists other CHM files in section [ChmFiles] , jumps to those
files use the special syntax that includes the .chm name. Unless you specify otherwise,
jumps within the default CHM file are of the generic form. (If you are using multiple
CHM files, this file is the DefaultChmFile listed in section [MSHtmlHelpOptions] ;
see §18.14.1 Interlinking multiple CHM files on page 348.)

Force all links to
use special

syntax

To force all links to use the special syntax that includes the .chm name:
[MSHtmlHelpOptions]
; UseChmInLinks = No (default, for same .chm or for uncompiled help,
; where normal links are needed)
; or Yes (always use ChmFormat at start of links)
UseChmInLinks=Yes

Use generic form
for single .chm,

uncompiled Help

When UseChmInLinks=No (the default), links to destinations within the default CHM
file are of the generic HTML href form; use this setting to produce either of the
following:

 • a single CHM file that does not include href links to other CHM files
 • uncompiled HTML Help that has no CHM file, and that works in a Web browser.

Use special
syntax for links to

other CHM files

When UseChmInLinks=Yes , by default all links are of the form:

For example:

Specify format for
special syntax

To specify a format for the start of the link:
[MSHtmlHelpOptions]
; ChmFormat = format to use when UseChmInLinks is s et, where
; the first %s is the chm name and the second %s is the filename
ChmFormat=mk:@MSITStore:%s.chm::/%s

18 GENERATING MICROSOFT HTML HELP CREATING RELATED-TOPIC LINKS FOR HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 325

For example, if all users of your compiled HTML Help system will be running Internet
Explorer 4.0 or a later version, you can direct DITA2Go to use the following form for all
links instead of the default special syntax:

[MSHtmlHelpOptions]
UseChmInLinks=Yes
ChmFormat=ms-its:%s.chm::/%s

See HTML Help Workshop for more information.

18.6.3 Linking to external files from compiled HTM L Help

Compiled HTML Help allows calls to a non-CHM file only if the path to that file is
absolute. If your Help system is always installed to the same drive and path, you can
hardcode the path in the link, but that is not usually the case. Instead, you can use
JavaScript to determine the location of the calling CHM file at run time and prefix that
path (possibly modified with additional elements) to the target file name in the link. In
effect, this method provides a relative path. See the following MSDN article for details:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/htmlhelp/html/vsconocxscriptslinkchm.asp

The MSDN article says the external file must be in the same directory as the calling CHM
file, but that is not true. You just have to know where the external file is relative to the
calling CHM file, and use the external file name with that relative path; the JavaScript
adds the first part of the path. You can use a DITA2Go macro to provide the JavaScript;
see §37 Working with macros on page 679.

Linking to Web
sites

For external links on the Web, you can use the full Web link. However, you might
encounter security issues in Internet Explorer, so test thoroughly on machines with the
latest security patches. You might have to tweak Windows Registry settings, which you
cannot do from within HTML Help. For example, on Windows 2000:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\HTMLHelp\1.x \HHRestrictions]
"MaxAllowedZone"=dword:00000004
"EnableFrameNavigationInSafeMode"=dword:00000001

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\HTMLHelp\1.x \ItssRestrictions]
"MaxAllowedZone"=dword:00000004

18.7 Creating related-topic links for HTML Help
You can use ALinks and KLinks in compiled HTML Help. ALinks also work in
uncompiled HTML Help, provided you use the HTML Help viewer.

In this section:
§18.7.1 Adding ALink keywords for HTML Help on page 325
§18.7.2 Adding ALink and KLink jumps for HTML Help on page 326
§18.7.3 Configuring ALink and KLink jumps for HTML Help on page 326
§18.7.4 Rolling your own macros for ALink jumps in HTML Help on page 328
§18.7.5 Using the same format for ALink keywords and jumps on page 329
§18.7.6 Creating buttons for other types of related-topic links on page 332

18.7.1 Adding ALink keywords for HTML Help

You can insert ALink keywords for HTML Help either with PI markers or with paragraph
formats; see §16.6.4 Adding related-topic link keywords in DITA XML on page 260.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconocxscriptslinkchm.asp

CREATING RELATED-TOPIC LINKS FOR HTML HELP DITA2GO USER’S GUIDE

326 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALink keywords should be single terms; use spaces or other punctuation in ALink
keywords at your own risk.

18.7.2 Adding ALink and KLink jumps for HTML Help

You can use PI markers or paragraph formats for ALink and KLink jumps; however,
DITA2Go provides support only for PI markers. In HTML Help, a related-topic jump is
implemented with an <object> linked to the HTML Help OLE control:

See also §16.6.5 Adding ALink and KLink jumps in DITA XML on page 261.

Note: Because both ALink/KLink jumps and secondary windows/pop-ups use objects in
HTML Help, they cannot be combined; for example, you cannot display an
ALink-accessed page in a secondary window.

ALinks work in uncompiled HTML Help, if you use the HTML Help viewer instead of a
Web browser.

18.7.3 Configuring ALink and KLink jumps for HTML Help

When you use PI markers for ALink or KLink jumps (see §16.6.5 Adding ALink and
KLink jumps in DITA XML on page 261), you can specify values in the configuration file
for several properties of the resulting <object> s that DITA2Go creates:

[MSHtmlHelpOptions]
;LinkType = Button (default), Chiclet, Graphic, Ico n, Shortcut, Text
LinkType=Button
;LinkFlags = "1" (show dialog even for one item),
; ",,1" (if no items, make button disappear), or
; empty (if only one item, take the jump directly)
LinkFlags=1
;LinkEmptyTopic = name of .htm topic file to show i f no items match
; at all; otherwise, unless LinkFlags=,,1, the Not F ound complaint
; will be used.
;LinkEmptyTopic=noitems.htm
;LinkButtonWidth = pixels, if LinkType = Button, Gr aphic, or Icon
LinkButtonWidth=100
;LinkButtonHeight = pixels, if LinkType = Button, G raphic, or Icon
LinkButtonHeight=100
;LinkButtonText = Text: plus name on button, if Lin kType=Button
LinkButtonText=Text:ALink
;LinkButtonGraphic = Bitmap: plus name of .bmp (onl y),
; if LinkType=Graphic
LinkButtonGraphic=Bitmap:mybutton.bmp
;LinkButtonIcon = Icon: plus name of .ico (only), i f LinkType=Icon
LinkButtonIcon=Icon:mybutton.ico
;LinkTextFont = same syntax as PopFont above, if Li nkType=Text
LinkTextFont=Helvetica,10,,PLAIN
; LinkText = Text: plus text to use for link, if Li nkType=Text
LinkText=Text:Related Topics

Markers If you use PI markers for ALink or KLink jumps, DITA2Go provides
the <object> macro code automatically; see §18.7.3 Configuring
ALink and KLink jumps for HTML Help on page 326. Put the PI
markers in paragraphs by themselves, located where you want the
jump to appear in output.

Formats If you use paragraph formats for ALink or KLink jumps, you have to
provide macro code for the ALink object; see §18.7.4 Rolling your
own macros for ALink jumps in HTML Help on page 328.

18 GENERATING MICROSOFT HTML HELP CREATING RELATED-TOPIC LINKS FOR HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 327

Table 18-1 on page 327 shows the properties you can configure, the values you can
specify for each property, and the effect of each value.

Prefix the
keyword

The base keyword for each property starts with Link ; for example, LinkFlags . You must
add a prefix to the base keyword to create a valid setting:

 • To specify an ALink property, prefix the base name with A; for example,
ALinkFlags=,,1 .

 • To specify a KLink property, prefix the base name with K; for example,
KLinkButtonWidth=50 .

All jumps Properties you specify this way apply to all ALink or KLink jumps in your document.

Selected jumps To configure properties for an individual ALink or KLink jump, insert a Link* PI marker
just before the jump marker. The Link* marker-type name is the same as the name of the
property, and the marker content is the value you want to assign to that property. For
example, to provide a different label for one particular text-style ALink jump, in your
DITA document, just before the ALink jump marker, insert a LinkText PI marker whose
content is the alternate label.

Specify all
relevant

properties

For reasonable-looking output you should specify values for all properties that apply,
because the default is to include only a few properties in the <object> . For example, for
an ALink jump the default object DITA2Go generates looks like the following:

<object id="hhctrl" type="application/x-oleobject"
classid="clsid:adb880a6-d8ff-11cf-9377-00aa003b7a11 "
width="100" height="100">

<param name="Command" value="ALink">
<param name="Button" value="Text:ALink">
<param name="Flags" value="1">
<param name="Item1" value="">
<param name="Item2" value=" ALink keyword">
</object>

This gets you a button labeled ALink , probably not what you wanted.

Table 18-1 ALink and KLink jump properties for HTM L Help

Property keyword* Value Effect

LinkType Button (default) Link is a button with LinkButtonWidth ,
LinkButtonHeight , and LinkButtonText
attributes:

Chiclet Link is a small button with no label:

Graphic Link is a bitmap image, specified by
LinkButtonGraphic

Icon Link is an icon, specified by LinkButtonIcon

Shortcut Link is a button with a shortcut icon:

Text Link is text, with LinkText and
LinkTextFont attributes

LinkFlags 1 (default) Show the dialog even if only one target is found

,,1 Omit the link if no targets are found

(none) Omit the dialog and jump directly if only one
target is found; show “Not Found” if no targets
are found

1,,1 Untested; should show the dialog for a solitary
target, omit the link if no targets are found.

* The property keyword must be prefixed with “A” for an ALink property, or “K” for a KLink property.

CREATING RELATED-TOPIC LINKS FOR HTML HELP DITA2GO USER’S GUIDE

328 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

18.7.4 Rolling your own macros for ALink jumps in HTML Help

To use a paragraph format (for example, ALinkJump) for ALink jumps, you can assign
property CodeReplace to the format to replace the paragraph with a button for the ALink
jump:

[HTMLParaStyles]
ALinkJump=CodeReplace

[HtmlParaStyleCodeReplace]
ALinkJump=<$ALinkButton>

[ALinkButton]
<object id="hhctrl" type="application/x-oleobject"
 classid="clsid:adb880a6-d8ff-11cf-9377-00aa003b7a1 1"
 width="100" height="100">
 <param name="Command" value="ALink">
 <param name="Button" value="Text:Related topics">
 <param name="Flags" value="1">
 <param name="Item1" value="">
 <param name="Item2" value=" first ALink keyword">

. . .
<param name="Item N" value=" last ALink keyword">

</object>

"Item1" in the macro definition specifies the path to the CHM file that contains the target
topic(s); an empty value means the current CHM file.

"Item2" through "Item N" in the macro definition each specify the value of an ALink
keyword; see HTML Help Workshop Help for more information. You would have to edit
the macro for each different ALink keyword.

LinkEmptyTopic noitems.htm Name of .htm topic file to show if no targets
are found

(none) Issue a” Not Found” complaint, unless
LinkFlags=,,1

LinkButtonWidth 100 (default) Width of image in pixels, when LinkType is
Button , Graphic , or Icon

LinkButtonHeight 100 (default) Height of image in pixels, when LinkType is
Button , Graphic , or Icon

LinkButtonText Text:ALink (default for
ALinks)

Text: followed by a label for the button, when
LinkType=Button

LinkButtonGraphic Bitmap: mybutton.bmp Bitmap: followed by the file name of the
graphic, whenLinkType=Graphic ; must be
.bmp

LinkButtonIcon Icon: myicon.ico Icon: followed by the file name of the icon,
when LinkType=Icon ; must have extension
.ico

LinkText Related Topics Text: followed by text to use for the link when
LinkType=Text

LinkTextFont Helvetica,10,,PLAIN Font to use when LinkType=Text ; syntax is
the same as for PopFont (see §18.5 Creating
pop-ups for HTML Help on page 322)

Table 18-1 ALink and KLink jump properties for HTM L Help (continued)

Property keyword* Value Effect

* The property keyword must be prefixed with “A” for an ALink property, or “K” for a KLink property.

18 GENERATING MICROSOFT HTML HELP CREATING RELATED-TOPIC LINKS FOR HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 329

However, instead of dedicating a special paragraph format to ALink jumps, you can
provide additional macros to produce ALink jumps from the paragraph format (or marker
type) you use for ALink keywords; see §18.7.5 Using the same format for ALink
keywords and jumps on page 329

18.7.5 Using the same format for ALink keywords an d jumps

You can use the same paragraph format both for ALink keywords and to produce a button
for an ALink jump in HTML Help. Use configuration settings and DITA2Go macros to
capture content and create a list of keywords for a topic, then use additional macros to
build an ALink button for the topic.

With this technique you can even include multiple keywords in a single paragraph. The
only restriction is that ALink keyword paragraphs must precede the location in each topic
where you want the ALink jump to appear.

In this section:
§18.7.5.1 Creating a list of ALink keywords from paragraphs on page 329
§18.7.5.2 Initializing the ALink keyword list counter on page 330
§18.7.5.3 Building an ALink button object from an ALink keyword list on page 330
§18.7.5.4 Positioning the ALink button in each HTML Help topic on page 331
§18.7.5.5 Including multiple ALink keywords in a paragraph or marker on page 331

18.7.5.1 Creating a list of ALink keywords from pa ragraphs

Suppose you use paragraph format ALinkTarget for ALink keywords. To capture keywords
from ALinkTarget paragraphs, assign properties to extract the paragraph content:

[HTMLParaStyles]
ALinkTarget=ALink Raw CodeStore CodeAfter

ALink property The ALink property specifies that the content of each ALinkTarget paragraph is to be used
for the ALink Name property of an HTML Help ALink object (not the button object,
which you will construct with macros); see §16.6.4.2 Adding related-topic keywords via
format properties on page 260.

Raw property The Raw property suppresses any HTML tags that would otherwise be generated; see
§30.2.4 Stripping paragraph properties on page 568.

CodeStore
property

The CodeStore property causes the content of the ALinkTarget paragraph to be stored in
macro variable $$ALinkTarget . (The value of a macro variable that has the same name
as a paragraph format is the content of the current paragraph in that format; see §37.3.1
Creating and invoking macro variables on page 687.) The CodeStore property also
removes the paragraph from text output; see §37.3.5.2 Inserting code with the CodeStore
property on page 693.

CodeAfter
property

The CodeAfter property provides the means to do something further with macro variable
$$AlinkTarget , which now contains an ALink keyword, plucked from the ALinkTarget
paragraph:

[ParaStyleCodeAfter]
ALinkTarget=<$$Nkeys++><$$ALinkKeys[$$Nkeys]=$$ALin kTarget>

Store paragraph
content in a list

variable

The [ParaStyleCodeAfter] code does the following:

 • Increments a counter, Nkeys (which will be initialized to zero before each topic).
 • Uses Nkeys to index a list variable, $$ALinkKeys (see §37.4 Using multiple-value

list variables on page 695).

CREATING RELATED-TOPIC LINKS FOR HTML HELP DITA2GO USER’S GUIDE

330 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • Stores the content of macro variable $$ALinkTarget in the Nkeys slot in list
variable $$AlinkKeys .

As DITA2Go processes DITA input for a topic, the $$ALinkKeys list gathers keywords
from ALinkTarget paragraphs until it is time to create the ALink button object for a topic,
described in §18.7.5.3 Building an ALink button object from an ALink keyword list on
page 330.

See also:
§18.7.5.2 Initializing the ALink keyword list counter on page 330
§18.7.5.3 Building an ALink button object from an ALink keyword list on page 330
§18.7.5.4 Positioning the ALink button in each HTML Help topic on page 331

18.7.5.2 Initializing the ALink keyword list count er

To set the counter for ALink keyword list variable $$ALinkKeys to zero at the beginning
of each DITA file:

[MacroVariables]
Nkeys=0

The [ALinkButton] macro (see §18.7.5.3 Building an ALink button object from an
ALink keyword list on page 330) sets Nkeys back to zero again after finishing each
button, to re-initialize Nkeys for the next topic.

See also:
§18.7.5.1 Creating a list of ALink keywords from paragraphs on page 329
§18.7.5.2 Initializing the ALink keyword list counter on page 330

18.7.5.3 Building an ALink button object from an A Link keyword list

When it comes time to output an ALink button for a topic, the following macro is invoked
to process list variable $$AlinkKeys (see §18.7.5.1 Creating a list of ALink keywords
from paragraphs on page 329) and add each keyword to the button object:

[ALinkButton]
<$_if (Nkeys > 0)>

<$ALinkButtonStart><$$ALinkParamNum=1>\
<$_repeat ($$Nkeys)>\

<$$ALinkParamText=$$ALinkKeys[$$ALinkParamNum]>\
<$$ALinkParamNum++><$ALinkButtonParam>\
<$_endrepeat>\

<$ALinkButtonEnd><$$Nkeys=0>\
<$_endif>

[AlinkButton] uses two additional macro variables:

$$ALinkParamNum is initialized to 1, and then incremented before each keyword
parameter is added to the button object, because the "Item N" keyword parameters for the
button object start with N=2, not N=1 (see §18.7.4 Rolling your own macros for ALink
jumps in HTML Help on page 328).

[AlinkButton] invokes three other macros to build the button object:
Start of button object: [ALinkButtonStart]

Keyword parameters: [ALinkButtonParam]

End of button object: [ALinkButtonEnd]

$$ALinkParamNum Keyword parameter counter (the N in "Item N")

$$ALinkParamText Text of a keyword.

18 GENERATING MICROSOFT HTML HELP CREATING RELATED-TOPIC LINKS FOR HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 331

Start of button
object

The first part of the ALink button object is straightforward, and uses the same code
described in §18.7.4 Rolling your own macros for ALink jumps in HTML Help on
page 328:

[ALinkButtonStart]
<object id="hhctrl" type="application/x-oleobject"
 classid="clsid:adb880a6-d8ff-11cf-9377-00aa003b7a1 1"
 width="100" height="100">
 <param name="Command" value="ALink">
 <param name="Button" value="Text:Related topics">
 <param name="Flags" value="1">
 <param name="Item1" value="">

Keyword
parameters

Next come the "Item2" through "Item N" parameters, which are added to the button
object one by one, as list variable $$AlinkKeys is processed:

[ALinkButtonParam]
<param name="Item<$$ALinkParamNum>" value="<$$ALink ParamText>">

End of button
object

The last piece ends the button object:
[ALinkButtonEnd]
</object>

This version of the [AlinkButton] macro assumes that each item in the $$ALinkKeys
list contains a single ALink keyword. To process a list that contains multiple keywords per
list item, you would need a slightly more complex version; see §18.7.5.5 Including
multiple ALink keywords in a paragraph or marker on page 331.

See also:
§18.7.5.4 Positioning the ALink button in each HTML Help topic on page 331

18.7.5.4 Positioning the ALink button in each HTML Help topic

The macro that creates an ALink button object must be invoked after all ALink keywords
in a topic have been added to the $$ALinkKeys list. The easiest way to ensure that the
button follows all sources of keywords is to invoke the [ALinkButton] macro at the
very end of each topic. For example:

[Inserts]
Bottom=
<$ALinkButton>

See §27.6 Inserting HTML code in split and extract files on page 534.

See also:
§18.7.5.1 Creating a list of ALink keywords from paragraphs on page 329
§18.7.5.3 Building an ALink button object from an ALink keyword list on page 330

18.7.5.5 Including multiple ALink keywords in a pa ragraph or marker

An enhanced version of the [ALinkButton] macro (see §18.7.5.3 Building an ALink
button object from an ALink keyword list on page 330) parses each $$AlinkKeys list
item for multiple ALink keywords, allowing you to include several keywords (separated
by semicolons) in each ALinkTarget paragraph or Subject marker.

This version of the [ALinkButton] macro uses two additional macro variables:

$$ALinkKeyItem Counts $$AlinkKeys list items (while $$ALinkParamNum
counts keywords and labels the button-object keyword
parameters, as before).

$$ItemContent Holds a copy of each potentially multiple-keyword list item
for chopping into individual ALink keywords.

USING SECONDARY WINDOWS IN HTML HELP DITA2GO USER’S GUIDE

332 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

This button macro invokes the same [ALinkButtonStart] , [ALinkButtonParam] ,
and [ALinkButtonEnd] macros described in §18.7.5.3 Building an ALink button object
from an ALink keyword list on page 330:

[ALinkButton]
<$_if (Nkeys > 0)>

<$ALinkButtonStart><$$ALinkKeyItem=1><$$ALinkParamN um=1>\
<$_repeat ($$Nkeys)>\

<$$ALinkParamText=$$ALinkKeys[$$ALinkKeyItem]>\
<$$ALinkKeyItem++><$$ItemContent=$$ALinkParamText>\
<$_while ($$ItemContent contains ";")>\

<$$ALinkParamText=($$ItemContent before ";")>\
<$$ALinkParamNum++><$ALinkButtonParam>\
<$$ItemContent=($$ItemContent after ";")>\
<$_endwhile>

<$$ALinkParamText=$$ItemContent><$ALinkButtonParam> \
<$_endrepeat><$ALinkButtonEnd><$$ALinkParamCount=0> \

<$_endif>

See §37.6.4.3 Using loop structures on page 705 for an explanation of loop controls
$_repeat and $_while .

See §37.6.5 Specifying substrings in expressions on page 706 for an explanation of string
operators contains , before , and after .

18.7.6 Creating buttons for other types of related -topic links

For related-topic links other than ALinks, you would have to add to an <object> macro
an "Item N" for each type. The following example includes just one:

[ParaStyleCodeReplace]
ALinkUse=<$RelLinkButton>

[RelLinkButton]
<object id="hhctrl" type="application/x-oleobject"
 classid="clsid:adb880a6-d8ff-11cf-9377-00aa003b7a1 1"
 width="100" height="100">
 <param name="Command" value="Related Topics">
 <param name="Button" value="Text:Related">
 <param name="Item1" value="testing2;reference.htm ">
</object>

This is not a good idea, because if the file name changes as a result of a split, you would
have to remember to edit the macro by hand; though if you use the macro only to navigate
to the start of fixed files, this would not be an issue.

You would have to edit the [RelLinkButton] macro to suit your own purposes. See the
Microsoft HTML Help on-line documentation, under commands for the ActiveX control,
for information about the many parameters you can use. Also see §18.9.8 Customizing
contents and index for HTML Help on page 338 for special DITA2Go settings that
provide a way to specify contents and index parameters.

18.8 Using secondary windows in HTML Help
When you jump to a secondary window in HTML Help, you get only one instance of that
window. Whenever you target the secondary window, the window itself stays in place, and
only the content is replaced.

In this section:
§18.8.1 Defining secondary windows for HTML Help on page 333

18 GENERATING MICROSOFT HTML HELP USING SECONDARY WINDOWS IN HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 333

§18.8.2 Jumping from a topic to a secondary window on page 333
§18.8.3 Jumping from contents or index to a secondary window on page 333

See also:
§16.7 Jumping to secondary windows in Help systems on page 262

18.8.1 Defining secondary windows for HTML Help

Use HTML Help Workshop to define secondary windows for HTML Help. Be sure to give
each window a name that does not exceed eight characters.

If you tell DITA2Go to rewrite your .hhp file each time (see §18.3.8 Regenerating the
HTML Help project file on page 318), add definitions of secondary windows to your
configuration file. The best way to do this is to define all windows in HTML Help
Workshop, save the .hhp file, then re-open it in a text editor such as Notepad, and copy
the contents of the [WINDOWS] section here:

[HHWindows]
main=
SecWin=

18.8.2 Jumping from a topic to a secondary window

You can use either a character format or a paragraph format to create a hotspot for a jump
from a topic to a secondary window. Assign the window name to the hotspot format:

[SecWindows]
; doc format = name of secondary window to use for jumps from
; within the span marked by this format (same as W inHelp usage)
HotspotFmt=wndwname

If more than one CHM file is involved in a jump, you must also specify how those files are
mapped; see §18.14.1 Interlinking multiple CHM files on page 348.

See also:
§16.7 Jumping to secondary windows in Help systems on page 262
§18.8.1 Defining secondary windows for HTML Help on page 333

18.8.3 Jumping from contents or index to a seconda ry window

To create a jump to a secondary window from contents or index in HTML Help, you can
use either a paragraph format or a marker in the target topic. Using a marker allows you to
designate only selected topics to be displayed in secondary windows when those topics are
accessed from contents or index.

In this section:
§18.8.3.1 Assigning a secondary window with a paragraph format on page 333
§18.8.3.2 Assigning a secondary window with a marker on page 334

18.8.3.1 Assigning a secondary window with a parag raph format

To use a paragraph format to force a jump from contents or index to a secondary window,
assign property Window to the format of the paragraph that is the target of the contents or
index entry (not to the paragraph format of the entry itself):

[HTMLParaStyles]
; Window specifies only that access from the conten ts or index
; opens the topic in the window named in [StyleWind ow]
TopicHeadingFmt=Window

GENERATING CONTENTS AND INDEX FOR HTML HELP DITA2GO USER’S GUIDE

334 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Also assign the name of the secondary window to the target paragraph format:
[StyleWindow]
; para style = window to use in HH when accessed fr om contents
; or index
TopicHeadingFmt=wndwname

Jumps from
contents

A jump from the contents loads a topic in a secondary window only if the first paragraph
in the topic has a format assigned the Window property. However, a Window PI marker in
the first paragraph overrides any Window property assigned to that paragraph format.

Jumps from index A jump from the index loads the topic in a secondary window if the Window paragraph
format appears anywhere in the topic. For paragraphs after the first in a topic, whichever
comes first, Window PI marker or paragraph assigned the Window property, determines
which secondary window will be used for jumps from the index.

See also:
§18.8.1 Defining secondary windows for HTML Help on page 333
§18.8.3.2 Assigning a secondary window with a marker on page 334

18.8.3.2 Assigning a secondary window with a marke r

To use a PI marker to force a jump from contents or index to a secondary window, insert a
PI marker of type Window in the target topic. Supply the name of the secondary window
as the content of the Window PI marker.

A Window PI marker in the first paragraph of a topic overrides any Window property
assigned to that paragraph format, for jumps from both contents and index. See §18.8.3.1
Assigning a secondary window with a paragraph format on page 333.

Jumps from
contents

If you place a Window PI marker in the first paragraph of a topic, a jump from the table of
contents to that topic will load the topic in the secondary window named in the PI marker.
Window PI markers in subsequent paragraphs are ignored for jumps from contents.

Jumps from index For paragraphs after the first in a topic, whichever comes first, Window PI marker or
paragraph assigned the Window property, determines which secondary window will be
used for jumps from the index.

See also:
§18.8.1 Defining secondary windows for HTML Help on page 333
§18.8.3.1 Assigning a secondary window with a paragraph format on page 333

18.9 Generating contents and index for HTML Help
Although topics in HTML Help can display special characters, contents and index cannot.
Be aware that HTML Help Workshop settings for contents and index are different for
stand-alone versus merged CHM files.

In this section:
§18.9.1 Choosing how to generate HTML Help contents and index on page 335
§18.9.2 Choosing whether to generate binary contents or index on page 335
§18.9.3 Generating contents and index with HTML Help Workshop on page 336
§18.9.4 Generating contents and index with DITA2Go on page 336
§18.9.5 Configuring contents entries for HTML Help on page 337
§18.9.6 Providing mid-topic contents links in HTML Help on page 337
§18.9.7 Making the TOC track index links in HTML Help on page 338
§18.9.8 Customizing contents and index for HTML Help on page 338

18 GENERATING MICROSOFT HTML HELP GENERATING CONTENTS AND INDEX FOR HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 335

18.9.1 Choosing how to generate HTML Help contents and index

To specify whether contents, index, or both should be generated for HTML Help:
[MSHtmlHelpOptions]
; ListType = Both (default), Contents, or Index

After you set up your HTML Help project, you can choose whether contents and index
will be generated by DITA2Go or by HTML Help Workshop, or by neither. This choice is
governed by the following setting:

[MSHtmlHelpOptions]
; RefFileType = HHW (for HH Workshop), Full,
; or None (do not generate).
RefFileType = Full

When RefFileType=Full , DITA2Go generates contents and index for HTML Help.

When RefFileType=HHW , DITA2Go removes attributes (including class) from <Hn>
tags, and leaves the task of generating contents and index to HTML Help Workshop. You
can edit the configuration file to change the value of RefFileType .

If you remove all settings for RefFileType from the HTML Help configuration chain,
the default becomes RefFileType=HHW ; therefore, if you specified that you want
contents or index generated, they will be generated by HTML Help Workshop.

See also:
§16.3.1 Modifying contents or index production for HTML-based Help on page 249
§18.9.3 Generating contents and index with HTML Help Workshop on page 336.

18.9.2 Choosing whether to generate binary content s or index

To produce binary TOC and index for HTML Help:
[MSHtmlHelpOptions]
; BinaryTOC = No (default) or Yes (required for nat ive browse)
BinaryTOC = Yes
; BinaryIndex = No (default) or Yes (required to me rge .chm files)
BinaryIndex = Yes

These settings take effect only when WriteHelpProjectFile=Yes ; see §18.3.8
Regenerating the HTML Help project file on page 318.

Alternatively, you can specify binary TOC or index generation directly in the .hpj file,
under [Options] ; see §18.4.2 Adding tabs and toolbar buttons to HTML Help on
page 319.

There are trade-offs to generating binary navigation features for HTML Help. Table 18-2
lists the pros and cons of specifying a binary TOC or a binary index.

GENERATING CONTENTS AND INDEX FOR HTML HELP DITA2GO USER’S GUIDE

336 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

18.9.3 Generating contents and index with HTML Hel p Workshop
Contents If you specify RefFileType=HHW , HTML Help Workshop constructs the Contents panel,

and uses your <Hn> tags as the source of the line items. This has two consequences:

 • For HTML Help Workshop to accept them, DITA2Go must treat differently the <Hn>
tags in the body file from which the .hhc file is created, by omitting all attributes,
including CSS style; therefore you lose control over much of their appearance in the
body file.

 • The sequence in which HTML Help Workshop uses the <Hn> tags is determined by
the sequence of the files listed in the .hhp file; if a file is out of order in the list, its
contents appear out of order in the .hhc file. When many of your files are created by
splitting, keeping the .hhp list up to date becomes a maintenance nightmare.

Index When HTML Help Workshop creates the index, DITA2Go embeds DITA index entries
(minus the parts that HTML Help does not understand) as K-type index entries in the
.htm files. This has two consequences:

 • Selecting an index item does not take you to the place in the file where that item is
used; instead, it puts you at the start of the HTML file, even if the item sought is at the
end.

 • You have no way to control sort order.

18.9.4 Generating contents and index with DITA2Go

If you specify RefFileType=Full , DITA2Go creates contents or index files or both.
See §16.3.1 Modifying contents or index production for HTML-based Help on page 249.

When you use the .hhp project file to compile a CHM file, DITA2Go activates the
Contents and Index tabs in the navigation pane. The sequence of files in the .hhp file
does not matter; in fact, you can specify just *.htm , for all topic files.

When DITA2Go creates the .hhc file, you can use the align attribute and CSS classes
for tags in the body file from which the .hhc is created, and you can include any tags in
the contents. You cannot do this if you let HTML Help Workshop create the .hhc file.

Table 18-2 Binary TOC/Index advantages and disadvantages for HTML
Help

Binary feature Advantages and disadvantages

TOC Pros: Supports browse via Prev and Next buttons in the HTML Help viewer; see §18.4.2
Adding tabs and toolbar buttons to HTML Help on page 319.

Supports no-link entries in the TOC; see §18.9.5 Configuring contents entries for
HTML Help on page 337.

Allows the TOC to stay synchronized with topics selected via the index; see §18.9.7
Making the TOC track index links in HTML Help on page 338.

Cons: Incompatible with merging .chm files at run time; see §18.14.5 Comparing HHW
settings for stand-alone vs. merged CHMs on page 351.

Can cause problems with mid-topic TOC links; see §18.9.6 Providing mid-topic
contents links in HTML Help on page 337.

Index Pros: Supports merging .chm files at run time; see §18.14.5 Comparing HHW settings for
stand-alone vs. merged CHMs on page 351.

Cons: Prevents index customization; see §16.5.8 Customizing index sort order on
page 256.

18 GENERATING MICROSOFT HTML HELP GENERATING CONTENTS AND INDEX FOR HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 337

18.9.5 Configuring contents entries for HTML Help

Headings that start topics, or to which you assign the Contents property or a contents
level, are automatically included in the TOC; see the following:

§16.4.2 Including contents entries in HTML-based Help on page 250.
§16.4.3 Setting contents levels for HTML-based Help on page 251.

Even if you assign the Contents property to several heading levels in the same topic, the
resulting TOC links always take you to the top of the .htm file that contains the link
destinations. You can provide true mid-topic links in the TOC, but at a cost; see §18.9.6
Providing mid-topic contents links in HTML Help on page 337.

Split at each
heading level

The best way to ensure that each TOC link goes to an exact destination is to split your
DITA document at each heading level. Each heading becomes the start of a topic instead
of being in the middle of a topic, and TOC entries synchronize with topic content.

No-link entries
require a binary

TOC

To include a paragraph format in the TOC but omit the link:
[HTMLParaStyles]
; NoContLink suppresses linkage for its Contents it em in MS HTML Help;
; the item remains in the Contents pane, but clicki ng it does not
; bring up the corresponding topic in the main pane .
ParaFmt=Contents NoContLink

You can use this feature to include section headings in the TOC. To make a no-link
paragraph appear only in the TOC, and not in any topic:

[HTMLParaStyles]
ParaFmt=Contents NoContLink Delete

Note: If you specify NoContLink but you do not also specify a binary TOC in HTML
Help Workshop, the NoContLink entries disappear from the TOC; and so do any
parent entries, unless there is at least one split below the parent that does not itself
have any NoContLink subentries. This is a limitation of HTML Help.

Skipped heading
levels

If your document skips a heading level (for example, a level 3 heading follows a level 1
heading with no level 2 heading in between), HTML Help promotes the level 3 heading to
level 2 in the contents. However, HTML Help does not promote additional level 3
headings in the same subgroup: two or more level 3 headings in succession result in the
first appearing with a book icon, and the rest with page icons subordinate to the book icon.

To avoid this problem, DITA2Go moves the whole hierarchy up one level. In the example
in §18.9.4 Generating contents and index with DITA2Go on page 336, all level 3 headings
in the same subgroup that follow a level 1 heading would show the same indent in the
contents; however, that indent would not be the same as for level 3 headings that follow a
level 2 heading.

See also:
§16.4 Configuring contents entries for Help systems on page 250
§18.9.6 Providing mid-topic contents links in HTML Help on page 337

18.9.6 Providing mid-topic contents links in HTML Help

If you provide mid-topic links in the TOC, you lose contents tracking of your current
location in the Help system. And if you specify a binary TOC in HTML Help Workshop
(which you must do to enable certain HTML Help features), mid-topic entries in the TOC
become relatively useless. These are known HTML Help problems; DITA2Go cannot fix
them.

GENERATING CONTENTS AND INDEX FOR HTML HELP DITA2GO USER’S GUIDE

338 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Why not to
include mid-topic
links in the TOC

Providing mid-topic links in the TOC is generally not a good idea, for the following
reasons:

 • You cannot include any HTML Help features (such as built-in browse buttons) that
require a binary TOC.

 • The HTML Help window is usually small, perhaps six words per line; scrolling
around in a multi-topic page can take a long time.

 • Loss of synchronization can mystify users.

No binary TOC
with mid-topic

links

If you specify a binary TOC in HTML Help workshop, and you have mid-topic links in
the TOC, the name of the last TOC link to a given topic file becomes the name of all links
to the file, unless you use the following settings for all but the first heading:

[HTMLParaStyles]
Midtopichead=Contents NoContLink

However, with this setting the mid-topic entries are no longer active links, which is likely
to annoy users.

If you must have
mid-topic links in

the TOC

If you are willing to give up synchronization to get drill-down, and your project does not
require a binary TOC, do the following:

1. In [HTMLParaStyles] , assign property Split only to H1-level heading formats;
assign property Contents to other heading formats.

2. Set the following option:
[MSHtmlHelpOptions]
; ContentsNamesFileOnly = Yes (default, allows trac king)
; or No (allows direct mid-topic jumps to points w ithin files,
; but disables tracking)
ContentsNamesFileOnly=No

3. Avoid HTML Help features that require a binary TOC, and make sure your help
project file (.hhp file) does not specify Binary TOC=Yes .

TOC entries reference points inside .htm files (that is, the links have #place suffixes), so
you can drill down into the file via the TOC; but TOC entries no longer synchronize with
topic content.

18.9.7 Making the TOC track index links in HTML He lp

If you specify a binary TOC for a stand-alone HTML Help project, you can make the TOC
stay synchronized with topics selected via the index. If you intend to merge CHM files,
see §18.14.5 Comparing HHW settings for stand-alone vs. merged CHMs on page 351.

To make the TOC track topics accessed from the index:

1. Open the .hhp file in HTML Help Workshop.

2. On the Files tab in the Options dialog delete the file name under Index file .

3. On the Files tab in the Window Types dialog, make sure each window you have
defined references the .hhk file.

4. Compile the project.

You should notice that you can select any index entry (even entries with mid-topic links)
and the TOC will track the topic pane.

18.9.8 Customizing contents and index for HTML Hel p

Two settings allow you to specify additional properties for contents and index:

18 GENERATING MICROSOFT HTML HELP PROVIDING FULL-TEXT SEARCH (FTS) FOR HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 339

[MSHtmlHelpOptions]
; Properties for the .hhc and .hhk files; can conta in macros.
HHCProperties=<param name=" ContentsParamName" value=" ParamValue">
HHKProperties=<param name=" IndexParamName" value=" ParamValue">

Each setting assigns a parameter for an HTML Help contents or index properties object.
You can use DITA2Go macros to assign multiple parameters. For example:

[MSHtmlHelpOptions]
HHCProperties=<param name=" ContentsParam" value=" ContentsValue">
HHKProperties=<$HHKPropMacro>

[HHKPropMacro]
<param name=" IndexParam" value=" IndexValue">
<param name=" OtherIndexParam" value=" OtherIndexValue">

DITA2Go supplies the enclosing <object type="text/site properties"> tag.

Copy Workshop
parameters

You can choose contents or index properties in HTML Help Workshop, then specify those
same properties in the configuration file, so they will be applied every time you run the
conversion. For example, to customize contents:

1. Use DITA2Go to convert your document to HTML Help.

2. Open the HTML Help project file (myproj.hhp) in HTML Help Workshop.

3. With the Contents tab selected, click the Properties icon.

4. Set whatever properties you wish in the Table of Contents dialog, then click OK.

5. Save the project, then exit HTML Help Workshop.

6. Open the HTML Help contents file (myproj.hhc) in a text editor such as Notepad,
and find the properties object at the start of the body. For example:

<!-- Sitemap 1.0 -->
</HEAD><BODY>
<OBJECT type="text/site properties">

<param name="Window Styles" value="0x800425">
</OBJECT>

7. If there is just one <param ...> tag, copy the tag and assign it as follows:
[MSHtmlHelpOptions]
HHCProperties=<param name="Window Styles" value="0x 800425">

If there is more than one <param ...> tag, use a macro; for example:
[MSHtmlHelpOptions]
HHCProperties=<$MyHHCProps>

[MyHHCProps]
<param name="Window Styles" value="0x800425">
<param name="Background" value="0x808040">

See HTML Help Workshop Help for information about the properties you can specify.

See also:
§16.4 Configuring contents entries for Help systems on page 250
§16.5 Configuring index entries for Help systems on page 251

18.10 Providing full-text search (FTS) for HTML He lp
For HTML Help, full-text search is created as part of compiling a .chm with HTML Help
Workshop; see §18.13 Compiling and testing HTML Help on page 346. With default
settings, you get FTS automatically when DITA2Go generates HTML Help.

SETTING UP CSH FOR HTML HELP DITA2GO USER’S GUIDE

340 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Note: The HTML Help FTS is built entirely by the Microsoft compiler, and stored in an
undocumented binary format within the .chm file. Omni Systems cannot do
anything about problems you encounter with its operation.

Omitting FTS To prevent indexing for full-text search in HTML Help:
[MSHtmlHelpOptions]
; UseFTS = Yes (default) or No (affects Help Projec t File rewrite)
UseFTS = No

Specifying FTS in
the .hhp file

The .hhp file for your project contains the setting for FTS, which DITA2Go includes by
default while creating the .hhp file for you. If you create the .hhp some other way, you
must make sure the .hhp file (not the DITA2Go configuration file) includes the following
setting:

[OPTIONS]
Full-text search=Yes

Including topic
titles in search

results

For HTML Help to list the names of topics when a user clicks Search , you must specify
titles for all topics, normally by assigning the Title property to the formats for all DITA
topic headings and all other headings at which you split DITA files to create HTML Help
topics. For example:

[HTMLParaStyles]
Heading1 = Split Title Contents
Heading2 = Split Title Contents

See §27.5.2 Specifying page titles for split or extract files on page 531.

Indexing for FTS
in another
language

If you are preparing HTML Help in another language, you must run the compiler, which
builds the FTS index, in the target locale. See §18.13.3 Compiling in a different language
on page 347.

Excluding a topic
from FTS

DITA2Go excludes a topic from full-text search by changing the topic file extension to
.xhtml , even though the file is not actually XHTML. Only files with names containing
the string .htm* get indexed (by HTML Help Workshop) for full-text search in HTML
Help.

DITA topicref attribute @search (with value yes or no) allows you to specify whether
the referenced topic is to be included in full-text search. DITA2Go excludes from HTML
Help full-text search topics that are referenced with @search="no" .

If your DITA maps do not include values for the topicref @search attribute, you can
achieve the same effect with PI markers inserted in the topicrefs, and a ditaval file. For
example:

<?dthtm Search="no" ?>

In this example the effect on DITA2Go output is the same as if you had included
@search="no" in the topicref for such topics.

18.11 Setting up CSH for HTML Help
Producing CSH for HTML Help requires:

 • CSH destination identifiers in your document
 • links from an application program
 • usually, a map file and an alias file to connect links to their destinations.

In this section:
§18.11.1 Inserting CSH destinations in your document on page 341
§18.11.2 Determining whether you need map and alias files on page 341

18 GENERATING MICROSOFT HTML HELP SETTING UP CSH FOR HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 341

§18.11.3 Specifying and generating a map file for CSH links on page 342
§18.11.4 Creating an alias file for CSH links on page 343
§18.11.5 Understanding alias-file entries on page 343
§18.11.6 Producing a list of aliases and associated topic titles on page 344

See also:
§16.10.1 Understanding how CSH works on page 278
http://helpware.net/htmlhelp/how_to_context.htm.

18.11.1 Inserting CSH destinations in your documen t

To insert CSH destinations in your DITA document, use PI markers.

Markers provide the only way to insert mid-topic CSH destinations.

To provide a CSH destination with a marker:

1. Place a TopicAlias PI marker in the text of your document where you want to
display context-sensitive help. Markers can be anywhere in the text; a good place is in
the topic, after the root and before the title. Each PI marker must be within the
material you want presented to the user.

2. Make the content of the PI marker a symbolic ID: a unique name with a prefix you
specify in the configuration file; see §18.11.4 Creating an alias file for CSH links on
page 343.

Mid-topic
destinations

Even if you insert the PI marker somewhere in the middle of a topic, clicking the
associated button in the application takes the user to the beginning of the topic. However,
you can provide mid-topic destinations by setting the following option in the configuration
file:

[MSHtmlHelpOptions]
; UseAliasAName= No (default),
; or Yes (to allow midtopic jumps for CSH)
UseAliasAName=Yes

First CSH link is
to start of topic

When UseAliasAName=Yes , every CSH link except the very first goes directly to a mid-
topic destination. Because of a defect in HTML Help, the CSH link for the first symbolic
ID in your document always takes the user to the beginning of the topic that contains the
relevant marker. If this is not acceptable, you can provide a dummy first entry by inserting
a TopicAlias PI marker containing a dummy symbolic ID at the start of your DITA
document. Also arrange for a dummy link to this destination; see §18.11.3 Specifying and
generating a map file for CSH links on page 342.

See §18.11.5 Understanding alias-file entries on page 343.

18.11.2 Determining whether you need map and alias files
Markers If you use PI markers for CSH destinations, you need both a map file and an alias file:

When you use PI markers, developers should use the HH_HELP_CONTEXT API, and
specify topics by numeric ID. You need the map and alias files to associate their numeric
IDs with your symbolic IDs. Each time you convert your DITA document to HTML Help,

map file Associates each numeric ID in the application with a symbolic ID in
your document, where the symbolic ID is the relevant PI marker text.

alias file Associates each symbolic ID in your document with the .htm file where
the relevant PI marker is located.

http://helpware.net/htmlhelp/how_to_context.htm

SETTING UP CSH FOR HTML HELP DITA2GO USER’S GUIDE

342 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

DITA2Go uses the symbolic IDs to generate an alias file; see §18.11.4 Creating an alias
file for CSH links on page 343. Usually the developers provide the map file.

When developers use the HH_HELP_CONTEXT API, the application must send a numeric
ID, and you must have the map file in your project to interpret the numeric ID. The
developers need only the map file. You need only to add to your HTML Help project file
the name of the map file and the name of the alias file, before compiling. You can do this
via configuration setting; see §18.11.3 Specifying and generating a map file for CSH links
on page 342.

18.11.3 Specifying and generating a map file for C SH links

If the developers of the application for which you are providing context-sensitive help use
HH_HELP_CONTEXT and specify topics by ID number, ask them for the file that maps
symbolic IDs to numeric IDs. (You cannot go directly from numbers to files; you have to
go through the symbolic names used in the map and alias files.) For C or C++, the map file
is usually named resource.h , and contains entries such as the following:

#define IDH_Export 1090
#define IDH_CnvDsgnr 1080

The map file must be named in the [MAP] section of your .hhp file, and must be located
in or below the directory that contains your .hhp file. For example:

[MAP]
#include "resource.h"

Quotes are required around each #include d file name.

Instead of editing the [MAP] section of your .hhp file, you can specify the file name in a
configuration setting; and you can have DITA2Go generate an initial map file for you.

Specify a map file To specify the name of the map file:
[MSHtmlHelpOptions]
; CshMapFile = name of file to #include in .hhp [MA P] for CSH support
CshMapFile = resource.h

This way you will not lose the information if DITA2Go rewrites the .hhp file. However,
if you need to reference more than one map file, you must specify any additional map files
in the .hhp file, and you must prevent DITA2Go from rewriting the .hhp file. See
§18.3.8 Regenerating the HTML Help project file on page 318.

Generate a map
file

While the map file normally comes from the developers, it might be necessary for the
writer to produce the first one, to let the developer know what IDs are available.

To have DITA2Go generate a map file for CSH links:
[MSHtmlHelpOptions]
; MakeCshMapFile = No (default) or Yes (generate a map file)
MakeCshMapFile = Yes
; CshMapFileNumStart = Starting number for numeric IDs, default 10000
CshMapFileNumStart = 10000
; CshMapFileNumIncrement = Increment between values , default 10
CshMapFileNumIncrement = 10

DITA2Go creates a map file of the name you assign to CshMapFile , overwriting any
existing file of the same name, and assigning an incremental numeric ID to each of the
symbolic IDs included in your document.

18 GENERATING MICROSOFT HTML HELP SETTING UP CSH FOR HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 343

18.11.4 Creating an alias file for CSH links

When you use PI markers for CSH destinations, by default DITA2Go generates an alias
file for you, named after your document, with extension .hha ; for example, MyDoc.hha .
DITA2Go also creates an entry for the alias file in the HTML Help project file; for
example:

[ALIAS]
#include " MyDoc.hha"

The alias file must be located in or below the directory that contains your .hhp file. The
alias file contains an entry for each symbolic ID in your document that:

 • occurs in a TopicAlias PI marker, and
 • begins with one of the prefixes you specify in the configuration file.

Alias prefixes To specify prefixes for symbolic IDs:
[MSHtmlHelpOptions]
; AliasPrefix = all prefixes wanted in alias file, comma or space
; delimited; if omitted, all newlinks are included
; NOTE: wildcards do not work in prefixes
AliasPrefix=HIDC_, IDH_

With this setting, the alias file would include the content of every TopicAlias PI marker
in your document that contains a name prefixed with HIDC_ or IDH_ . See §18.11.5
Understanding alias-file entries on page 343 for examples.

No alias file To prevent DITA2Go from creating an alias file:
[MSHtmlHelpOptions]
; MakeAliasFile = Yes (default, make list of newlin ks and files) or No
MakeAliasFile=No

When MakeAliasFile=No , DITA2Go does not generate an alias file. In that case, if you
are using PI markers for CSH destinations, you must create the alias file manually, and
manually insert the corresponding entry in the HTML Help project file.

When MakeAliasFile=Yes , but your document contains no TopicAlias PI markers
that qualify, DITA2Go does not generate an alias file.

18.11.5 Understanding alias-file entries

By default DITA2Go generates alias-file entries of the following form:
symbolic_ID=helptopicfile.htm

For example:
IDH_CnvDsgnr=02x998989.htm
IDH_Export=02x999005.htm

Mid-topic
destinations

To make a CSH link take the user directly to a mid-topic destination, the alias-file entry
for the symbolic ID must include a hash value after the file name:

symbolic_ID=helptopicfile.htm# symbolic_ID

For example:
IDH_110100=ac960367.htm#IDH_110100
IDH_110200=ac960367.htm#IDH_110200

To direct DITA2Go to generate alias-file entries of this form, specify the following
option:

[MSHtmlHelpOptions]
UseAliasAName=Yes

See §18.11.1 Inserting CSH destinations in your document on page 341.

GENERATING HTML HELP IN NON-WESTERN LANGUAGES DITA2GO USER’S GUIDE

344 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

First entry cannot
have a mid-topic

destination

There is a catch: because of a defect in HTML Help alias-file processing, the very first
entry in the alias file must not have a hash value. Even when you specify
UseAliasAName=Yes , DITA2Go omits the hash value for the first entry; therefore, the
CSH link for the first symbolic ID listed in the alias file always takes you to the beginning
of the topic that contains the relevant destination. If this is not acceptable, you can provide
a dummy first entry by inserting a TopicAlias PI marker containing a dummy symbolic
ID at the start of the first file in the book. This symbolic ID must also appear in a valid
entry in the map file, so you might have to get the developers to add a corresponding
dummy entry to the map file.

Even with this workaround, HTML Help Workshop will report an error on every alias with
a hash value; but the CSH links work anyway.

18.11.6 Producing a list of aliases and associated topic titles

To direct DITA2Go to prepare a list of all the CSH IDs used in your document, along with
the titles (not the file names) of the topics in which each was found:

[MSHtmlHelpOptions]
; AliasTitle = No (default) or Yes (generate .hht f ile with titles
; for all topics containing CSH aliases, like the . hha but with titles
; not filenames)
AliasTitle = Yes

When AliasTitle=Yes , DITA2Go writes to the project directory a file named
MyDoc.hht , where MyDoc is the name of your HTML Help project. Each line in the .hht
file contains an ID followed by the title of its topic. For example:

IDH_ChooseProject "Setting up a DITA2Go project"
IDH_Export "Converting documents"

18.12 Generating HTML Help in non-Western language s
HTML Help does not support Unicode well, even in the topic pane where it might appear
to do so. Topic content is rendered by the Internet Explorer HTML engine, so the topic
pages themselves could use UTF-8. However, the Search function works only on
characters that are in the Windows code pages that HTML Help supports. For example,
English text in a Japanese file can be found, but Search will not find any Japanese content.

In this section:
§18.12.1 Converting from Unicode to Windows code pages on page 344
§18.12.2 Specifying locale and language for HTML Help on page 345
§18.12.3 Preventing inclusion of Unicode numeric references on page 346

See also:
§16.5.8.3 Specifying index sort type and locale on page 257
§18.3.5 Deciding whether to compile HTML Help on page 317
§18.13.3 Compiling in a different language on page 347

18.12.1 Converting from Unicode to Windows code pa ges

DITA2Go can convert your document from Unicode to the appropriate Windows code
pages for HTML Help, by using the ICU library; see:

http://site.icu-project.org/

http://site.icu-project.org/

18 GENERATING MICROSOFT HTML HELP GENERATING HTML HELP IN NON-WESTERN LANGUAGES

ALL RIGHTS RESERVED. MAY 19, 2013 345

If you have not already done so, download icu401.zip from the Omni Systems Web
site. To install the ICU code pages, extract all code-page DLLs from icu401.zip , and
copy the DLLs to both of the following locations:
 • %OMYSHOME%\common\bin

 • your Windows system directory.

DITA2Go will use these code-page DLLs to prepare your HTML Help output, depending
on the locale you specify; see §18.12.2 Specifying locale and language for HTML Help on
page 345.

The complete set of Windows code pages potentially needed for CHMs can be found here:
http://msdn.microsoft.com/en-us/goglobal/bb964654

For CJK languages, you would need these four:
932 (Japanese Shift-JIS)
936 (Simplified Chinese GBK)
949 (Korean)
950 (Traditional Chinese Big5)

18.12.2 Specifying locale and language for HTML He lp

To specify locale and language for HTML Help (for example, Japanese):
[MSHtmlHelpOptions]
; HelpFileLanguage = LCID to put in project file, d efault is for
: US English.
HelpFileLanguage = 0x411 Japanese

This is equivalent to setting the following in your .hhp file:
[OPTIONS]
Language = 0x411 Japanese

DITA2Go supports the following locales:

Each of these values sets an associated code page for all output files, and overrides any
values specified in the configuration file for the following settings in [HTMLOptions] :

Getting around a
defect in HHW in

order to display
Help title

When you specify a locale identifier (LCID) other than US English, a defect in HTML
Help Workshop prevents your Help-file title from being displayed in the CHM file;
instead, the title shows as “HTML Help”. DITA2Go provides a default workaround that
sets the HTML Help Workshop Language option to US English for initial creation of the
.hhp file. Even if the resulting CHM file will be used in other locales, a setting for

Decimal Hex Language
1033 0x409 English (United States)

1032 0x408 Greek

1049 0x419 Russian

1055 0x41F Turkish

1029 0x405 Czech (used for Central European)

1041 0x411 Japanese

1028 0x404 Chinese (Traditional)

2052 0x804 Chinese (Simplified)

1042 0x412 Korean

Encoding §22.4.3 Specifying character encoding for HTML on page 434

XMLEncoding §23.2.3 Specifying character encoding for generic XML on
page 450

http://msdn.microsoft.com/en-us/goglobal/bb964654

COMPILING AND TESTING HTML HELP DITA2GO USER’S GUIDE

346 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

HelpFileLanguage is required to display the value you specified for HelpFileTitle
instead of just “HTML Help”.

Fixed spaces
cannot always be

represented

Because fixed spaces (such as non-breaking spaces and thin spaces) cannot be represented
in some code pages, if you are using (for example) the Japanese locale, DITA2Go maps
all fixed spaces to the ideographic space, U+3000 (x81 x40), for code page 932.

18.12.3 Preventing inclusion of Unicode numeric re ferences

As a partial workaround for the lack of Unicode support, by default DITA2Go includes
the original Unicode as numeric character references for characters not in the current code
page. Therefore, you will get Unicode for any character that could not be rendered in the
code page you specified, unless you set the following option:

[HTMLOptions]
NumericCharRefs=No

These characters will be viewable, but will not work in Search or in the index. See §22.4.3
Specifying character encoding for HTML on page 434.

18.13 Compiling and testing HTML Help
It is best to compile HTML Help in a directory different from your DITA2Go HTML
Help project directory. You can have DITA2Go automatically copy the necessary files to a
compilation directory, then run the HTML Help compiler; or, you can include copy
commands in the configuration file, and run the HTML Help compiler yourself.

In this section:
§18.13.1 Directing DITA2Go to run the HTML Help compiler on page 346
§18.13.2 Copying output files and compiling later on page 347
§18.13.3 Compiling in a different language on page 347
§18.13.4 Registering your HTML Help system for network use on page 347

18.13.1 Directing DITA2Go to run the HTML Help com piler

When you specify the following options in the configuration file, DITA2Go automatically
runs the HTML Help compiler after generating output files:

[Automation]
WrapAndShip = Yes
CompileHelp = Yes

For large projects, you might want to stick with CompileHelp=No ; then after DITA2Go
finishes the conversion, compile directly from HTML Help Workshop. Otherwise you
might encounter memory limitations when DITA2Go tries to run the compiler.

If the HTML Help compiler is not on your system PATH, you must tell DITA2Go where to
find it. For example:

[MSHtmlHelpOptions]
; Compiler = path to hhc.exe, not required if its d irectory is in the
; system PATH environment variable.
Compiler = D:\hh\hhc

To have DITA2Go copy the .hhp file to another directory for compiling, specify the
following:

[Automation]
WrapAndShip=Yes
; WrapPath = path to dir for compiling and distribu tion,

18 GENERATING MICROSOFT HTML HELP COMPILING AND TESTING HTML HELP

ALL RIGHTS RESERVED. MAY 19, 2013 347

; default is output dir
WrapPath = .\help

See §44.6 Assembling files for distribution on page 792.

See also:
§16.2.2 Compiling and distributing Help systems on page 247
§18.3.9 Locating graphics files for HTML Help on page 318

18.13.2 Copying output files and compiling later

You must create a separate directory for compilation, then copy (do not move) the required
files to that directory: .htm , .hhk , .hhc , .hha , and .hhp . Because the project directory
contains a lot of other files that are all part of the conversion machinery, you must keep a
set of these files in the project directory. Also, place your CSS file in the compilation
directory.

Note: If you manually copy files to another directory for compilation, do not check
Compile Help in the DITA2Go Export dialog; that option works only on files in
the directory specified by[Automation]WrapPath (see §44.3 Understanding
path values for deliverables on page 788). Compile from HTML Help Workshop
instead.

You can use Windows copy commands to move just the compilable HTML Help files into
place after converting a DITA document.

If you copy graphics files to the compilation directory, set the following option in project
configuration file d2htmlhelp.ini , to remove path information from references to the
graphics files:

[Graphics]
StripGraphPath = Yes

When DITA2Go finishes converting your document, select the .hhp file in HTML Help
Workshop, and compile the project.

18.13.3 Compiling in a different language

To compile HTML Help in a language for a locale other than your current Windows
locale, download free command-line utility SBAppLocale from SteelBytes:

http://www.steelbytes.com/?mid=45

SBAppLocale allows you to run another executable as if you are using a different
Windows locale. For example, to compile Japanese HTML Help, you would specify:

SBAppLocale 1041 path\to\hhc.exe MyProj.hhp

The number 1041 is the decimal code for Japanese. To see a list of all the locales, run
SBApplocale with no parameters. This utility is a must-have for languages that do not use
code page 1252. For Korean and Simplified Chinese output, index entries might be
corrupted. In that case you would need to compile on a machine with the correct locale
specified.

18.13.4 Registering your HTML Help system for netw ork use

To use HTML Help over a network when the CHM file is installed on an individual
computer, you must register the CHM file in the Windows Registry. This is because
current Microsoft security features block HTML Help files viewed from a network drive.

http://www.steelbytes.com/?mid=45

MAPPING AND MERGING CHM FILES DITA2GO USER’S GUIDE

348 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

You can use a free tool, HHReg from EC Software, to register each CHM file in the
Windows registry:

http://www.ec-software.com/products_hhreg.html

CHM files viewed from local drives are not blocked by these security features.

18.14 Mapping and merging CHM files
You can create an HTML Help system that consists of multiple CHM files with interfile
links. If all the files are always present, map them. On the other hand, if you are creating a
modular Help system, one or more CHM files can be merged into a main CHM file at run
time, based only on whether or not the other files are present.

In this section:
§18.14.1 Interlinking multiple CHM files on page 348
§18.14.2 Synchronizing TOC references to slave CHM files on page 350
§18.14.3 Putting up with a binary index for merged CHM files on page 350
§18.14.4 Merging CHM files on page 350
§18.14.5 Comparing HHW settings for stand-alone vs. merged CHMs on page 351

See also:
§16.11 Setting up a dynamic modular Help system on page 280
§18.6.3 Linking to external files from compiled HTML Help on page 325
§18.14.5 Comparing HHW settings for stand-alone vs. merged CHMs on page 351
§28.6 Linking to other files and other DITA2Go projects on page 553

18.14.1 Interlinking multiple CHM files

When you create multiple interlinked CHM files, you must specify a mapping for each
external file name that is specified in the .hpj file (but not in the current CHM file) to the
name of the CHM file that contains the corresponding topic.

In this section:
§18.14.1.1 Specifying the default CHM file on page 348
§18.14.1.2 Mapping DITA files to CHM files on page 349
§18.14.1.3 Requiring DITA2Go to use paths for mapped DITA files on page 349

See also:
§18.6.3 Linking to external files from compiled HTML Help on page 325
§28.6 Linking to other files and other DITA2Go projects on page 553
Rob Chandler’s Web site: http://www.helpware.net/htmlhelp/linktochm.htm

18.14.1.1 Specifying the default CHM file

Tell HTML Help Workshop what CHM file you are using as the default:
[MSHtmlHelpOptions]
; DefaultChmFile = name of .chm for project if not in [ChmFiles]
DefaultChmFile = MyProj

See §18.3.6 Naming project and compiled files for HTML Help on page 317.

DITA2Go uses the default CHM file name as the destination for any DITA files that have
not been mapped to other CHM file names; see §18.14.1.2 Mapping DITA files to CHM
files on page 349.

http://www.ec-software.com/products_hhreg.html
http://www.helpware.net/htmlhelp/linktochm.htm

18 GENERATING MICROSOFT HTML HELP MAPPING AND MERGING CHM FILES

ALL RIGHTS RESERVED. MAY 19, 2013 349

To support cross references between the current CHM file and CHM files from projects in
other output directories, see §28.6 Linking to other files and other DITA2Go projects on
page 553. To support interproject hypertext links, see §18.6.3 Linking to external files
from compiled HTML Help on page 325.

18.14.1.2 Mapping DITA files to CHM files

For CHM files other than the default file (see §18.14.1.1 Specifying the default CHM file
on page 348), specify how DITA files should be mapped to the other CHM files:

[ChmFiles]
; Original or remapped filename (no ext) = chm file name (no ext)
; overrides default set by [MSHtmlHelpOptions]Defau ltChmFile
D:/MyBook/Chapter1 = MyProj

These mappings takes precedence over any default mapping of the same DITA files to the
default CHM file.

No file extensions Do not include file extensions in mappings.

Specify paths to
DITA files

It is best to include a path to each DITA file, because you could have several files with the
same name in different projects from which you generate different CHM files. Without file
paths, you would have no way to differentiate these files. Although you can use either
forward slashes or backslashes in paths to DITA files, forward slashes are preferred.
DITA2Go uses those cross-reference paths to find the referenced files. See §18.14.1.3
Requiring DITA2Go to use paths for mapped DITA files on page 349.

Multiple paths to
a single DITA file

To handle several possible paths to the same DITA file, add a line for each path. For
example:

[ChmFiles]
MyDoc1 = CHMa
MyDoc2 = CHMb
.../GroupB/MyDoc2 = CHMb
G:/test/GroupB/MyDoc2 = CHMb

Avoid paths to
CHM files

It is best not to specify paths for CHM files mapped in [ChmFiles] , because Microsoft
does not allow relative paths to CHM files. Although you can specify an absolute path,
absolute paths are not a good idea. You cannot predict where the file will be placed on
every system. When no path is specified, HTML Help uses the Windows Registry entry to
find the CHM file, provided one of the following is true:

 • the CHM file has been used at least once
 • the installer created the correct Registry entry for the CHM file.

18.14.1.3 Requiring DITA2Go to use paths for mappe d DITA files

When you map DITA files to CHM files (see §18.14.1.2 Mapping DITA files to CHM
files on page 349), by default DITA2Go first checks for the presence of a DITA file with
the path specified in [ChmFiles] ; if the file is not found, DITA2Go checks for the file
without a path.

To require DITA2Go to use the path:
[MSHtmlHelpOptions]
; RemoveChmFilePaths = Yes (default) to try to matc h filenames
; without their path component in [ChmFiles] after t rying with it,
; or No to require the path (with forward slashes)
; to be present on the left-side names.
RemoveChmFilePaths = No

See also:
§18.14.1.1 Specifying the default CHM file on page 348

MAPPING AND MERGING CHM FILES DITA2GO USER’S GUIDE

350 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

18.14.2 Synchronizing TOC references to slave CHM files

The method described in this section works only for slave CHM files that are never used
as stand-alone Help files. A simpler way to ensure TOC synchronization is to set
UseChmInLinks=Yes , as described in §18.6.2 Specifying href link syntax for HTML
Help on page 324.

When you merge CHM files, to ensure that TOC entries for topics in a slave CHM file are
synchronized, when you generate the slave .hhc file you can have DITA2Go prefix
references with master-to-slave text for the value of the Local parameter:

[MSHtmlHelpOptions]
; ContentsLocalValuePrefix = text to put before fil e references in
; .hhc, used in slave .chms that are used only with a master.chm,
; not alone
ContentsLocalValuePrefix = master.chm::/ slave.chm::/

For example, if the master is guide.chm and the slave is intro.chm , you would specify:
[MSHtmlHelpOptions]
ContentsLocalValuePrefix = guide.chm::/intro.chm::/

A reference in the slave TOC would then look like this:
 <object type="text/sitemap">
<param name="Name" value="Introduction">
<param name="Local" value="guide.chm::/intro.chm::/ Introduction.htm">
</object>

18.14.3 Putting up with a binary index for merged CHM files

When you merge CHM files, you are totally dependent on the Help Compiler to sort the
index; sort strings do not help, and DITA2Go cannot change that. This is true regardless
of how you produce the CHM. Creating your own .hhk file with the order you want does
not work, because the compiler ignores that order when creating the binary sort. The only
thing that could affect the binary sort order is the sort code in the Windows OS on the
machine where the compiler is run.

For example, to get a binary index sorted for Japanese HTML Help, you would have to
compile on a native Japanese system, not just on an English system with a Japanese IME
running. In that case, you have handed over control of sort order to Windows; you get
what it gives you, and that is that. On the other hand, so does everyone else, so users
should be used to it.

The other choice is to build the Help as a single, non-merged project, with variations for
each use case if some modules are present and others excluded for specific audiences.
That may be the only answer, if you do not like the Windows sort order. With five
modules, you would have 120 possible combinations, but perhaps not all of them are
really used. And even if they are, disk space is cheap, and you could install just the one
needed on a given user’s system.

18.14.4 Merging CHM files

To merge CHM files at run time, you must designate one of the projects to be the main
project (master); the others are subprojects (slaves). In the configuration file for the main
project, in the [HelpMerge] section list the names of all the subproject CHM files to be
merged, omitting file extensions. For example:

[HelpMerge]
LibRef

18 GENERATING MICROSOFT HTML HELP MAPPING AND MERGING CHM FILES

ALL RIGHTS RESERVED. MAY 19, 2013 351

AdvModule
HelpOnHelp

The merge process includes any subproject’s [HelpMerge] data; as a result, any other
subprojects specified for merging into a given subproject are also integrated into the main
project, allowing any degree of nesting of subprojects.

Place a HelpMerge PI marker in your main-project DITA document for each subproject
listed in the [HelpMerge] section, to show where the subproject should be merged into
the main project, and to specify a contents level for the top TOC entry for the subproject.

Insert the HelpMerge marker between two main-project topics, in either of the following
places:

 • at the start of the following main-project topic, before any text
 • at the end of the preceding main-project topic, after all text, in an otherwise empty

paragraph.

The content of the HelpMerge PI marker consists of a single-digit contents level for the top
TOC entry, followed by a space, followed by the CHM file name of the subproject,
without extension. For example:

2 HelpOnHelp

For more information about merging multiple CHM files, see Creating Help > Manage
Large Document Sets in HTML Help Workshop Help on HTML Help.

See also:
§16.4.3 Setting contents levels for HTML-based Help on page 251
§16.5.7 Specifying index link destinations for HTML-based Help on page 255
§18.14.5 Comparing HHW settings for stand-alone vs. merged CHMs on page 351
Rob Chandler’s Web site: http://helpware.net/htmlhelp/how_to_merge.htm

18.14.5 Comparing HHW settings for stand-alone vs. merged CHMs

You might have to experiment with HTML Help Workshop settings to achieve the best
combination of functionality and features for your particular project organization and
content. HTML Help appears to be “surprisingly complex and not overly predictable”.

For example, a binary TOC is not usually compatible with merged CHM files. However,
see:

http://msdn.microsoft.com/en-us/library/aa814522(VS.85).aspx

Table 18-3 shows the rationale for certain combinations of settings for three CHM roles.

Table 18-3 Rationale for HHW settings by CHM role

CHM role HTML Help Workshop settings and their effec ts

Stand-alone CHM
files

[OPTIONS]Binary index=No (for “better index disambiguation”)

[OPTIONS]Binary TOC=Yes (required for native HTML Help browse navigation; see
§18.4.2 Adding tabs and toolbar buttons to HTML Help on page 319)

Options Files tab: remove .hhk file (to synchronize the TOC with the index when
Binary TOC is enabled)

Window Types Buttons tab: check Prev and Next (for native HTML Help browse
navigation)

http://helpware.net/htmlhelp/how_to_merge.htm
http://msdn.microsoft.com/en-us/library/aa814522(VS.85).aspx

MAPPING AND MERGING CHM FILES DITA2GO USER’S GUIDE

352 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Table 18-4 summarizes the settings that should work for stand-alone HTML Help projects
and for merged projects.

See also:
§18.14.4 Merging CHM files on page 350
http://www.helpware.net/htmlhelp/how_to_merge.htm
http://www.helpware.net/FAR/help/dlg_hhpedit_sec.htm
http://www.help-info.de/de/FAR/dlg_hhpedit.htm

Slave CHM files in
a merged HTML
Help project

[OPTIONS]Binary index=Yes (required for merged files)

[OPTIONS]Binary TOC=No (not compatible with merged files; however, you might
successfully merge slaves that have Binary TOCs, if you sacrifice correct native
browse navigation)

Options Files tab: retain .hhk file (or the indexes will not merge)

Window Types Buttons tab: clear Prev and Next check boxes (native HTML Help
browse navigation does not function correctly in merged files)

Master CHM file
in a merged
HTML Help
project

[OPTIONS]Binary index=Yes (required for merged files)

[OPTIONS]Binary TOC=No (or the TOC of the merged project will be a mess)

Options Files tab: retain .hhk file (or the index will not merge)

Window Types Buttons tab: clear Prev and Next check boxes (native HTML Help
browse navigation does not function correctly in merged files)

Table 18-4 HTML Help Workshop settings for stand-alone vs. merged CHMs

HTML Help Workshop setting Stand-alone CHM Merged CHM s

[OPTIONS] Binary TOC= Yes No

[OPTIONS] Binary Index= No Yes

Options: Files tab, Index Remove .hhk Retain .hhk

Window Types: Buttons tab Check Prev and Next Clear Prev and Next

Table 18-3 Rationale for HHW settings by CHM role (continued)

CHM role HTML Help Workshop settings and their effec ts

http://www.helpware.net/htmlhelp/how_to_merge.htm
http://www.helpware.net/FAR/help/dlg_hhpedit_sec.htm
http://www.help-info.de/de/FAR/dlg_hhpedit.htm

ALL RIGHTS RESERVED. MAY 19, 2013 353

19 Generating OmniHelp

DITA2Go generates project-specific data and control files for OmniHelp; basic control
files can be downloaded from the Web. This section addresses issues that are specific to
generating OmniHelp. HTML settings described in section 22 and sections 27 through 43
apply also. Topics include:

§19.1 Understanding how OmniHelp works on page 353
§19.2 Setting up OmniHelp viewer control files on page 354
§19.3 Setting up an OmniHelp project on page 357
§19.4 Using CSS with OmniHelp on page 361
§19.5 Customizing OmniHelp display features on page 363
§19.6 Choosing navigation features for OmniHelp on page 367
§19.7 Configuring contents and index for OmniHelp on page 367
§19.8 Providing related-topic links in OmniHelp on page 370
§19.9 Jumping to secondary windows in OmniHelp on page 370
§19.10 Configuring full-text search for OmniHelp on page 371
§19.11 Setting up CSH for OmniHelp on page 375
§19.12 Merging OmniHelp projects on page 377
§19.13 Assembling OmniHelp files for viewing on page 380
§19.14 Deploying OmniHelp on page 381

See also:
§16 Producing on-line Help on page 243

To determine which configuration settings will produce the appearance and functionality
you want, see also:

§22 Converting to HTML/XHTML on page 429
§27 Splitting and extracting files on page 523
§30 Mapping text formats to HTML/XML on page 565
§33 Converting tables to HTML on page 625

19.1 Understanding how OmniHelp works
OmniHelp is an open-source, cross-platform Help system that displays help topics in a
way similar to WebHelp or HTML Help. The OmniHelp viewer consists of a set of HTML
(or XHTML) and JavaScript files that present the Help content in a tri-pane format, using
any browser that meets the following criteria:

 • complies with minimum Web standards
 • supports framesets
 • supports basic CSS1.

OmniHelp output generated from a DITA document consists of the following:

 • a set of HTML (or XHTML) topic files
 • a set of JavaScript infrastructure files for contents, index, search, related links, and

context-sensitive Help.

The display is controlled by a small set (about 40K) of JavaScript files and CSS files.

SETTING UP OMNIHELP VIEWER CONTROL FILES DITA2GO USER’S GUIDE

354 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Help develop
OmniHelp

Software developers are invited to contribute to the further development of OmniHelp.
The OmniHelp project is officially hosted on SourceForge:

https://sourceforge.net/projects/omnihelp/

The OmniHelp Design Report describes how OmniHelp was designed and built. You can
read it here:

http://www.dita2go.com

Modify OmniHelp Because OmniHelp is not a compiled Help system, you have access to the source code for
the viewer, so you can alter its behavior and appearance beyond just the changes you can
make by setting DITA2Go configuration parameters. However, to undertake major
modifications, you must be conversant in JavaScript, CSS, and HTML 4.

Maintain your
modifications

Modifying OmniHelp JavaScript, CSS, or HTML files in the viewer directory can lead to
a maintenance problem: you have to check your modified files against the corresponding
files in each new release, and merge the changes, which might not be trivial. If you change
any ohct*.css , oh*.js , or oh*.htm files, use a utility such as WinDiff (free from
Microsoft) to compare your files to the updated files. Check each release for new variables
that you can set in the configuration file, to control features that formerly required edits to
the JavaScript files; see § New information on page 17. Take advantage of any new
settings to minimize JavaScript changes.

License
OmniHelp

OmniHelp is licensed under the LGPL (Library/Lesser General Public License), which
permits its use in commercial products (without requiring those products to also be Open
Source) as long as OmniHelp source code, including all modifications, is made available
to users:

http://www.gnu.org/copyleft/lesser.html

19.2 Setting up OmniHelp viewer control files
To view DITA2Go OmniHelp output, you will need a set of JavaScript and HTML or
XHTML control files. Most of these control files are included in your DITA2Go
distribution; the rest are generated each time you run DITA2Go .

In this section:
§19.2.1 Choosing XHTML vs. HTML OmniHelp control files on page 354
§19.2.2 Making OmniHelp viewer control files available on page 355
§19.2.3 Customizing OmniHelp viewer control files on page 355
§19.2.4 Examining generated control and data files on page 356

19.2.1 Choosing XHTML vs. HTML OmniHelp control fi les

Your DITA2Go distribution includes two sets of control files: one for HTML, one for
XHTML. Which one you use depends on the start-up file type you select. The choice
between XHTML and HTML for OmniHelp is usually a matter of personal preference or
company policy. However, some older browsers might not display XHTML as well as
HTML.

To specify XHTML 1.0 instead of HTML 4.01 for the OmniHelp project start-up file:
[OmniHelpOptions]
; OHProjFileXhtml = No (default, to make project fi le HTML 4.01
; as required by some browsers), or Yes (to make the project file
; XHTML 1.0)
OHProjFileXhtml=Yes

https://sourceforge.net/projects/omnihelp/
http://www.dita2go.com
http://www.gnu.org/copyleft/lesser.html

19 GENERATING OMNIHELP SETTING UP OMNIHELP VIEWER CONTROL FILES

ALL RIGHTS RESERVED. MAY 19, 2013 355

When OHProjFileXhtml=Yes , XHTML versions of several OmniHelp viewer control
files are needed instead of HTML files. The names of these files begin with ox instead of
oh; see Table 19-1 on page 356.

Note: The value of OHProjFileXhtml determines the default value of OHViewPath ;
see §19.13 Assembling OmniHelp files for viewing on page 380.

19.2.2 Making OmniHelp viewer control files availa ble

Your DITA2Go distribution includes the following OmniHelp viewer control-file
directories:

%OMSYSHOME%\common\system\omnihelp\ohvhtm (for HTML output)
%OMSYSHOME%\common\system\omnihelp\ohvxml (for XHTML output)

Choose the control-file directory that matches your choice of start-up project file type (see
§19.2.1 Choosing XHTML vs. HTML OmniHelp control files on page 354), and copy all
the files to the corresponding local directory, one of:

%OMSYSHOME%\common\local\omnihelp\ohvhtm (for HTML output)
%OMSYSHOME%\common\local\omnihelp\ohvxml (for XHTML output)

If you modify any OmniHelp viewer files, modify only the files in the local directory. Files
in the system directory will be overwritten every time you update DITA2Go . Do not
rename any of these files.

Unless you copy viewer files to some other location, you should not need to specify a path
to those files. However, if you do put them somewhere other than the local viewer
directory, you must specify the path to this other location:

[OmniHelpOptions]
; OHViewPath = path to dir containing the OH viewer files
OHViewPath = D:\path\to\ohview\files

The default value of OHViewPath depends on the value of OHProjFileXhtml (see
§19.2.1 Choosing XHTML vs. HTML OmniHelp control files on page 354):

When you finish running DITA2Go , for viewing your OmniHelp system, copies of the
control files must be included in the same final directory as the OmniHelp HTML or
XHTML output files; see §19.13 Assembling OmniHelp files for viewing on page 380.

19.2.3 Customizing OmniHelp viewer control files

Table 19-1 lists the OmniHelp viewer control files. Files that have names that start with oh
are for HTML output. Files with names that start with ox are for XHTML. In Table 19-1,
the names of these files are shown as starting with o?. All other files listed are included in
both archives.

To customize OmniHelp, you can edit control files marked Yes under Edit? in Table 19-1.
If you are a JavaScript expert, you can also edit .js files marked No. Edit control files
only if necessary.

If you intend to undertake extensive customization and distribute the results to third
parties, you will also need the files in the following directory:

%OMSYSHOME%\common\system\omnihelp\ohvd2g

OHProjFileXhtml OHViewPath default value
No %OMSYSHOME%\common\system\omnihelp\ohvhtm

Yes %OMSYSHOME%\common\system\omnihelp\ohvxml

SETTING UP OMNIHELP VIEWER CONTROL FILES DITA2GO USER’S GUIDE

356 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Copy all files from this directory to the following location:
%OMSYSHOME%\common\local\omnihelp\ohvd2g

Modify only the files in the local directory; those in the system directory will be
overwritten every time you update DITA2Go .

19.2.4 Examining generated control and data files

When you run DITA2Go with OmniHelp as the output type, DITA2Go produces
additional data and control files, depending on your project settings. These files are listed

Table 19-1 OmniHelp viewer control files included in the distribution

File type File name Content View? Edit? Ref.

CSS ohctie.css CSS for IE for navigation
panes

Req for IE Yes 19.4

ohctn4.css CSS for NN4 for navigation
panes

Req for NN4 Yes 19.4

ohctn6.css CSS for Mozilla for nav.
panes

Firefox, etc. Yes 19.4

ohctrl.css Generic CSS for navigation
panes

Required Yes 19.4

HTML (?=h)
or XHTML (?=
x)

o?ctrl.htm Loader for JavaScript Required No 19.3

o?frame.htm Frameset Required No 19.3

o?main.htm Loading... message Required No

o?merged.htm Run-time project merging Optional No 19.12

o?nav.htm Loading... message for IE Req for IE No

o?navctrl.htm Another Loading... message
for IE

Req for IE No

o?top.htm Top-navigation-pane loader Required No 19.5.1

JavaScript ohctrl.js Start-up and interfacing script Required No 19.3

ohframe.js Frameset script Required No 19.3

ohfts.js Search presentation script Optional No 19.6

ohidx.js Index presentation script Optional No 19.7

o?lang.js Text of error messages Required Yes 19.5.5

ohlangct.js Text of control labels, etc. Required Yes 19.5.5

ohlangtp.js Text of button labels Required Yes 19.5.5

ohmain.js CSS-setting script for topic
pane

Required No 19.11

ohmerge.js Script used in ohctrl.htm Optional No 19.12

ohmerged.js Run-time merging script Optional No 19.12

ohrel.js Related-topics presentation
script

Optional No 19.8

ohstart.js Start-up script for project Required No 19.3

ohtoc.js Contents presentation script Optional No 19.7

ohtop.js Top-navigation-pane script Required No 19.5.1

Image ohlogo.jpg OmniHelp logo Optional No

ohtc*.gif Icons for expandable TOC
view

Optional No 19.7

ohvalid?.gif W3C validation icon Optional No

19 GENERATING OMNIHELP SETTING UP AN OMNIHELP PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 357

in Table 19-2. All are placed in the project directory you specified for your OmniHelp
project. Do not rename or edit any of these files.

In addition to the files listed in Table 19-2, when you first set up an OmniHelp project
DITA2Go optionally generates a CSS file (default name ohmain.css) for topic content;
see §19.4.1 Specifying CSS for topics in OmniHelp on page 361.

19.3 Setting up an OmniHelp project
To add or change any of the options described in this section, edit configuration file
_d2omnihelp.ini , located in the project directory. Edit configuration file
_d2omnihelp.ini to add or change any of the options described in this section.

In this section:
§19.3.1 Creating an OmniHelp project on page 357
§19.3.2 Deciding where to locate configuration settings on page 357
§19.3.4 Giving your OmniHelp project a title on page 359
§19.3.5 Specifying the starting topic on page 359
§19.3.6 Specifying memory requirements on page 359
§19.3.7 Removing paths from interfile links for OmniHelp on page 359
§19.3.8 Getting OmniHelp supporting files in the right place on page 360

19.3.1 Creating an OmniHelp project

To create an OmniHelp project:

1. Create a project directory for HTML or XHTML files, separate from the directory
where your DITA document is located. Optionally, create a subdirectory for graphics
files.

2. Copy configuration file d2omnihelp.ini from your DITA2Go config\local
directory (see §1.3.1 Set up a framework for Omni Systems applications on page 29),
or from an existing DITA2Go project, to your newly created output directory:

3. Use a text editor to edit the _d2omnihelp.ini configuration file (see §3.1 Working
with DITA2Go configuration files on page 49).

19.3.2 Deciding where to locate configuration sett ings

When you set up an HTML Help project, if configuration file _d2omnihelp.ini is not
already present in the project directory, you must copy this file from your DITA2Go
config\local directory (see §1.3.1 Set up a framework for Omni Systems applications
on page 29).

Table 19-2 OmniHelp data and control files generated by DITA2Go

File type File name Content Ref.

Data myproj_oha.js Context-sensitive-help entries 19.11

myproj_ohc.js Contents entries 19.6

myproj_ohk.js Index entries 19.6

myproj_ohl.js Related-topics entries 19.6

myproj_ohs.js Full-text-search entries 19.10

HTML or XHTML _myproj.htm Start-up project file 19.3

JavaScript myproj_ohx.js Project settings from d2javahelp.ini 19.3

SETTING UP AN OMNIHELP PROJECT DITA2GO USER’S GUIDE

358 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Which
configuration file?

To configure HTML Help output, add settings to one of the following files, depending on
the desired scope of each setting:

See §39.4 Deciding which configuration file to edit on page 734.

To determine which configuration settings will produce the appearance and functionality
you want, also see:

§22 Converting to HTML/XHTML on page 429
§27 Splitting and extracting files on page 523
§30 Mapping text formats to HTML/XML on page 565
§32 Including graphics in HTML on page 611
§33 Converting tables to HTML on page 625

19.3.3 Naming your OmniHelp project

To specify a name (not a title) for your OmniHelp project:
[OmniHelpOptions]
; ProjectName = name for OmniHelp project
ProjectName= myproj

The default value is the base name of your DITA document. DITA2Go uses the value of
ProjectName for the following purposes:

 • generated-data-file base names: myproj.oh*
 • project identifier, when OmniHelp projects are merged; see §19.12 Merging

OmniHelp projects on page 377.
 • project start-up file base name, by default prefixed with an underscore: _myproj.htm

To avoid a possible conflict with the name of another file in the same project, you might
need to add a prefix, a suffix, or both. You can specify each of the following:

Project-name prefix
Project-name suffix

Project-name
prefix

To specify a prefix for the project name:
[OmniHelpOptions]
; OHProjFilePrefix = prefix for project file name s o that it does not
; conflict with the name of any file in the project
OHProjFilePrefix=_

The default prefix is a single underscore. Although for most purposes you should avoid
using any non-alphanumeric characters in file names, just about the only way to make the
OmniHelp starting file visible among possibly thousands of HTML files is to force it to
sort ahead of all the other files. Prefixing the name with an underscore accomplishes this
objective. However, you can specify a different prefix.

Project-name
suffix

To specify a suffix for the project name:
[OmniHelpOptions]
; OHProjFileSuffix = suffix for project file name s o that it does not
; conflict with the name of any other file in the pr oject
OHProjFileSuffix=

The default is no suffix at all.

Scope Configuration file Location

Current project
only

_d2omnihelp.ini Current project directory

All OmniHelp
projects

local_d2omnihelp_config.ini %omsyshome%\d2g\local\co nfig\

19 GENERATING OMNIHELP SETTING UP AN OMNIHELP PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 359

See also:
§19.3.4 Giving your OmniHelp project a title on page 359

19.3.4 Giving your OmniHelp project a title

To specify a title for your OmniHelp project:
[OmniHelpOptions]
; HelpFileTitle = title to put in project-specific frameset file
HelpFileTitle= My Project Title

If you do not specify a title, the default title is, literally, “Your Title Here ”.

19.3.5 Specifying the starting topic

To specify which topic file to display first, when OmniHelp opens:
[OmniHelpOptions]
; DefaultTopicFile = starting topic file name (no e xtension)
; first file in Contents is used by default
DefaultTopicFile= firstfilename

The default starting topic is the first HTML file listed in the generated contents.

19.3.6 Specifying memory requirements

To adjust memory requirements for contents loading:
[OmniHelpOptions]
; LowMem = Yes (default, reduce memory requirements or No (faster)
LowMem=Yes

When LowMem=Yes (the default) OmniHelp reduces memory requirements while loading
the table of contents by writing many short segments instead of one long segment.

For a document that has a long table of contents, you might have to experiment to
optimize OmniHelp memory requirements. Not reducing memory requirements can speed
up contents loading in some browsers, slow it down in others.

19.3.7 Removing paths from interfile links for Omn iHelp

Because OmniHelp relies on supporting JavaScript and HTML control files, all HTML
output files for an OmniHelp project must reside in the same directory on the target
system. Therefore, links between HTML files should not include paths.

Paths are omitted by default from cross-reference and hypertext links:
[HTMLOptions]
; RemoveFilePaths = Yes (default, strip hyperlink a nd xref paths)
; or No
RemoveFilePaths=Yes

When RemoveFilePaths=Yes (the default), all HTML output files are assumed to be in
the same directory on the target system.

See also:
§28.6.1 Retaining file paths in interfile links on page 553

SETTING UP AN OMNIHELP PROJECT DITA2GO USER’S GUIDE

360 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

19.3.8 Getting OmniHelp supporting files in the ri ght place

Before you can use the OmniHelp viewer, all OmniHelp supporting files must be placed in
the same directory structure as the HTML or XHTML output files DITA2Go generates
from your document. Supporting files include:

Viewer and control files
Graphics files
Optional files.

Viewer and
control files

After you run DITA2Go , control files and viewer files must be copied from the viewer
directory (see §19.2 Setting up OmniHelp viewer control files on page 354) to the final
distribution directory for your project. DITA2Go can do this for you; see §19.13
Assembling OmniHelp files for viewing on page 380.

To view OmniHelp, the view directory must contain the following:

 • all files marked Required in column View? in Table 19-1 on page 356 (including
either oh*.htm or ox*.htm , depending on the start-up file type; see §19.2.1
Choosing XHTML vs. HTML OmniHelp control files on page 354).

 • all files listed in Table 19-2 on page 357.

Graphics files Graphics files must be placed either in the same directory as the generated OmniHelp
HTML files, or in a subdirectory. If your graphics files are located elsewhere, they must be
copied to the directory with the HTML files, or to a subdirectory.

To tell DITA2Go to fetch your referenced graphics:
[Automation]
WrapAndShip = Yes
CopyOriginalGraphics = Yes

When CopyOriginalGraphics=Yes , DITA2Go follows the file paths in your DITA
source to find the graphics files to copy.

To tell DITA2Go where to put copies of the graphics (for example):
[Graphics]
GraphPath = ./graphics

The path you specify for GraphPath should be relative to the wrap directory (see §44.3
Understanding path values for deliverables on page 788). This path will be used in HTML
output, as the relative path from the HTML files to their referenced graphics. If you use
backslashes in the path, DITA2Go converts them to forward slashes before inserting the
references in your HTML output. If you specify CopyOriginalGraphics=Yes ,
DITA2Go copies graphics files to the directory specified by GraphPath , after generating
HTML files.

See also:
§19.13 Assembling OmniHelp files for viewing on page 380.
§32.1 Locating graphics files for HTML on page 611
§44.7 Placing graphics files for distribution on page 796

Optional files A browser loads optional files (marked Optional under View? in Table 19-1 on page 356),
only when you specify the features they support, via configuration settings. Your project
might not require all the optional files. For example, if you do not want full-text search,
you can omit ohfts.js from the OmniHelp view directory; and if you are not merging
OmniHelp projects, you do not need ohmerge*.* in the view directory.

See §19.2 Setting up OmniHelp viewer control files on page 354.

19 GENERATING OMNIHELP USING CSS WITH OMNIHELP

ALL RIGHTS RESERVED. MAY 19, 2013 361

19.4 Using CSS with OmniHelp
OmniHelp relies on CSS (cascading style sheets), because DITA2Go removes all HTML
formatting in the process of generating OmniHelp files. Most likely you will want to
provide your own CSS to govern the appearance of text displayed in the topic frame.

In this section:
§19.4.1 Specifying CSS for topics in OmniHelp on page 361
§19.4.2 Understanding how CSS works in OmniHelp topics on page 362
§19.4.3 Specifying CSS for OmniHelp navigation frames on page 362

19.4.1 Specifying CSS for topics in OmniHelp

When you set up a new OmniHelp project (see §19.3.1 Creating an OmniHelp project on
page 357), you can name a default CSS file for the topic frame; the default name of this
default file is ohmain.css . DITA2Go generates ohmain.css (or whatever name you
specify) and places it in the project directory the first time you convert your document; see
§31.3 Understanding how DITA2Go generates CSS on page 592.

At set-up time DITA2Go includes the following CSS-related entries in newly created
configuration file d2omnihelp.ini :

[CSS]
UseCSS=Yes
WriteCssStylesheet=Once
CssFileName= ohmain.css

[OmniHelpOptions]
; CSS default if browser detection fails
MainCssName=ohmain.css
; CSS for main document frame
IECssName=ohmain.css
N6CssName=ohmain.css
N4CssName=ohmain.css

That is, all possible OminHelp references to CSS files for the topic frame initially
designate the same file. At run time, for text in the topic frame, OmniHelp actually
references only the CSS files specified in [OmniHelpOptions] , instead of the file
specified by [CSS]CssFileName (if that file has a different name; see §31.4 Specifying
CSS file and link options on page 593).

Different CSS for
certain browsers

You can specify (and provide) different CSS files to govern the appearance of text in the
topic frame for the following browsers:

 • Internet Explorer
 • Netscape Navigator 4.x
 • Newer versions of Mozilla-based browsers (such as Firefox).

For example:
[OmniHelpOptions]
IECssName=ugie.css
N6CssName=ugns6.css
N4CssName=ugns4.css

You must also provide a macro to accomplish browser selection; see §31.6 Linking to
alternate CSS files on page 597.

Default CSS for
other browsers

If a browser other than those mentioned is being used, OmniHelp looks for a CSS file
named ohmain.css (or whatever name you specified at set-up), unless you designate a
different CSS file for this purpose. For example:

USING CSS WITH OMNIHELP DITA2GO USER’S GUIDE

362 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[OmniHelpOptions]
MainCssName=general.css

The CSS file designated by MainCssName is used for topic text when OmniHelp is
viewed with browsers other than those for which you specified a different CSS file.

Omit unused CSS When MainCssName designates a file different from the file designated by
[CSS]CssFileName , the latter file remains in the project directory, and will be copied to
the distribution directory (see §44.6 Assembling files for distribution on page 792), even
though it will not be used. And if you remove that file from the project directory,
DITA2Go will regenerate it the next time you run the project. The only way to
permanently eliminate this unused file is to delete it from the project directory and also
change the value of the following setting from Once to Never :

[CSS]
WriteCssStylesheet=Never

See §31.4.1 Specifying CSS options in a DITA2Go configuration file on page 593.

19.4.2 Understanding how CSS works in OmniHelp top ics

Each OmniHelp topic file includes in the <head> element a <script> tag that invokes
script file ohmain.js . The ohmain.js script calls mainCSS() in parent-frameset script
file ohframe.js , which in turn writes a CSS <link> into the topic file.

The CSS <link> in the topic file specifies the value of mainCssName, which is taken
from project settings in myproj_ohx.js (see Table 19-2 on page 357), which are based
on [OmniHelpOptions] settings in the configuration file (see §19.4.1 Specifying CSS
for topics in OmniHelp on page 361). Because the ohframe.js script detects the browser
before writing the <link> , the value of mainCssName might depend on what you
specified in [OmniHelpOptions] for IECssName, N6CssName, or N4CssName.

As a result, you can see the effects of CSS in topic text only if both of the following are
true:

 • the HTML topic file you are viewing was generated by DITA2Go for OmniHelp (or
you added the proper <script> tag to the topic file)

 • you are viewing the topic in the OmniHelp frameset, not by itself in a browser.

Otherwise, the CSS <link> would not be set.

19.4.3 Specifying CSS for OmniHelp navigation fram es

By default, OmniHelp CSS file ohctrl.css governs the appearance of text in the top
and left navigation frames. You can edit this file to modify class definitions and CSS file
names, or you can designate another CSS file for this purpose:

[OmniHelpOptions]
; CSS default if browser detection fails
CtrlCssName=ohctrl.css
; CSS for top and left (navigation) frames
IECtrlCssName=ohctrl.css
N6CtrlCssName=ohctrl.css
N4CtrlCssName=ohctn4.css

The CSS file designated by CtrlCssName is used for top and left navigation frames, but
only when the browser with which you view an OmniHelp project is neither a
Mozilla-based browser (Netscape, Mozilla, or Firefox) nor Microsoft Internet Explorer.

If you specify a CSS file other than ohctrl.css for CtrlCssName , be sure the
substitute CSS file provides all the default ohctrl.css classes.

19 GENERATING OMNIHELP CUSTOMIZING OMNIHELP DISPLAY FEATURES

ALL RIGHTS RESERVED. MAY 19, 2013 363

For an interesting way to accommodate certain CSS differences among browsers, see:
http://wellstyled.com/css-underscore-hack.html

19.5 Customizing OmniHelp display features
In this section:

§19.5.1 Configuring OmniHelp window usage and frameset dimensions on page 363
§19.5.2 Altering OmniHelp top navigation frame content on page 364
§19.5.3 Modifying OmniHelp navigation aids on page 364
§19.5.4 Choosing whether to use cookies for OmniHelp on page 365
§19.5.5 Localizing the OmniHelp interface on page 365
§19.5.6 Modifying OmniHelp CSS classes on page 365
§19.5.7 Modifying the OmniHelp template on page 366

19.5.1 Configuring OmniHelp window usage and frame set dimensions

You can determine whether OmniHelp opens in a new browser window, or in the existing
browser window. The default is to open in a new window:

[OmniHelpOptions]
; NewWindow = Yes (default, use settings below
; for FrameHigh, FrameWide, and FrameOptions)
; or No (use existing browser window)
NewWindow=Yes

If you are generating OmniHelp intended for local use, probably you want the OmniHelp
frameset to open in a new window, without browser “chrome” (menus, toolbars, icons, and
the like). However, see §19.14.3 Coping with browser quirks on page 381.

Close empty
window

By default, the mostly empty browser window that opens initially remains open, behind
the OmniHelp window. To close the initial browser window:

[OmniHelpOptions]
; CloseOldWindow = No (default)
; or Yes (if NewWindow, close opening window)
CloseOldWindow=Yes

Some browsers ignore the CloseOldWindow option (Firefox, Netscape Navigator);
others request confirmation before closing the window (Internet Explorer).

Configure
frameset

When OmniHelp opens in a new window (the default), you can specify frame dimensions
and positioning for the OmniHelp frameset:

[OmniHelpOptions]
;Frameset dimensions (in pixels) and properties
;FrameHigh=350
;FrameWide=600
; Frame dimensions, do not reduce any of them at al l
;TopHigh=50
;LeftWide=220
;MidHigh=90
; TopFirst = Yes (top frame full width) or No (left frame full height)
TopFirst = Yes

Add chrome You can use JavaScript to add bits of chrome:
[OmniHelpOptions]
; FrameOptions = JS window.open() values as in [Sec Windows]

See §19.9 Jumping to secondary windows in OmniHelp on page 370. For more
information, look up the window.open() function in any JavaScript reference.

http://wellstyled.com/css-underscore-hack.html

CUSTOMIZING OMNIHELP DISPLAY FEATURES DITA2GO USER’S GUIDE

364 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

19.5.2 Altering OmniHelp top navigation frame cont ent

You can use configuration settings to provide HTML or XHTML code for the content of
the leftmost and rightmost table cells in the top OmniHelp navigation frame.

The leftmost cell is the same width as the navigation pane below it. Just make sure that
whatever you specify for this cell fits in the space above the left navigation pane; bad
things happen to the button layout when the buttons do not have enough space.

Note: If you set TopFirst=No (see §19.5.1 Configuring OmniHelp window usage and
frameset dimensions on page 363), the leftmost cell is not displayed. The
rightmost cell is always displayed.

The (X)HTML code you specify for each of these table cells must be all on one line, and
must end with a backslash (\). Escape any single quotes in the code by preceding each
with a backslash (\’). Do not follow the code line with more than one blank line.

For example, to substitute your own logo for the Omni Systems logo:
[OHTopLeftNav]
; optional (X)HTML content for ohtop nav table left cell
\

Or to substitute contact information for the W3C validation button:
[OHTopRightNav]
; optional (X)HTML content for ohtop nav table righ t cell
\

To alter other parts of the top navigation frame, you would have to modify JavaScript code
in viewer file ohtop.js ; see §19.1 Understanding how OmniHelp works on page 353.

19.5.3 Modifying OmniHelp navigation aids

To determine which navigation buttons are displayed in the top navigation pane:
[OmniHelpOptions]
; These settings control what buttons are added to the top nav pane
; UseTopButtons = Yes (default, use buttons) or No (use links instead)
UseTopButtons=Yes
; UseStart = Yes (default, provide Start button) or No
UseStart=Yes
; UsePrevNext = Yes (default, provide Prev and Next buttons) or No
UsePrevNext=Yes
; UseBackForward = Yes (default, provide Back and F wd buttons) or No
UseBackForward=No
; UseHideShow = Yes (default, provide buttons to hi de and show
; the left-side nav pane as in MS HTML Help) or No
UseHideShow=No

To hide the left-hand navigation pane when OmniHelp starts:
[OmniHelpOptions]
; ShowNavLeft = Yes (default, open with nav pane vi sible on left)
; or No
ShowNavLeft=No

To remove the List button from the left-hand navigation pane:
[OmniHelpOptions]
; UseListButton = Yes (default) or No (remove from Search panel)
UseListButton=No

If you include Prev /Next buttons, make sure your TOC does not use mid-topic links, or
the Prev and Next buttons will not work correctly. TOC-level topics should be in their

19 GENERATING OMNIHELP CUSTOMIZING OMNIHELP DISPLAY FEATURES

ALL RIGHTS RESERVED. MAY 19, 2013 365

own files. Clicking a mid-topic link in the TOC works as expected, but the Prev and Next
buttons do not; for example, Prev takes you back to the previous actual file rather than to
the previous item listed in the TOC. This can confuse your users.

19.5.4 Choosing whether to use cookies for OmniHel p

To determine whether users can pick up where they left off in a previous session:
[OmniHelpOptions]
; PersistSettings = Yes (default, OH settings persi st after closing,
; for the next time the project is re-opened),
; or No (keep during session only)
PersistSettings=Yes

Cookies persist
for a year

When PersistSettings=Yes , the last OmniHelp settings in effect when you exited
OmniHelp are stored by the browser as cookies that persist for one year. The next time you
open OmniHelp, the same page appears in the same position.

Delete cookies to
reset this option

When PersistSettings=No , the cookies have no expiration date, which the browser
takes to mean “expire at end of session”. However, in the presence of cookies with later
expiration dates, older cookies do not get replaced by the newer, but stay in effect. This
means that once you have opened OmniHelp with PersistSettings=Yes , you cannot
make the settings desist for a period of one year, except by deleting the cookies.

19.5.5 Localizing the OmniHelp interface

To provide translated equivalents of all OmniHelp button labels and messages, edit the
following small JavaScript files:

19.5.6 Modifying OmniHelp CSS classes

Suppose you want a background image behind the entire top OmniHelp panel, buttons and
all. To accomplish this you would modify the CSS class DITA2Go applies to the top
navigation table. JavaScript in ohtop.js creates the top navigation pane, and produces
(by default) the following HTML for the navigation table:

<table class="topnav" border="0" height="50" width= "100%">
<tr><td class="topnav" width="230">
<img src="ohlogo.jpg" height="25" width="50"
 alt="Logo" /> OmniHelp </td>
<td class="topnav"><button type="button" id="topSta rt"
 onclick="parent.ctrl.getStart()"
 title="Go to starting topic">Start</button></td>
.... more button cells written here ...
<td class="topnav"><img src="ohvalidh.gif" border=" 0"
 alt="Valid HTML 4.01!" height="25" width="71" /></ td>
</tr></table>

The CSS rules to modify are those for selector table.topnav . For example:
table.topnav { background-image: url(my_favorite_pic.jpg); }

This rule would tile the image to fill the entire top panel.

ohlang.js Error messages

ohlangct.js Progress messages, navigation-control labels, default results

ohlangtp.js Button labels

CUSTOMIZING OMNIHELP DISPLAY FEATURES DITA2GO USER’S GUIDE

366 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

You would most likely want to add the new rule to all four of the browser-specific CSS
files included with OmniHelp:

If you put the rule in just one of these CSS files, it would be effective only when someone
uses that particular type of browser to view your OmniHelp system.

The CSS file for Internet Explorer, ohctie.css , has the following top-panel rules; these
rules are similar in the other CSS files:

/* top panel only */
body.topnav { background: #999 ; margin: 0 }
p.topbody { font: bold 12pt/12pt sans-serif }
table.topnav { vertical-align: middle; border-style : none }
td.topnav { font: bold 10pt/10pt sans-serif;
 margin: 0; text-align: center; vertical-align: top }

A body background color is already set, #999999 (gray). You still want a background
color; however, you can change its value.

A couple of rules are already present for table.topnav , so just add yours:
table.topnav { background-image: url(my_favorite_pi c.jpg);
 vertical-align: middle; border-style: none }

Or, you could add the image to the body rules instead:
body.topnav { background-image: url(my_favorite_pic .jpg);
 background: #999 ; margin: 0 }

However, do not add the image to both table.topnav and body.topnav .

Repeat for the other three ohct*.css files, and see how the new background looks in
different browsers.

19.5.7 Modifying the OmniHelp template

Your DITA2Go distribution directory contains a copy of file ohtpl.ini , which provides
default text values and macros for variable presentation features. You do not need this file
unless you plan to alter features for which no configuration settings are provided; see
§19.1 Understanding how OmniHelp works on page 353.

You can copy ohtpl.ini to your project directory. If you are brave, you can specify a
path to ohtpl.ini instead of placing it in the project directory; you can even give this
template file a different name:

[OmniHelpOptions]
; ProjectTemplate = path to template for generating
; OHProj and myproj_ohx.js files, with sections cont aining text
; and macro references for variable items
ProjectTemplate=ohtpl.ini

You need ProjectTemplate only when settings are not sufficient; for example, if you
undertake a drastic customization of OmniHelp, and add new variables. If you use the
same template for all projects, it would be best to keep the template in:

%OMSYSHOME%\common\local\omnihelp\ohvd2g

Otherwise, keep the template in the project directory.

ohctie.css Internet Explorer

ohctn4.css Netscape 4.x

ohctn6.css Mozilla-derived browsers, such as Firefox

ohctrl.css Other browsers, such as Opera

19 GENERATING OMNIHELP CHOOSING NAVIGATION FEATURES FOR OMNIHELP

ALL RIGHTS RESERVED. MAY 19, 2013 367

You can edit a copy of ohtpl.ini to experiment with various versions of this template;
however, in general you should rarely need to use or modify ohtpl.ini .

19.6 Choosing navigation features for OmniHelp
You can choose which navigation features to provide in OmniHelp; the default is to
include them all:

[OmniHelpOptions]
; NavElems = navigation elements to display in left pane:
; Toc, Idx, Fts, Rel
NavElems=Toc Idx Fts Rel

Table 19-3 lists the navigation features; all are displayed in the left-hand frame:

If you do not intend to include an index, omit the Idx item:
[OmniHelpOptions]
NavElems= Toc Fts Rel

If you do not have ALinks, omit the Rel item also.

You can choose whether DITA2Go generates the data files needed for contents, index,
search, and related topics; however, most likely you will never have a reason to change the
default settings:

[OmniHelpOptions]
; ListType = Both (default), Contents, or Index
ListType = Both
; RefFileType = Full (default for single files), or None.
RefFileType=Full

RefFileType values have the following effects:

See also:
§16.3.1 Modifying contents or index production for HTML-based Help on page 249.
§19.7 Configuring contents and index for OmniHelp on page 367

19.7 Configuring contents and index for OmniHelp
In this section:

§19.7.1 Understanding OmniHelp contents and index creation on page 368
§19.7.2 Choosing whether to use expanding contents or index on page 368

Table 19-3 OmniHelp navigation features

Feature
NavElems
value Reference

Contents Toc §16.4 Configuring contents entries for Help systems on page 250
§19.7 Configuring contents and index for OmniHelp on page 367

Index Idx §16.5 Configuring index entries for Help systems on page 251
§19.7 Configuring contents and index for OmniHelp on page 367

Full-text search Fts §19.10 Configuring full-text search for OmniHelp on page 371

Related topics Rel §19.8 Providing related-topic links in OmniHelp on page 370

Full Default for single files. DITA2Go creates a set of myproj.oh* files for the
original DITA file.

None No myproj.oh* files nor DCL .bh* files are produced.

CONFIGURING CONTENTS AND INDEX FOR OMNIHELP DITA2GO USER’S GUIDE

368 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§19.7.3 Choosing how far to expand contents and index subentries on page 368
§19.7.4 Providing alternate expansion icons for contents or index on page 369
§19.7.5 Excluding Open All and Close All buttons on page 369

19.7.1 Understanding OmniHelp contents and index c reation

Headings that start topics, or to which you assign the Contents property or a contents
level, are automatically included in the contents for OmniHelp; for details, see:

§16.4.2 Including contents entries in HTML-based Help on page 250.
§16.4.3 Setting contents levels for HTML-based Help on page 251.

When you click links in the topic pane while the contents pane is displayed, the contents
pane stays synchronized with whatever topic you visit.

DITA2Go creates an OmniHelp index from the index entries in your DITA document. As
with other HTML-based Help systems, you can specify the granularity of index-link
destinations, and customize the sort order of index entries; see §16.5 Configuring index
entries for Help systems on page 251.

19.7.2 Choosing whether to use expanding contents or index

By default, OmniHelp includes an expanding table of contents and an expanding index:

 • Click the “+” icon in front of an entry to display subentries; the icon changes to “- ”.
 • Click the “- ” icon to make the subentries disappear; the icon changes back to a “+”.

To collapse lower-level entries so you can browse to other topics via the contents, click the
current top topic entry first, then click the “- ” icon.

The table of contents always shows you where you are in the topics. While subentries are
displayed, you cannot collapse the parent entry unless you first select the parent (or a
another entry that is not connected to the subentries); in other words, you cannot close the
door while your foot is in it. Click the parent entry first, then collapse the subentries.
Otherwise, you would risk losing your place, which is what happens in HTML Help.

You can turn off the expansion feature, so that contents or index entries display fully
expanded at all times. Also, some older browsers (for example, Netscape Navigator 4.x)
cannot display expanding contents or index, so you would not see the expansion feature
even with the default settings.

Omit contents
expansion

To omit expanding display of contents subentries, and always display all levels:
[OmniHelpOptions]
; TocExpand = Yes (default) or No (do not use expan ding TOC)
TocExpand=No

Omit index
expansion

To omit expanding display of index subentries, and always display all levels:
[OmniHelpOptions]
; IdxExpand = Yes (default) or No (do not use expan ding Index)
IdxExpand=No

19.7.3 Choosing how far to expand contents and ind ex subentries

By default, clicking a “+” icon expands only the subentries at the next level down in the
contents or index; any subentries at that level that have subentries of their own remain
unexpanded. You can choose how many levels to expand.

Contents
expansion levels

To specify how many subentry levels to expand in the table of contents:

19 GENERATING OMNIHELP CONFIGURING CONTENTS AND INDEX FOR OMNIHELP

ALL RIGHTS RESERVED. MAY 19, 2013 369

[OmniHelpOptions]
; TocGroupsOpen = No (default, open TOC with groups closed) or Yes
TocGroupsOpen=No
; TocOpenLevel = level to open to, default 0 for to p level only.
TocOpenLevel=0

If you set TocOpenLevel to a number greater than zero, also make sure that
TocGroupsOpen=No ; otherwise, all levels are expanded when you click a “+” icon.

Index expansion
levels

To specify how many subentry levels to expand in the index:
[OmniHelpOptions]
; IdxGroupsOpen = No (default, open Index with grou ps closed) or Yes
IdxGroupsOpen=No
; IdxOpenLevel = level to open to, default 0 for to p level only.
IdxOpenLevel=0

If you set IdxOpenLevel to a number greater than zero, also make sure that
IdxGroupsOpen=No ; otherwise, all levels are expanded when you click a “+” icon.

19.7.4 Providing alternate expansion icons for con tents or index

The contents and index expansion views are displayed with a set of icons (supplied in
ohv NNN.zip), with names of the form basenameNN.gif . The base name for the
supplied icons, for both contents and index, is ohct . You can replace these icons with a set
of your own (or a different set for contents and for index), for example to use with
different CSS color schemes.

Contents icons To specify a base name for an alternate set of TOC expansion icons:
[OmniHelpOptions]
; TocIcoBase = ohct (default, basename for set of . gifs used for
; expanding Toc)
TocIcoBase= myTOC

Index icons To specify a base name for an alternate set of index expansion icons:
[OmniHelpOptions]
; IdxIcoBase = ohct (default, basename for set of . gifs used for
; expanding Idx)
IdxIcoBase= myIX

19.7.5 Excluding Open All and Close All buttons

By default, OmniHelp provides Open All and Close All buttons above contents and index,
to allow expanding or collapsing all entries with a single click. You can omit these buttons
from contents, from index, or from both.

To omit Open All and Close All buttons from the table of contents:
[OmniHelpOptions]
; TocButtons = Yes (default, provide Open All and C lose All) or No
TocButtons=No

To omit Open All and Close All buttons from the index:
[OmniHelpOptions]
; IdxButtons = Yes (default, provide Open All and C lose All) or No
IdxButtons=No

PROVIDING RELATED-TOPIC LINKS IN OMNIHELP DITA2GO USER’S GUIDE

370 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

19.7.6 Redirecting See and See also index entries

DITA2Go redirects See and See also references for the OmniHelp index. On generating
OmniHelp output, DITA2Go points each such link to the referenced entry in the
OmniHelp index (rather than in the topic where the index term appeared in DITA).

See also:
§16.5.6.1 Identifying See and See also index references on page 254
§16.5.6.3 Choosing where to sort See also index references on page 255

19.8 Providing related-topic links in OmniHelp
OmniHelp supports ALink keyword targets and jumps, ALink keyword pools, and KLink
jumps to index-link lists. An ALink keyword target or jump can specify multiple ALink
keywords, separated by semicolons. An ALink keyword can consist of more than one
word; spaces are allowed, but no other punctuation. ALink list links always go to the
beginning of a topic; KLink list links should go to the paragraph with the corresponding
index marker, just like index entries.

See §16.6 Providing related-topic links for Help systems on page 258 for ways to include
ALink targets and jumps and KLink jumps in your OmniHelp project.

If you include the related-topics feature when you generate OmniHelp (see §19.6
Choosing navigation features for OmniHelp on page 367), the left navigation pane shows
a Related tab. When you click an ALink jump hotspot (or click the Related tab),
OmniHelp automatically switches the left navigation pane to the Related tab, and displays
a list of links to all other topics to which any of the same ALink keywords are assigned.

You can set up your OmniHelp project to also display a list of the ALink keywords
assigned to the topic (via marker or paragraph format) or specified in an ALink jump
within the topic:

[OmniHelpOptions]
; ShowSubjects = No (default, do not show subjects for ALinks) or Yes
ShowSubjects=Yes

The keywords are listed under Subjects in the space above the related-topic links.

You can determine whether ALinks go to the beginning of the referenced topic file, or to
the beginning of the paragraph that contains the ALink keyword. The default is the
beginning of the topic file:

[OmniHelpOptions]
; ALinkRefs = File (default) or Para (start of cont aining para)
ALinkRefs = File

See also:
§16.6.2 Understanding how ALinks work on page 259
§16.6.4 Adding related-topic link keywords in DITA XML on page 260
§16.6.5 Adding ALink and KLink jumps in DITA XML on page 261
§16.6.6 Creating target-and-jump ALinks for HTML-based Help on page 262

19.9 Jumping to secondary windows in OmniHelp
To create a jump to a secondary window in OmniHelp, assign the window name to a
character or paragraph format. For example:

19 GENERATING OMNIHELP CONFIGURING FULL-TEXT SEARCH FOR OMNIHELP

ALL RIGHTS RESERVED. MAY 19, 2013 371

[SecWindows]
; doc format = name of secondary window to use for jumps from
; within the span marked by this style (same as Wi nHelp usage).
PopWindow=popup, 400, 200
ProcWindow=proc
ProcWin2=proc, 400, 600, menubar=1,titlebar=1,scrol lbars=1

Window
parameters

After the window name you can specify optional comma-separated parameters. The first is
width in pixels, the second height in pixels, and the third a list of properties to pass to the
JavaScript window.open() function. The JavaScript properties are also
comma-separated, but unlike the size parameters, JavaScript parameters cannot have
spaces between them; see a JavaScript reference for acceptable values.

Pop-up windows The window name popup is reserved for specifying pop-ups, and results in a fresh pop-up
window every time. In OmniHelp, a pop-up window persists until you close it; the
window does not close when you click inside the pop-up (or click elsewhere), as is the
case for pop-ups in other Help systems.

Links from
secondary

windows

To cause a link from a secondary window to bring up a new topic in the original topic
window (rather than in the secondary window itself), assign reserved window name main
to the hotspot format. For example:

[SecWindows]
Popup=popup, 300, 100
Link2FigWin=figure, 400, 200
Link2Main=main

In this example, a regular topic has cross-reference links to a pop-up window and to a
secondary window:

 • To link to the pop-up topic, character format Popup is applied to a hotspot.
 • To link to the figure, character format Link2FigWin is applied to a hotspot.

In the pop-up topic, character format Link2Main is applied to a hotspot for a
cross-reference link to a regular topic.

Note: Not all browsers honor the parameters you specify for a pop-up window.

See also:
§16.7 Jumping to secondary windows in Help systems on page 262
§16.8 Creating pop-up topics for Help systems on page 263

19.10 Configuring full-text search for OmniHelp
After generating OmniHelp output, by default DITA2Go builds a search index: a
JavaScript array that lists term and topic number for each non-excluded term that occurs in
the content.

In this section:

§19.10.1 Understanding how OmniHelp FTS works on page 372
§19.10.2 Generating search data on page 372
§19.10.3 Making compound terms searchable on page 372
§19.10.4 Supporting search for non-ANSI text on page 373
§19.10.5 Specifying length of search terms on page 373
§19.10.6 Excluding search terms on page 373
§19.10.7 Excluding content from being searched on page 374
§19.10.8 Using regular expressions in search on page 374
§19.10.9 Highlighting search terms found in topics on page 374

CONFIGURING FULL-TEXT SEARCH FOR OMNIHELP DITA2GO USER’S GUIDE

372 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

19.10.1 Understanding how OmniHelp FTS works

OmniHelp supports single-term and Boolean (AND, OR, NOT) full-text search. A search
on a phrase is implemented by successively ANDing the search terms: topics found
include all terms in the phrase, except for stop words (see §19.10.6 Excluding search
terms on page 373), whether or not those terms occur together.

There are some limitations:

 • Search does not find terms that start with non-alphanumeric characters. For example,
to find $$_currbase , you would have to search for currbase ; and to find
-progid , you would have to search for progid .

 • Search does not find partial terms; for example, a search for curr finds <$Curr> , but
not $$_currbase .

 • Search reports every instance of a hit, even if several instances are in the same topic.
To remove extra instances of a term from the search index, you can delete duplicate
entries from the JavaScript array in myproj_ohs.js , either by hand or with a
UNIX-style utility such as uniq , from Cygwin.

Because OmniHelp is Open Source, anyone can modify or replace the search function to
overcome these limitations. You can contribute to the OmniHelp project any tool you
make for this purpose, at Sourceforge:

https://sourceforge.net/projects/omnihelp/

See §19.1 Understanding how OmniHelp works on page 353.

19.10.2 Generating search data

DITA2Go generates search data files for OmniHelp by default:
[OmniHelpOptions]
; UseFTS = Yes (default, write .bhs and myproj_ohs.js files)
; or No (faster)
UseFTS = Yes

This setting interacts with [OmniHelpOptions]NavElems (see §19.6 Choosing
navigation features for OmniHelp on page 367) as follows:

 • If you set NavElems=Fts and UseFTS=No, you get a Search tab, but it does not
work.

 • If you do not set NavElems=Fts and you do set UseFTS=Yes, you get a Search tab,
and it works.

If you are not providing full-text search, you can avoid generating search data files by
setting UseFTS=No, which allows OmniHelp to load faster.

19.10.3 Making compound terms searchable

For compound terms that consist of two words separated by a single punctuation character,
you can have the search index include each of the individual terms and also the compound
term.

To specify which punctuation characters should be considered in identifying compound
terms:

[OmniHelpOptions]
; CompoundWordChars = Punctuation marks recognized as connectors of
; compound terms when they separate adjacent words.
CompoundWordChars = :-._+*

https://sourceforge.net/projects/omnihelp/

19 GENERATING OMNIHELP CONFIGURING FULL-TEXT SEARCH FOR OMNIHELP

ALL RIGHTS RESERVED. MAY 19, 2013 373

The default punctuation characters for compound terms are colon, dash, period,
underscore, plus sign, and asterisk.

19.10.4 Supporting search for non-ANSI text

When you type in a search string that contains non-ANSI characters, Windows does not
give you UTF-8; it gives you the character in the current code page for the system locale.
That is not much of a problem for western European languages, but it does mean that you
would need a different search file for each non-Western locale you want to support.
Otherwise, the OmniHelp viewer would have to include code-page conversion, which
would require a huge library on each Help user's system.

To make sure OmniHelp full-text search finds terms that include non-ANSI characters:
[OmniHelpOptions]
; UnicodeFTS = No (default, use normal word-break r ules for ANSI text,
; or Yes (use the ICU rules for any language inclu ding CJK)
UnicodeFTS = Yes
; UnicodeLocale = formal identifier of language, de fault en-US
UnicodeLocale = en-US

You will also need two ICU DLL files: icudt40.dll (13 MB) and icuuc40.dll
(1 MB). These DLLs are available in archive icu401.zip (6 MB), which you can
download from the Omni Systems Web site.

To install the ICU code pages, extract the DLLs from icu401.zip , and copy them to the
following locations:
 • %OMYSHOME%\common\bin

 • your Windows system directory.

When UnicodeFTS=Yes , DITA2Go will use these DLLs to prepare your OmniHelp
output, depending on the value you specify for UnicodeLocale .

19.10.5 Specifying length of search terms

You can specify the minimum length of terms to include in the search index; the default is
three characters:

[OmniHelpOptions]
; SearchWordMin = minimum length of word to index f or search,
; default 3
SearchWordMin=3

19.10.6 Excluding search terms

When you generate OmniHelp, DITA2Go builds a search index that includes all the words
in the converted files, except for a list of words to be excluded. DITA2Go applies an
internal list of words to exclude:

[StopWords]
;about after again all already also always and any are been but can
;did does doing each for from has have having its m ay maybe might not
;see than that the their them then these they this those too use used
;uses using very want was when where which will wit h would you your

You can add your own list of words to exclude, or provide an alternate list, in the
[StopWords] section of your OmniHelp configuration file.

To specify which list(s) of words to exclude from the search index, set the following
option:

CONFIGURING FULL-TEXT SEARCH FOR OMNIHELP DITA2GO USER’S GUIDE

374 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[OmniHelpOptions]
; UseDefaultStopWords = Yes (use default set, plus any added in your
; own [StopWords]) or No (use your own words only)
UseDefaultStopWords=No

When UseDefaultStopWords=Yes , DITA2Go excludes from the search index the
default words and any words listed in the [StopWords] section of your configuration
file.

When UseDefaultStopWords=No , DITA2Go excludes only words listed under
[StopWords] in your configuration file.

To augment the [StopWords] list after you generate OmniHelp, open myproj_ohs.js
in a text editor, and copy unwanted words to the [StopWords] section of your project
configuration file.

19.10.7 Excluding content from being searched

DITA topicref attribute @search (with value yes or no) allows you to specify whether
the referenced topic is to be included in full-text search. DITA2Go excludes from
OmniHelp full-text search topics that are referenced with @search="no" .

Do it with PI
markers

If your DITA maps do not include values for the topicref @search attribute, you can
achieve the same effect with PI markers inserted in the topicrefs, and a ditaval file. For
example:

<?dthtm Search="no" ?>

In this example, the effect on DITA2Go output is the same as if you had included
@search="no" in the topicref for each such topic. You can get the same effect by placing
the PI marker inside the <title> element of the topic.

Paragraph-level
granularity

You can achieve paragraph-level search granularity with PI markers placed within a topic;
the last Search value in a paragraph applies to the entire paragraph.

19.10.8 Using regular expressions in search

You can use JavaScript regular expressions in OmniHelp search, by prefixing the search
text with a forward slash (/). To learn the arcane syntax required, consult a JavaScript
reference.

Note: Omni Systems provides no technical support for this feature.

19.10.9 Highlighting search terms found in topics

When you click a link in the OmniHelp search results list, by default each term found in
the target topic is highlighted in yellow.

To turn off search-term highlighting, or change the style:
[OmniHelpOptions]
; UseSearchHighlight = Yes (default, highlight sear ch terms found)
; or No
UseSearchHighlight=Yes
; SearchHighlightStyle = style to use in span to hi ghlight search
; terms found
SearchHighlightStyle=background-color:yellow;

The highlighting style consists of one or more CSS property: value pairs, each
followed by a semicolon. Consult a CSS reference for possible styles.

19 GENERATING OMNIHELP SETTING UP CSH FOR OMNIHELP

ALL RIGHTS RESERVED. MAY 19, 2013 375

19.11 Setting up CSH for OmniHelp
To provide entry points for CSH (context-sensitive help) calls from an application to an
OmniHelp system, you can embed symbolic IDs as TopicAlias PI markers in your
DITA files, and list alias prefixes in the configuration file. OmniHelp does not use
numeric values for CSH, so you do not need a map file. Actually opening an OmniHelp
topic file from an application might require a redirect page or a visit to the Windows
Registry.

In this section:
§19.11.1 Specifying alias prefixes for OmniHelp CSH calls on page 375
§19.11.2 Referencing OmniHelp topic IDs from an application on page 375
§19.11.3 Using redirect pages for OmniHelp CSH calls on page 376
§19.11.4 Executing browser commands for OmniHelp CSH calls on page 376

See also:
§16.10 Setting up Context Sensitive Help (CSH) on page 277

19.11.1 Specifying alias prefixes for OmniHelp CSH calls

DITA2Go produces CSH alias entries from every TopicAlias PI marker in your DITA
document whose content starts with one of the prefixes you specify. If you do not specify
any prefixes, all TopicAlias PI markers become aliases.

To specify one or more alias prefixes for CSH calls to OmniHelp topics:
[OmniHelpOptions]
; AliasPrefix = all prefixes wanted in alias file, comma or space
; delimited; if omitted, all newlinks are included
; NOTE: wildcards do not work in prefixes
AliasPrefix = prefix1, prefix2, ...

For example:
[OmniHelpOptions]
AliasPrefix = HIDC_, IDH_

With this setting, the alias file would include the content of every TopicAlias PI marker
in your document whose text starts with HIDC_ or IDH_ .

DITA2Go always creates the alias file, needed even if empty.

19.11.2 Referencing OmniHelp topic IDs from an app lication

To specify OmniHelp topic IDs to the browser, an application would make an exec file
call with a file parameter that looks like one of the following:

where myproj is a concatenation of the values specified in configuration section
[OmniHelpOptions] for keywords OHProjFilePrefix , ProjectName , and
OHProjFileSuffix (the underscore is the default value for OHProjFilePrefix). See
§19.3 Setting up an OmniHelp project on page 357.

The second form (using IDH_contextID) is preferable, because it works even if the topic
file name changes. Also, the second form provides a way for a WinHelp system to link to
a specific topic in an OmniHelp system. The WinHelp project would not have to be
recompiled if file names changed in the OmniHelp project.

_myproj.htm# file.htm to get to a specific HTML file in myproj

myproj.htm#IDH contextID to get to the file containing IDH_contextID

SETTING UP CSH FOR OMNIHELP DITA2GO USER’S GUIDE

376 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

19.11.3 Using redirect pages for OmniHelp CSH call s

If your application has trouble passing a topic-specific URL to the operating system (and
then to the default browser), try creating a redirect page for each CSH target topic. A
redirect page has content like this:

<!DOCTYPE html PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/l oose.dtd">
<html lang="en">
<head><title> Topic title</title>
<meta http-equiv="refresh"
 content="1;url=file:/// path/to/_myproj.htm#IDH_ contextID">
</head>
<body></body></html>

In this example, IDH_contextID is the content of a TopicAlias PI marker in the target
topic. You need one little file like this for every CSH entry point. This is not necessarily a
bad thing; redirect files allow you to use a constant set of names in the calling program,
even if the names change in the Help. Notice the three forward slashes in the file
reference:

url=file:/// path/to/_myproj.htm#IDH_ contextID

For example:
url=file:///G:/Omnisys/UG/OH/Done/_dita2go.htm#tabl ist

If you do not know the absolute path on the system where OmniHelp will be deployed, but
you are able to place redirect files in the same directory as the OmniHelp output files (and
invoke OmniHelp from that directory), you could use the following for the url value:

url=file: _myproj.htm#IDH_ contextID

Relative paths would work like this:
url=file:./ to/ _myproj.htm#IDH_ contextID

You could use a file name (file.htm) after the hash mark, with the same result; see
§19.11.2 Referencing OmniHelp topic IDs from an application on page 375.

19.11.4 Executing browser commands for OmniHelp CS H calls

If the application that calls your OmniHelp project can execute system commands, the
developer can have the application access the Windows Registry for the required browser
command syntax, and use that command to open an OmniHelp topic file. With this
method, you do not need redirect pages (see §19.11.3 Using redirect pages for OmniHelp
CSH calls on page 376).

To see what is involved, check the Windows Registry for the correct browser command
syntax (Start > Run > regedit):

1. Find the registered name of the default browser. Go to the following key:
HKEY_CLASSES_ROOT\.htm

and look at the first (Default) entry in the Data column. For example, for Firefox the
default browser name is FirefoxHTML .

2. Find the exact command syntax for the default browser. Go to the following key:
HKEY_CLASSES_ROOT\DefaultBrowserName\shell\open\command

For example, for Firefox you would go to:
HKEY_CLASSES_ROOT\FirefoxHTML\shell\open\command

19 GENERATING OMNIHELP MERGING OMNIHELP PROJECTS

ALL RIGHTS RESERVED. MAY 19, 2013 377

3. Look at the first (Default) entry in the Data column. For example, the command for
Firefox might be:

C:\PROGRA~1\MOZILL~2\FIREFOX.EXE -url "%1"

In each call, the application should replace %1 in the browser command with the following
type of file reference:

file:/// path/ to/ _myproj.htm#IDH_ contextID

where IDH_contextID is the content of a TopicAlias PI marker in DITA XML. Notice
the three forward slashes in the file reference. This syntax should open the correct
OmniHelp topic file.

19.12 Merging OmniHelp projects
An OmniHelp project can include links to one or more other OmniHelp projects that are
located in other directories.

In this section:
§19.12.1 Understanding the OmniHelp merge process on page 377
§19.12.2 Listing and mapping OmniHelp subprojects on page 378
§19.12.3 Providing TOC placeholders for OmniHelp subprojects on page 378
§19.12.4 Deciding when to merge OmniHelp subprojects on page 379

See also:
§16.11 Setting up a dynamic modular Help system on page 280

19.12.1 Understanding the OmniHelp merge process

To merge files in one OmniHelp project with files in other OmniHelp projects, you must
designate one of the projects to be the main project; the others are subprojects. The
projects to be linked are merged at run time, when a user loads a project into a browser, or
chooses a link that has a destination in another project. The merge process seamlessly
integrates the contents of all subproj.oh* files from each subproject into those of the
main project; the result is just as if main and subprojects had always been one project.

Project names
must be unique

Each OmniHelp project involved in a merge must have a unique project name. You must
provide instructions in the main-project configuration file for merging subproject files
when OmniHelp is loaded into a browser.

Subprojects can
be nested

The merge process includes each subproject’s merge data; as a result, other subprojects
specified for merging into a given subproject are also integrated into the main project,
allowing any degree of nesting of subprojects. However, OmniHelp does not support
circular merging, where one subproject tries to merge another that has already been
merged, or tries to merge the main project. Such anomalous merge attempts are ignored.

Main project must
know about
subprojects

The main project (and any subproject that includes other subprojects) must be aware of all
existing and potential subprojects at the next level down, whether or not those subprojects
are actually present when the main project is loaded into a browser. The name and title of
each subproject must be listed in the main project’s configuration file (see §19.12.2
Listing and mapping OmniHelp subprojects on page 378), and each subproject must have
an entry in the including project’s table of contents (see §19.12.3 Providing TOC
placeholders for OmniHelp subprojects on page 378).

MERGING OMNIHELP PROJECTS DITA2GO USER’S GUIDE

378 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

19.12.2 Listing and mapping OmniHelp subprojects

To designate subprojects to be merged, list the subproject paths and titles. For example:
[HelpMerge]
; Subproject name and path = Title of subproject
..\api\LibRef = API Library Reference

Each [HelpMerge] entry specifies a subproject base file name, including a relative path
if the subproject is in a different directory, and the title to be displayed for that subproject
in the main-project contents. The relative path must be correct at run time.

19.12.3 Providing TOC placeholders for OmniHelp su bprojects

Place a HelpMerge PI marker in your main-project DITA document for each subproject
listed in the [HelpMerge] section, to:

 • show where the subproject TOC should be merged into the main project TOC
 • specify a contents level for the top TOC entry for the subproject.

Insert the HelpMerge PI marker between two main-project topics, in either of the
following places:

 • at the start of the main-project topic that should follow the subproject in the TOC,
before any text

 • at the end of the main-project topic that should precede the subproject in the TOC,
after all text, in an otherwise empty paragraph.

Do not place the HelpMerge PI marker at the very beginning of the main project, and do
not include duplicate HelpMerge PI markers for the same subproject.

The content of the HelpMerge marker consists of a single-digit contents level number
(with respect to the main project TOC) for the top TOC entry of the subproject, followed
by a space, followed by the path to the subproject. For example:

1 ../api/LibRef

Add subprojects
before the fact

To include merge points for future subprojects that are not yet available, so that the main
project does not even need to know whether they exist, at the end of the TOC add extra
merge points with dummy subproject names. If you specify load-time merging:

[OmniHelpOptions]
MergeFirst=Yes

any subprojects that are present will be integrated, and any merge point for which a
subproject is not present will be removed from the TOC.

Add subprojects
after the fact

To provide the marker content after the fact, for a subproject that has already been built or
was created without using DITA2Go , insert an entry in the *_ohc.js file for the master
project, in the position where you want the subproject entry to appear in the master-project
contents. The entry must look like this:

[n," title","* name"],

where the components are as follows:

The last three items in the following example identify subprojects: that are in a directory
different from the parent directory, so a relative path is prefixed to the project name:

n Contents level for the subproject entry in the master-project contents

title Title of the subproject

name Project name of the subproject

19 GENERATING OMNIHELP MERGING OMNIHELP PROJECTS

ALL RIGHTS RESERVED. MAY 19, 2013 379

var tocItems = [
[1,"Server","aa998290.htm#Xaa998290"],
[2,"Feature 1","aa998295.htm#Xaa998295"],
[2,"Feature 2","aa998300.htm#Xaa998300"],
[1,"Connectors","aa998313.htm#Xaa998313"],
[2,"Connector A","*ConnA/ConnA"],
[2,"Connector B","*ConnB/ConnB"],
[2,"Connector C","*ConnC/ConnC"]]

You would also need an item in _ohx.js like this:
var mergeProjects = [
["ConnA/ConnA",0,0,4,[]],
["ConnB/ConnB",0,0,5,[]],
["ConnC/ConnC",0,0,6,[]]]

where the 4, 5, 6 are the (zero-based) numbers of the TOC items. This example is for a
set-up in which each secondary item is in a subdirectory that has the same name as the
project.

See also:
§16.4.3 Setting contents levels for HTML-based Help on page 251
§19.12.2 Listing and mapping OmniHelp subprojects on page 378

19.12.4 Deciding when to merge OmniHelp subproject s

You can specify whether to merge all subprojects when a browser first loads the
OmniHelp main project, or to merge a given subproject only when a user chooses a link to
that subproject. The default is to merge only on demand.

To merge all subprojects when the main project is first loaded:
[OmniHelpOptions]
; MergeFirst = No (default, merge subprojects only when they are
; called on), or Yes (do all merges during initial l oad,
; takes longer to start up)
MergeFirst=Yes

Merge at load
time

When MergeFirst=Yes , at browser load time the contents and index entries of all
subprojects that meet the following criteria are merged with those of the main project:

 • The subproject name is listed under [HelpMerge] in the main project configuration
file; see §19.12.2 Listing and mapping OmniHelp subprojects on page 378.

 • The main project’s table of contents includes a merge point for the subproject; see
§19.12.3 Providing TOC placeholders for OmniHelp subprojects on page 378.

 • The subproject files are actually present.

Merge-point entries are quietly removed from the main project table of contents for any
subproject whose files are not present at load time. Merging subprojects at load time
makes the browser load process significantly slower than just loading the main project.
You would not want this option if you are using OmniHelp for context-sensitive help (see
§19.11 Setting up CSH for OmniHelp on page 375). However, this is the way to go if you
distribute non-CSH OmniHelp systems that do not always include all subprojects.

Merge on
demand

When MergeFirst=No (the default), at browser load time all subproject merge-point
entries are included in the main project table of contents, whether or not the subproject
files are actually present. When a user clicks a subproject entry, if the subproject files are
present, the subproject contents and index entries are merged with the main project
contents and index entries. However, if a user clicks an entry for a missing subproject, that
entry disappears from the main project table of contents.

ASSEMBLING OMNIHELP FILES FOR VIEWING DITA2GO USER’S GUIDE

380 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

19.13 Assembling OmniHelp files for viewing
By default, DITA2Go copies all files with the following extensions from the project
directory to the wrap directory (see §44.2 Activating and logging production of
deliverables on page 788):

*.htm *.css *.js *.gif *.jpg *.png

You can change the list of files to be copied; see §44.6 Assembling files for distribution on
page 792. DITA2Go automatically copies the necessary OmniHelp viewer files from the
viewer-control directory to the wrap directory, according to the value of OHViewPath :

[OmniHelpOptions]
; OHViewPath = path to dir containing the OH viewer files

See §19.2.2 Making OmniHelp viewer control files available on page 355. By default,
OHViewPath references the OmniHelp viewer files in one of the following directories:

%OMSYSHOME%\common\system\omnihelp\ohvhtm (for HTML output)
%OMSYSHOME%\common\system\omnihelp\ohvxml (for XHTML output)

If you put the viewer-control files somewhere else, you must specify the path (preferably
absolute) to that location as the value of OHViewPath . Do not place the viewer-control
files under the wrap directory. DITA2Go copies the files listed in Table 19-4 from the
directory designated by OHViewPath to the directory designated by WrapPath , if
specified, otherwise to the project directory.

The start-up file type (HTML or XHTML) determines which set of files will be copied;
see §19.2.1 Choosing XHTML vs. HTML OmniHelp control files on page 354.

To have DITA2Go copy additional files to the wrap directory:
[OmniHelpOptions]
; OHVFiles = list of files to copy from OHViewPath (the viewer files).
OHVFiles = oh*.* some\other\files yet\more\files ...

The file specifications you assign to OHVFiles must be separated by spaces, and no
spaces are allowed within a file specification. You can use wildcards in file specifications,
and include absolute or relative paths to indicate where viewer files should be copied
from. Relative paths are relative to the wrap directory.

The files you list for OHVFiles will be copied in addition to the files listed in Table 19-4.
If you are not adding any special files of your own, there is no need to include a setting for
OHVFiles . When you do not provide a setting for OHVFiles , the default value is based
on the setting for OHProjFileXhtml ; see §19.2.1 Choosing XHTML vs. HTML
OmniHelp control files on page 354.

See also:
§16.2.2 Compiling and distributing Help systems on page 247
§44.6 Assembling files for distribution on page 792

Table 19-4 OmniHelp viewer files copied from OHViewPath to WrapPath

Start-up file type OmniHelp viewer files copied to w rap directory by default

HTML oh*.*

XHTML ox*.htm ox*.js oh*.css oh*.js

19 GENERATING OMNIHELP DEPLOYING OMNIHELP

ALL RIGHTS RESERVED. MAY 19, 2013 381

19.14 Deploying OmniHelp
When users launch an OmniHelp system, what happens depends on which browser they
are using, and how they tell the browser to load OmniHelp. Most browsers will refuse to
open HTML files on a non-local drive that are called using the file protocol. If the files are
not on a local drive, they must be served by an HTTP server and called using the http
protocol.

In this section:
§19.14.1 Starting with the default topic or a specified topic on page 381
§19.14.2 Restarting where you left off on page 381
§19.14.3 Coping with browser quirks on page 381

19.14.1 Starting with the default topic or a speci fied topic

To launch OmniHelp, you can specify any of the following in the locator field of the
browser, or in a link in some other file:

In these examples myproj is a concatenation of the values specified in configuration
section [OmniHelpOptions] for keywords OHProjFilePrefix , ProjectName , and
OHProjFileSuffix ; the underscore is the default value for OHProjFilePrefix . See
§19.3 Setting up an OmniHelp project on page 357.

19.14.2 Restarting where you left off

Once an OmniHelp project is loaded, the browser constantly stores the current state in
cookies that last one year. If you exit OmniHelp, the next time you load it, you are back
where you were before. To get to the beginning (the default topic file) instead, click Start .

19.14.3 Coping with browser quirks

If you click the Reload button on your browser with your OmniHelp system loaded, CSS
style sheets might not reload, so the resulting page might appear unformatted. Browsers do
not retain the original URL internally, and if you try to restart from the later-stage
OmniHelp file the browser does recall, you miss loading several necessary JavaScript
files. That is why DITA2Go provides a Start button. Use the OmniHelp Start button
instead of the browser Reload button.

Likewise, never use the browser Back button; always use the OmniHelp Back button
instead. When you load OmniHelp in Internet Explorer, this is not a problem, because
Internet Explorer loads in its own window that does not have these problematic browser
controls. Although you can do the same in Firefox, thanks to its “security” features, this
works only when you are loading from the Web, not locally.

The most commonly used browsers on Windows each seem to have a different issue with
displaying OmniHelp files:

_myproj.htm Loads everything else, starting with the default
topic file.

_myproj.htm# filename.htm If filename.htm is a topic file in the OmniHelp
project, the browser shows filename.htm first.

_myproj.htm# name If there is no dot in name, the browser looks up
name in OmniHelp data file myproj_oha.js ,
and loads the appropriate file; see §19.11 Setting
up CSH for OmniHelp on page 375.

DEPLOYING OMNIHELP DITA2GO USER’S GUIDE

382 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Internet Explorer issues
Firefox issues
Chrome issues
Opera issues
Safari issues
Netscape issues

Internet Explorer
issues

When you open an OmniHelp file in Internet Explorer, even if you have specified that the
existing window should be closed (see §19.5.1 Configuring OmniHelp window usage and
frameset dimensions on page 363), you get a confirmation dialog:

The Web page you are viewing is trying to close the window.
Do you want to close this window?

This is an Internet Explorer “security feature” that cannot be turned off. To avoid the
confirmation dialog, your only real choice is to open OmniHelp in the existing window,
with all the browser chrome on top. Or open in the new window, but leave the starting
window open too, which looks like a mistake but is harmless.

Firefox issues Firefox does not open a new window when you launch a local OmniHelp system by
double-clicking _myproj.htm , unless you also set the following option in Firefox. On the
main Firefox menu, choose:

Tools > Options... > Tabs > Open links from other a pplications in:

and check a new window . Unfortunately, all the chrome comes along with the new
window.

For OmniHelp systems viewed on the Web, unless you have pop-up windows blocked,
Firefox should open OmniHelp in a new window, without chrome. If you do have pop-up
windows blocked, you can unblock them selectively; on the main Firefox menu, choose:

Tools > Options... > General > Block Popup Windows > Allowed Sites

and add the Web address where your OmniHelp system is located.

If you click Reload to refresh OmniHelp in Firefox, the left navigation pane might lose its
CSS rendering. The workaround is to close the OmniHelp tab, then reopen OmniHelp
from a Firefox bookmark that references _myproj.htm (see §19.14.1 Starting with the
default topic or a specified topic on page 381).

Chrome issues When you attempt to access Help files located in your local file system, OmniHelp (and
all other forms of Web Help we know about) will not work in Google Chrome, unless you
start Chrome with this special command-line switch:

--allow-file-access-from-files

This option allows locally hosted Web Help systems to open in Chrome. Otherwise,
Chrome does not allow local files to access the JavaScript scope of the parent
frame/window. Because of security risks, users should start Chrome with this option only
to view trusted local Web Help systems.

See Peter Grainge’s discussion of this issue, in Snippet 130:
http://www.grainge.org/pages/snippets/snippets.htm

Opera issues On some systems, Opera works as expected with OmniHelp. On other systems, Opera
might not display the left navigation pane. On still other systems, refresh eliminates the
content of the contents, the index, and the search frame.

Safari issues On an iPad, Safari does not seem to respect frame size settings. Instead the frame adjusts
to the width of its widest contents.

http://www.grainge.org/pages/snippets/snippets.htm

19 GENERATING OMNIHELP DEPLOYING OMNIHELP

ALL RIGHTS RESERVED. MAY 19, 2013 383

Netscape issues Later versions of Netscape Navigator might refuse to open OmniHelp files if you have
suppressed pop-ups; on the Navigator Edit menu, look at Preferences... >
Privacy & Security > Pop-up Windows . Also, later versions of Netscape Navigator
might ignore CSS for OmniHelp files viewed over the Web. Local OmniHelp files, with
local CSS, are displayed properly.

DEPLOYING OMNIHELP DITA2GO USER’S GUIDE

384 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 385

20 Generating JavaHelp or Oracle Help

This section addresses issues that are specific to generating JavaHelp and Oracle Help for
Java. HTML settings described in section 22 and sections 27 through 43 apply also. Topics
include:

§20.1 Deciding which Java Help system to use on page 385
§20.2 Obtaining tools for a Java-based Help system on page 385
§20.3 Setting up a JavaHelp or Oracle Help project on page 386
§20.4 Generating contents and index on page 395
§20.5 Providing full-text search for JavaHelp / Oracle Help on page 397
§20.6 Creating and viewing a Java Archive (JAR) file on page 400
§20.7 Converting a glossary to JavaHelp 2 on page 401
§20.8 Defining windows for JavaHelp or Oracle Help on page 403
§20.9 Linking to destinations within topics on page 409
§20.10 Creating ALinks for Oracle Help on page 409
§20.11 Merging JavaHelp or Oracle Help systems on page 410
§20.12 Setting up CSH for JavaHelp or Oracle Help on page 410

See also:
§16 Producing on-line Help on page 243

20.1 Deciding which Java Help system to use
JavaHelp and Oracle Help for Java offer true platform independence, provided a Java
Virtual Machine (JVM) is available for each platform you support. However, JavaHelp is
no longer supported, so it is not recommended.

About JavaHelp JavaHelp 2.0 provides features such as a “favorites” list, support for a glossary, and
support for secondary windows. You can download the JavaHelp System User’s Guide in
PDF format here:

http://download.java.net/javadesktop/javahelp/

Earlier versions of JavaHelp are no longer available, and current versions are no longer
supported.

DITA2Go produces HTML 3.2 code for JavaHelp. The HTML 3.2 code works with the
W3C validator to validate JavaHelp topic files, with one exception: JavaHelp cannot abide
single quotes in <meta> tags in the <head> element, so DITA2Go omits them.

About Oracle
Help for Java

Oracle Help for Java has all the capabilities of JavaHelp; can use the same files; and
supports some nice extensions, such as ALinks. Information is available from the Oracle
Technology Network:

http://www.oracle.com/technetwork/topics/index-083946.html

You must register to access the Oracle site, but registration is free.

20.2 Obtaining tools for a Java-based Help system
You will need Java Standard Edition (Java SE): version 2 or later for JavaHelp, version 5
or later for Oracle Help. Download the Java SE from this site:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://download.java.net/javadesktop/javahelp/
http://www.oracle.com/technetwork/topics/index-083946.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

SETTING UP A JAVAHELP OR ORACLE HELP PROJECT DITA2GO USER’S GUIDE

386 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Note: Install Java SE in a directory with no spaces in the path name; otherwise you will
have to modify some of the scripts that accompany the Help tools, to enclose the
path name in double quotes.

Download Oracle Help for Java from this site:
http://www.oracle.com/technetwork/topics/ohj50ext-089966.html

Download JavaHelp from this site:
http://download.java.net/javadesktop/javahelp/

Note: Install JavaHelp in a directory with no spaces in the path name.

Supposedly, eventually JavaHelp downloads should be available here:
http://java.net/projects/javahelp/

However, it does not appear that this site is maintained.

For both Help systems the software is free, and can be redistributed.

20.3 Setting up a JavaHelp or Oracle Help project
In this section:

§20.3.1 Creating a JavaHelp or Oracle Help for Java project on page 386
§20.3.2 Deciding where to locate configuration settings on page 386
§20.3.3 Specifying output options for JavaHelp on page 387
§20.3.4 Establishing a JavaHelp environment on page 387
§20.3.5 Establishing an Oracle Help environment on page 388
§20.3.6 Creating a directory structure for JavaHelp / Oracle Help on page 389
§20.3.7 Configuring the helpset file on page 392
§20.3.8 Coping with JavaHelp / Oracle Help viewer limitations on page 394
§20.3.9 Compiling JavaHelp with Helen on page 395

20.3.1 Creating a JavaHelp or Oracle Help for Java project

To create a JavaHelp or Oracle Help project:

1. Create a project directory for output files, separate from the directory where your
DITA document is located.

2. Copy the appropriate configuration file, _d2javahelp.ini or
_d2oraclehelp.ini , from your DITA2Go config\local directory (see §1.3.1
Set up a framework for Omni Systems applications on page 29), or from an existing
DITA2Go project, to your newly created output directory:

3. Use a text editor to edit the _d2javahelp.ini or _d2oraclehelp.ini
configuration file (see §3.1 Working with DITA2Go configuration files on page 49).

20.3.2 Deciding where to locate configuration sett ings

When you set up a JavaHelp or Oracle Help project, if configuration file
_d2javahelp.ini (or _d2oraclehelp.ini) is not already present in your project
directory, you must copy this file from your DITA2Go config\local directory (see
§1.3.1 Set up a framework for Omni Systems applications on page 29).

Which
configuration file?

To configure output, add settings to one of the following files, depending on the desired
scope of each setting.

http://www.oracle.com/technetwork/topics/ohj50ext-089966.html
http://download.java.net/javadesktop/javahelp/
http://java.net/projects/javahelp/

20 GENERATING JAVAHELP OR ORACLE HELP SETTING UP A JAVAHELP OR ORACLE HELP PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 387

For JavaHelp output:

For Oracle Help output:

See §39.4 Deciding which configuration file to edit on page 734.

To determine which configuration settings will produce the appearance and functionality
you want, also see:

§22 Converting to HTML/XHTML on page 429
§27 Splitting and extracting files on page 523
§30 Mapping text formats to HTML/XML on page 565
§32 Including graphics in HTML on page 611
§33 Converting tables to HTML on page 625

20.3.3 Specifying output options for JavaHelp

By default, DITA2Go produces JavaHelp 2 output. To generate JavaHelp 1 instead:
[JavaHelpOptions]
; JHVersion2 = Yes (default) or No (limit features used to Version 1)
JHVersion2 = No

If you do choose JavaHelp 1, be aware that several executable files in the JavaHelp
distribution that used to be .exe files were changed to .jar files in JavaHelp version
1.1.3. For example, with version 1.1.3 you use jhindexer.jar and hsviewer.jar .
You must run both JHIndexer and hsviewer from the command line, and you will need
environment variable JAVAHELP_HOME to run them at all.

See also:
§20.5 Providing full-text search for JavaHelp / Oracle Help on page 397
§20.6 Creating and viewing a Java Archive (JAR) file on page 400

20.3.4 Establishing a JavaHelp environment

To use JavaHelp, you must have both JavaHelp and the Java Runtime Environment (JRE)
installed on your system, and you must set some environment variables. If you plan to
create .jar files, you will also need jar.exe from the Java Software Development Kit
(JDK).

JavaHelp 2.0 requires Java Standard Edition (Java SE). Both Java SE and JavaHelp are
available for download; see §20.2 Obtaining tools for a Java-based Help system on
page 385.

Environment
variables

You must create Windows environment variables JAVA_HOME and JHHOME, if they are not
already defined on your system; for example, on Windows 2000 or Windows XP:

Control Panel > System > Advanced > Environment Var iables

Scope Configuration file Location

Current project
only

_d2javahelp.ini Current project directory

All JavaHelp
projects

local_d2javahelp_config.ini %omsyshome%\d2g\local\co nfig\

Scope Configuration file Location

Current project
only

_d2oraclehelp.ini Current project directory

All Oracle Help
projects

local_d2oraclehelp_config.ini %omsyshome%\d2g\local\ config\

SETTING UP A JAVAHELP OR ORACLE HELP PROJECT DITA2GO USER’S GUIDE

388 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

These environment variables are defined as follows:
JAVA_HOME path\to\JavaSE\executables
JHHOME path\to\JavaHelp\executables

For example:
JAVA_HOME=C:\Java\j2re1.4.2_03\bin
JHHOME=C:\JH\jh20\javahelp\bin

JavaHelp viewer To check the results after DITA2Go generates JavaHelp files, you can use the JavaHelp
viewer included in the JavaHelp installation: hsviewer.jar , located in the demos\bin
directory. The JavaHelp System User’s Guide shows how to set up a shortcut to the
viewer.

20.3.5 Establishing an Oracle Help environment

To use Oracle Help for Java, you must have both Oracle Help and a Java Virtual Machine
(JVM) installed on your system. Oracle Help version 5.0 requires Java SE version 5.0 or a
later version. If you plan to create .jar files, you will also need jar.exe from the Java
Developer’s Kit (JDK).

Oracle Help for Java is available for download from the Oracle Technology Network; see
§20.2 Obtaining tools for a Java-based Help system on page 385.

Environment
variables

Edit Windows System environment variable CLASSPATH (or create CLASSPATH if it is not
already defined on your system):

Control Panel > System > Advanced > Environment Var iables

What you add to CLASSPATH depends on which version of Oracle Help you are using; the
dependencies and file names changed between versions 4 and 5.

If you are using Oracle Help version 4, append to CLASSPATH the following paths,
separating each path from the next with a semicolon:

where\you\installed\ohj\
where\you\installed\ohj\help4.jar
where\you\installed\ohj\help4-demo.jar
where\you\installed\ohj\help4-indexer.jar
where\you\installed\ohj\ohj-jewt.jar
where\you\installed\ohj\oracle_ice.jar

For example (all on one line, of course):
CLASSPATH=D:\ohelp\help4-indexer.jar;D:\ohelp\help4 -demo.jar;D:\ohelp\
help4.jar;D:\ohelp\ohj-jewt.jar;D:\ohelp\;D:\ohelp\ oracle_ice.jar;D:\o
help\help4-indexer.jar

If you are using Oracle Help version 5, append to CLASSPATH the following paths,
separating each path from the next with a semicolon:

where\you\installed\ohj\
where\you\installed\ohj\ohj.jar
where\you\installed\ohj\help-share.jar
where\you\installed\ohj\share.jar
where\you\installed\ohj\help-demo.jar
where\you\installed\ohj\help-indexer.jar
where\you\installed\ohj\jewt.jar
where\you\installed\ohj\oracle_ice.jar

For example (all on one line, of course):
CLASSPATH=g:\ohj5;g\ohj5\ohj.jar;g:\ohj5\help-share .jar;g:\ohj5\oracle
_ice.jar;g:\ohj5\jewt.jar;g:\ohj5\share.jar;g:\ohj5 \help-indexer.jar

20 GENERATING JAVAHELP OR ORACLE HELP SETTING UP A JAVAHELP OR ORACLE HELP PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 389

Oracle Help
viewer

Given these settings for CLASSPATH, if you have also established a path to java.exe in a
current JRE (see §20.3.4 Establishing a JavaHelp environment on page 387), to view the
results of generating Oracle Help you should be able to use a .bat file with commands
like the following:

cd where\you\installed\ohj
java oracle.help.demo.ChoiceDemo " \path\to\MyOutput\help\ MyDoc.hs"

In practice, for Oracle Help 5, we find that setting the CLASSPATH environment variable is
not sufficient; you must still supply the same dependencies to the java command as an
argument to -classpath . For example:

cd G:\OHJ5
REM The following java command must be all on one l ine:
java -classpath
"ohj.jar;help-share.jar;oracle_ice.jar;jewt.jar;sha re.jar;help-demo.ja
r" oracle.help.demo.ChoiceDemo "G:\OmniSys\UG\ohj\h elp\ugdita2go.hs"
%*

Your experience might be different.

20.3.6 Creating a directory structure for JavaHelp / Oracle Help

In this section:
§20.3.6.1 Understanding the JavaHelp / Oracle Help directory structure on page 389
§20.3.6.2 Letting DITA2Go set up the directory structure and copy files on page 389
§20.3.6.3 Locating graphics files for JavaHelp and Oracle Help on page 391
§20.3.6.4 Specifying a path for search-index links on page 391
§20.3.6.5 Manually copying and deleting output files on page 392

20.3.6.1 Understanding the JavaHelp / Oracle Help directory structure

If you plan to provide features such as full-text search, JavaHelp and Oracle Help require a
more involved directory structure than just a DITA2Go project directory. You can create
the directory structure, or let DITA2Go do it for you; see §20.3.6.2 Letting DITA2Go set
up the directory structure and copy files on page 389. A typical directory structure looks
like this, with the top-level JavaHelp or Oracle Help directory as a subdirectory of the
conversion project directory:

MyDoc DITA document files
.. MyOutput DITA2Go output files (normal DITA2Go project directory)

Top JH or OHJ level starts here:
....help Help files copied from MyOutput: .hs , .jhm , .xml
......graphics Image files copied from MyOutput (or another location)
......html .htm and .css files copied from MyOutput

After DITA2Go generates output, the helpset file (.hs) and navigational files (.jhm and
.xml) are copied from the DITA2Go project directory to the help directory.

20.3.6.2 Letting DITA2Go set up the directory stru cture and copy files

To have DITA2Go set up the JavaHelp or Oracle Help directory structure for you, specify
a path to the top-level directory. For example:

[Automation]
WrapAndShip = Yes
; WrapPath = for JavaHelp or Oracle Help, path to t op-level dir,
; default is output dir
WrapPath = ./help

SETTING UP A JAVAHELP OR ORACLE HELP PROJECT DITA2GO USER’S GUIDE

390 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

WrapPath can be an absolute path or a path relative to the project directory; the default
value of WrapPath is the project directory itself.

Directories are
created

When you specify a value for WrapPath , DITA2Go creates the WrapPath directory if it
is not already present, and also creates the two required subdirectories, if they are not
already present.

To specify names for the subdirectories:
[JavaHelpOptions] or [OracleHelpOptions]
; HTMLSubdir = subdirectory of WrapPath for *.htm, *.css, and *.js
; files, default "html"
HTMLSubdir = html
; GraphSubdir = subdirectory of WrapPath for *.gif, *.jpg, and *.png
; files, default "graphics"
GraphSubdir = graphics

Unless you are creating a proprietary directory structure, just accept the default names.

The directory designated by HTMLSubdir is the default setting for MapFilePrefix , with
“ / ” appended; see §20.3.6.4 Specifying a path for search-index links on page 391.

The directory designated by GraphSubdir is the default JavaHelp and Oracle Help
setting for [Graphics]GraphPath , with “../ ” prepended; see §20.3.6.3 Locating
graphics files for JavaHelp and Oracle Help on page 391.

Directories can be
emptied before

copying

To empty the subdirectories before copying:
[JavaHelpOptions] or [OracleHelpOptions]
; EmptyJavaHTMLSubdir = Yes (default, empty HTMLSub dir directory
; before copying) or No (leave HTML files in place)
EmptyJavaHTMLSubdir = Yes
; EmptyJavaGraphSubdir = No (default, leave graphic s files in place)
; or Yes (empty GraphSubdir directory before copyin g)
EmptyJavaGraphSubdir = Yes

Files are copied
from the project

directory

When you specify a value for [Automation]WrapPath , DITA2Go automatically
populates the directory structure. After generating HTML files and optionally creating a
full-text search index, DITA2Go copies files that have the following extensions, from the
project directory to the directory specified by WrapPath , or to the appropriate
subdirectory. For example, with WrapPath=./help and default names for the
subdirectories:

Note: Files are automatically copied from the project directory only if you specify a
value for WrapPath .

List files to copy
to the top
directory

To specify what files to copy to the top directory:
[JavaHelpOptions] or [OracleHelpOptions]
; JavaRootFiles = list of files to copy to WrapPath
JavaRootFiles = *.hs *.jhm *.xml

You can use JavaRootFiles to list files to be copied to the directory designated by
WrapPath . The file specifications you assign to JavaRootFiles must be separated by
spaces, and no spaces are allowed within a file specification. You can use wildcards in file
specifications, and include absolute or relative paths to indicate where files should be
copied from; the default is from the project directory. By default, the following files are
copied:

Directory File extensions
.\help *.xml *.hs *.jhm

.\help\html *.htm *.css *.js

.\help\graphics *.gif *.jpg *.png

20 GENERATING JAVAHELP OR ORACLE HELP SETTING UP A JAVAHELP OR ORACLE HELP PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 391

*.hs *.jhm *.xml

Any file list you assign to JavaRootFiles overrides these defaults.

Graphics can be
copied from a

different directory

To have DITA2Go copy graphics files from a location other than the project directory:
[Automation]
WrapAndShip = Yes
CopyOriginalGraphics = Yes

When CopyOriginalGraphics=Yes , DITA2Go follows the file paths in your DITA
source to find the graphics files to copy to the directory specified by GraphSubdir .

See also:
§16.2.2 Compiling and distributing Help systems on page 247.
§44 Producing deliverable results on page 787

20.3.6.3 Locating graphics files for JavaHelp and Oracle Help

To view images in a generated JavaHelp system, if you are using a typical directory
structure, image files must be in a subdirectory of the helpset directory such as
help\graphics , and HTML files that reference the images must be in a parallel
subdirectory, such as help\html . (See §20.3.6.1 Understanding the JavaHelp / Oracle
Help directory structure on page 389).

When you have finished generating a JavaHelp or Oracle Help system, both of the
following must be true:

 • all graphics referenced from HTML topic files are in one subdirectory of the helpset
directory; see §20.3.6.2 Letting DITA2Go set up the directory structure and copy files
on page 389

 • all references to graphics specify a relative path from the helpset directory to the
graphics subdirectory.

For example, to specify a relative path from directory help (where the helpset is located)
to subdirectory help\graphics (where graphics are located):

[Graphics]
GraphPath = ../graphics/

For JavaHelp and Oracle Help (only), the directory designated by GraphSubdir (see
§20.3.6.2 Letting DITA2Go set up the directory structure and copy files on page 389) is
the default setting for [Graphics]GraphPath , with “../ ” prepended.

Note: For JavaHelp and Oracle Help, forward slashes are required in path names you
assign to keywords in the configuration file; see §3.4 Understanding the rules for
configuration settings on page 62.

DITA2Go uses the value of GraphPath for the src attribute of tags. See
§40.2.1.1 Specifying graphics location for HTML on page 747.

To specify the location of images assigned to specific JavaHelp 2 windows, see §20.8.1.1
Assigning default window parameters for JavaHelp 2 on page 403.

20.3.6.4 Specifying a path for search-index links

To create a search index, URLs in the JavaHelp map file (.jhm) must point to files in a
subdirectory of the directory where the helpset file is located; the default subdirectory is
help\html . See §20.3.6.1 Understanding the JavaHelp / Oracle Help directory structure
on page 389.

SETTING UP A JAVAHELP OR ORACLE HELP PROJECT DITA2GO USER’S GUIDE

392 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Note: Oracle Help uses a map file only for ALinks and for CSH links; if your Oracle
Help project does not include either of those features, there is no map file.

To provide a prefix that points map-file URLs to the correct directory:
[JavaHelpOptions] or [OracleHelpOptions]
; MapFilePrefix = prefix to insert at start of map file URLs
MapFilePrefix = html/

The directory designated by HTMLSubdir (see §20.3.6.2 Letting DITA2Go set up the
directory structure and copy files on page 389) is the default setting for MapFilePrefix ,
with “ / ” added. Use a forward slash, not a backslash, at the end of the prefix; URLs
require forward slashes.

MapFilePrefix fixes URLs in the map file, but does not actually move any of the
referenced files; see §20.3.6.2 Letting DITA2Go set up the directory structure and copy
files on page 389.

20.3.6.5 Manually copying and deleting output file s

To get rid of any orphaned HTML files left over from a previous conversion run, for a
stand-alone project (no links to other projects) it is best to delete all HTML output files
before each full conversion, then copy new HTML output files to the appropriate
compilation directory after conversion. For large projects, deleting and then recreating the
help\html subdirectory is noticeably faster than deleting HTML files one by one.

Do not delete until
after all

conversions

If HTML output files contain cross references to another project (as in a merge situation),
those cross references would be broken if you were to delete HTML files from the project
directory, because DITA2Go would not be able to update the missing files. In that
situation, update all projects that need updating before you copy HTML files from the
project directory to the compilation directory; and delete HTML files from the project
directory only when you start a full conversion of every project involved.

20.3.7 Configuring the helpset file

In this section:
§20.3.7.1 Specifying helpset file name and title on page 392
§20.3.7.2 Specifying a default starting topic for the helpset on page 393
§20.3.7.3 Deciding whether to rewrite the helpset file on page 393
§20.3.7.4 Providing a “favorites” option for JavaHelp 2 on page 393
§20.3.7.5 Adding custom helpset sections for JavaHelp 2 on page 393
§20.3.7.6 Requiring full paths in the helpset file on page 394

20.3.7.1 Specifying helpset file name and title

To specify a helpset file name for JavaHelp or Oracle Help:
[JavaHelpOptions] or [OracleHelpOptions]
; HSFileName = name for JavaHelp HelpSet file used in archive
HSFileName = myproj.hs

The default helpset file name is the name of your DITA document file.

To have DITA2Go copy the helpset file to another directory after generating output files,
specify the following:

[Automation]
; WrapPath = for JavaHelp or Oracle Help, path to t op-level dir,
; default is output dir
WrapPath = ./help

20 GENERATING JAVAHELP OR ORACLE HELP SETTING UP A JAVAHELP OR ORACLE HELP PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 393

See §20.3.6.2 Letting DITA2Go set up the directory structure and copy files on page 389.

To specify a helpset title:
[JavaHelpOptions] or [OracleHelpOptions]
; HelpFileTitle = title in HelpSet file, default fi lename or bookname
HelpFileTitle = Title of My Project

Oracle Help for Java does not support entities in the title. Do not include special characters
such as &, <, >, or " in the title of the helpset file.

20.3.7.2 Specifying a default starting topic for t he helpset

To specify the helpset starting topic:
[JavaHelpOptions] or [OracleHelpOptions]
; DefaultTopic = starting topic ID (not file name)
;DefaultTopic =

This setting specifies an identifier for the first topic to display. This is a JavaHelp-specific
target name rather than a file name. Typically it is the internally generated object ID of the
first heading in the file; for example, Xaa123456 . The default-topic identifier appears in a
helpset file entry such as the following:

<homeID>Xaa123456</homeID>

The helpset entry identifies the map-file URL that points to the topic file; for example:
<mapID target="Xaa123456" url="html/dita2go.htm" />

If you do not specify a value for DefaultTopic , DITA2Go tries to autodetect the target
name; however, this works only if DITA2Go is rewriting the helpset file after the first
time you ran the conversion. DITA2Go uses the first topic ID in the first file in the book.
If all else fails, DITA2Go uses the base name of the .bookmap or .ditamap file.

20.3.7.3 Deciding whether to rewrite the helpset f ile

DITA2Go creates a helpset file for you the first time you run a JavaHelp conversion.
Although DITA2Go rewrites .jhm and .xml files every time you run the conversion, by
default DITA2Go does not rewrite the helpset file during subsequent conversion runs.

To have DITA2Go rewrite the helpset file every time:
[JavaHelpOptions] or [OracleHelpOptions]
; WriteHelpSetFile = No (default) or Yes (write eac h time)
WriteHelpSetFile = Yes

Set WriteHelpSetFile=Yes if you move or delete the helpset file from the project
directory every time you run the conversion.

Use the default value, WriteHelpSetFile=No , if you customize the helpset file outside
of DITA2Go ; see §20.3.7.5 Adding custom helpset sections for JavaHelp 2 on page 393.

20.3.7.4 Providing a “favorites” option for JavaHe lp 2

If you are using DITA2Go to generate JavaHelp 2, you can include in the helpset a
provision for a “favorites” facility that allows the user to add topics to a “favorites” list:

[JavaHelpOptions]
; UseFavorites = No (default) or Yes (affects HelpS et File rewrite)
UseFavorites = Yes

20.3.7.5 Adding custom helpset sections for JavaHe lp 2

JavaHelp 2 supports additional entries in the helpset file, such as an <impl> section; see
the JavaHelp System User’s Guide for information about this feature.

SETTING UP A JAVAHELP OR ORACLE HELP PROJECT DITA2GO USER’S GUIDE

394 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To add custom entries to the helpset, list the code for each entry in the following
configuration-file section. For example:

[JH2_HelpsetAddition]
; Optional section used for literal additions to th e JH2 <helpset>
<impl>

<helpsetregistry helpbrokerclass="javax.help.Defaul tHelpBroker" />
<viewerregistry viewertype="text/html"

viewerclass="com.sun.java.help.impl.CustomKit" />
<viewerregistry viewertype="text/xml"

viewerclass="com.sun.java.help.impl.CustomXMLKit" / >
</impl>

You can put anything you please in section [JH2_HelpsetAddition] , and whatever
you add is included in the helpset file; for example, you can add your own
<presentation> sections.

If DITA2Go does not rewrite the helpset file each time (see §20.3.7.3 Deciding whether to
rewrite the helpset file on page 393), you could simply add custom sections directly to the
helpset file.

20.3.7.6 Requiring full paths in the helpset file

To specify full paths instead of simple file names in links from the helpset file:
[JavaHelpOptions] or [OracleHelpOptions]
; HSPathNames = No (default, strip path from filena mes)
; or Yes (use full path)
HSPathNames = Yes

The default setting, HSPathNames=No, is almost always the correct value, because the
navigational files referenced in the helpset file are almost always in the same directory
(see §20.3.6.1 Understanding the JavaHelp / Oracle Help directory structure on page 389).
The only reason to put navigational files elsewhere would be to accommodate a
proprietary standard; this setting is intended to support that use only.

20.3.8 Coping with JavaHelp / Oracle Help viewer l imitations

JavaHelp viewer limitations and defects are described in the JavaHelp System User’s
Guide. DITA2Go provides workarounds for some; others you will have to put up with.
The Oracle Help viewer has a different set of limitations. Some known limitations:

Anchor tags in JavaHelp
Image size units in JavaHelp
CSS in JavaHelp or Oracle Help
Index entries.

Anchor tags in
JavaHelp

Each anchor tag in HTML, including the <a> tag produced from each HyperAnchor PI
marker in your DITA document, is replaced by a space in the JavaHelp viewer. There is no
feasible workaround for this defect. DITA2Go usually produces more than one , and <a> tags cannot be nested. Placing all <a> tags before the opening <p>
eliminates the spaces, but adds a blank line above, which is even worse.

Image size units
in JavaHelp

A px suffix on image width and height attribute values causes the JavaHelp viewer to
show the image as a thumbnail; so for JavaHelp, by default DITA2Go omits the suffix.
Make sure you do not override this default; see §32.8.3 Specifying px units for graphics
sized in pixels on page 621.

20 GENERATING JAVAHELP OR ORACLE HELP GENERATING CONTENTS AND INDEX

ALL RIGHTS RESERVED. MAY 19, 2013 395

CSS in JavaHelp
or Oracle Help

Support for CSS is limited (in different ways) in the JavaHelp and Oracle Help viewers.
You might have to resort to font tags and alignment attributes instead of using a style
sheet. See §30.6.3 Including or excluding font tags on page 578.

JavaHelp CSS does not respect the list-style rule; therefore, by default, DITA2Go adds the
type attribute to list wrappers ol and ul . To omit the type attribute from list wrappers:

[CSS]
; UseListTypeAttribute = Yes (default for JavaHelp, to fix CSS bug)
; or No (default for other formats, go by NoAttrib Lists value)
UseListTypeAttribute = No

See §30.11.2.6 Including or excluding the type list attribute on page 588.

JavaHelp CSS does not support conditional flagging; see §9.3 Including flags for ditaval
conditions on page 165.

Index entries Index entries have limitations in both viewers; see §20.4.3 Configuring index entries for
JavaHelp or Oracle Help on page 396.

20.3.9 Compiling JavaHelp with Helen

If you intend to compile your JavaHelp project with third-party compiler Helen, specify
the following option:

[JavaHelpOptions]
; Helen = No (default) or Yes (to account for quirk s in Helen for JH)
Helen = Yes

Helen might not like some valid HTML constructs.

20.4 Generating contents and index
To understand whether, how, and when DITA2Go generates contents and index files for
JavaHelp and Oracle Help, see §16.3.1 Modifying contents or index production for
HTML-based Help on page 249.

In this section:
§20.4.1 Configuring contents entries for JavaHelp or Oracle Help on page 395
§20.4.2 Assigning TOC images and expansion levels in JavaHelp 2 on page 396
§20.4.3 Configuring index entries for JavaHelp or Oracle Help on page 396
§20.4.4 Locating JavaHelp or Oracle Help contents and index files on page 397

See also:
§16.3 Producing contents and index for Help systems on page 248
§16.4 Configuring contents entries for Help systems on page 250
§16.5 Configuring index entries for Help systems on page 251

20.4.1 Configuring contents entries for JavaHelp o r Oracle Help

Headings that start topics, or to which you assign the Contents property or a contents
level, are automatically included in the contents; see the following:

§16.4.2 Including contents entries in HTML-based Help on page 250.
§16.4.3 Setting contents levels for HTML-based Help on page 251.

However, if you set the following option, links might be missing for contents entries that
are not topic headings:

GENERATING CONTENTS AND INDEX DITA2GO USER’S GUIDE

396 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[JavaHelpOptions] or [OracleHelpOptions]
RemoveInternalAnchors = Yes

This is mainly an issue for JavaHelp, where anchors in text cause unwanted spacing; see
§20.9 Linking to destinations within topics on page 409.

20.4.2 Assigning TOC images and expansion levels i n JavaHelp 2

DITA2Go supports several JavaHelp 2 <toc> and <tocitem> attributes that allow you
to control which TOC levels are expanded and collapsed, and what images are displayed
in the TOC tree.

To set the <tocitem> expand attribute by level, assign Yes (expand) or No (collapse) to
each level number:

[TocLevelExpand]
; The JH default is to expand only top-level (1) it ems; this sets the
; <tocitem> expand attribute according to level.
1 = Yes
2 = No

The JavaHelp default is to expand only top-level (level 1) items.

To designate images to be displayed in the TOC tree, assign an image ID to each different
TOC item. For example:

[JavaHelpOptions]
; The JH default is to use the Toc*Image graphics f or all levels; this
; replaces those graphics by setting the <tocitem> image attributes.
; The image IDs are mapped in [JHImages] as usual
TocClosedImage = closedsign
TocOpenImage = opensign
TocTopicImage = topicicon

The JavaHelp default is to use the assigned Toc*Image graphics for all TOC levels.
However, to use the same graphic for all TOC items at a given level, you can assign an
image ID to the level number. For example:

[TocLevelImage]
; The image IDs are mapped in [JHImages]
1=overview

You must map each image ID to the location of its corresponding graphic in section
[JHImages] ; see §20.8.1.2 Mapping image names to graphics files on page 404.

20.4.3 Configuring index entries for JavaHelp or O racle Help

DITA2Go generates the JavaHelp or Oracle Help index file, MyDocIndex.xml .
However, most of the ways you can customize index entries for HTML-based help,
described in §16.5 Configuring index entries for Help systems on page 251, do not work
for either JavaHelp or Oracle Help. Both produce indexes with the following possibly
undesirable display features:

 • Index entries are not formatted; any character formatting is lost.
 • Sort-order settings from the DITA2Go configuration file are ignored, even though

they correctly inform the order of items in MyDocIndex.xml .

JavaHelp In JavaHelp there is no graceful way to handle index entries that have multiple references
to different places in the helpset, so DITA2Go converts multiple references into
subentries, each with the topic title (including any autonumber) as the visible information.

Oracle Help for
Java

Oracle Help supports only two levels of index entries; the index view collapses any levels
beyond the second.

20 GENERATING JAVAHELP OR ORACLE HELP PROVIDING FULL-TEXT SEARCH FOR JAVAHELP / ORACLE HELP

ALL RIGHTS RESERVED. MAY 19, 2013 397

Oracle Help provides an <iindexentry> tag for index files, which affects how topic
names display for multiple references to the same index term. You can turn it off:

[JavaHelpOptions] or [OracleHelpOptions]
; UseIndexentryTag = Yes (OracleHelp only, default)
; or No (as in Sun JavaHelp)
UseIndexentryTag = No

You should not need to change the default setting for UseIndexentryTag , unless you are
generating Oracle Help for Java and you prefer the way DITA2Go handles
multiple-reference index entries for JavaHelp.

See §16.5 Configuring index entries for Help systems on page 251.

20.4.4 Locating JavaHelp or Oracle Help contents a nd index files

When DITA2Go generates contents and index for JavaHelp or Oracle Help, you end up
with the following files:

 • a contents file, MyProjTOC.xml

 • an index file, MyProjIndex.xml .

These files must reside in the same directory as the helpset file (MyDoc.hs), usually the
help directory; see §20.3.6.1 Understanding the JavaHelp / Oracle Help directory
structure on page 389.

20.5 Providing full-text search for JavaHelp / Ora cle Help
Including full-text search capability in the Help system for either JavaHelp or Oracle Help
requires using an external indexing program to create a search index, and providing a link
to the search index from the helpset file.

In this section:
§20.5.1 Including a search-index link in the helpset file on page 397
§20.5.2 Creating a search index for JavaHelp on page 398
§20.5.3 Creating a search index for Oracle Help on page 399

20.5.1 Including a search-index link in the helpse t file

To indicate that you want to include full-text search (FTS) capability for JavaHelp or for
Oracle Help:

[JavaHelpOptions] or [OracleHelpOptions]
; UseFTS = Yes (default) or No (affects HelpSet Fil e rewrite)
UseFTS = Yes

When UseFTS=Yes, DITA2Go includes information in the helpset file to access a search
index. You also have to run an indexing program to create the search index from the
HTML output files. You can have DITA2Go run the program, or you can run it yourself;
see:

§20.5.2 Creating a search index for JavaHelp on page 398
§20.5.3 Creating a search index for Oracle Help on page 399

Note: If UseFTS=Yes but the indexing program is not run, the helpset link to the search
index could cause a run-time error.

When UseFTS=No, DITA2Go does not include a link to the search index. If you run the
indexing program anyway, you get a search index, but the display might ignore it.

PROVIDING FULL-TEXT SEARCH FOR JAVAHELP / ORACLE HELP DITA2GO USER’S GUIDE

398 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

However, if you use the Oracle Help for Java Helpset Authoring Wizard to produce a
search index for Oracle Help, the Authoring Wizard itself provides a link in the helpset
file.

20.5.2 Creating a search index for JavaHelp

JavaHelp utility program JHIndexer creates a search index for JavaHelp, and places the
search index in a subdirectory called JavaHelpSearch . You can have DITA2Go run
JHIndexer, or you can run it yourself. In addition to creating a search index, you must also
provide a link to the search index from the helpset file; see §20.5.1 Including a
search-index link in the helpset file on page 397.

Let DITA2Go
create FTS

To have DITA2Go automatically run JHIndexer:
[JavaHelpOptions]
; FTSCommand = for Sun Java Help, path to jhindexer , such as:
FTSCommand = D:/jh2.0_01/jh2.0/javahelp/bin/jhindex er

The value of FTSCommand must include an absolute path to the directory where the
JHIndexer program is installed on your system. If the path includes spaces, you must
enclose it in double quotes. For example:

[JavaHelpOptions]
FTSCommand = "G:/JH/jh2.0 01/jh2 0/javahelp/bin/jhi ndexer"

Do not enclose parameters in quotes:

 • Use backslashes as separators in path-name parameters.
 • Use a dash (“- ”) instead of a forward slash to prefix a command option.

When you specify a value for FTSCommand, after generating output files for JavaHelp,
DITA2Go first removes any search-index directory previously created by JHIndexer, then
uses the command to run JHIndexer and produce a new search index.

If you also specify a value for [Automation]WrapPath , DITA2Go copies all needed
files from the project directory to the JavaHelp directory structure before running
JHIndexer; see §20.3.6.2 Letting DITA2Go set up the directory structure and copy files on
page 389.

Create FTS
yourself

If you do not specify a value for FTSCommand, you must run JHIndexer yourself, from the
directory where your helpset file is located, and specify the directory where the HTML
files are located. For example, at a Windows command prompt:

D:
cd \path\to\MyOutput\help
del /f /q JavaHelpSearch
path\to\JavaHelp\files\bin\ jhindexer html

If you are using a directory structure such as the following for your project, run JHIndexer
from the Help directory:

MyDoc (DITA files)
.. MyOutput (DITA2Go files)
....Help (JHM, HS, TOC, Index; run JHIndexer from this directory)
......HTML
......Graphics

Your structure ends up looking like this:
MyDoc (DITA files)
.. MyOutput (DITA2Go files)
....Help (JHM, HS, TOC, Index)
......JavaHelpSearch (Created by JHIndexer)
......HTML
......Graphics

20 GENERATING JAVAHELP OR ORACLE HELP PROVIDING FULL-TEXT SEARCH FOR JAVAHELP / ORACLE HELP

ALL RIGHTS RESERVED. MAY 19, 2013 399

JavaHelp search
caveats

It is best to remove any previous search-index directory before you run JHIndexer to
create a new directory. If a previous attempt to create a search index failed, further
attempts will also fail if the failed search-index directory is present.

You must run JHIndexer from the directory where the helpset file is located. If you try to
run JHIndexer from within the HTML directory, JHIndexer will put the
JavaHelpSearch directory inside the HTML directory. If you try to run it from any other
directory, you get strange effects in the Contents panel.

See also:
§16.2.2 Compiling and distributing Help systems on page 247
§20.3.6.2 Letting DITA2Go set up the directory structure and copy files on page 389
§20.3.6.4 Specifying a path for search-index links on page 391
§20.5.1 Including a search-index link in the helpset file on page 397
§44.10 Gathering and processing Help-system files on page 802

20.5.3 Creating a search index for Oracle Help

Oracle Help for Java utility program Indexer creates a search index for Oracle Help.
Indexer generates an index called myproj.idx , placed in the same directory as the
helpset file, myproj.hs . Before running Indexer, make sure the CLASSPATH environment
variable on your system includes a path to Indexer; see §20.3.5 Establishing an Oracle
Help environment on page 388.

You can create a search index for Oracle Help in any of the following ways:
§20.5.3.1 Directing DITA2Go to create full-text search for Oracle Help on page 399
§20.5.3.2 Creating full-text search for Oracle Help via command line on page 400
§20.5.3.3 Using the Oracle Help Wizard to create full-text search on page 400

See also:
§16.2.2 Compiling and distributing Help systems on page 247
§20.3.6.2 Letting DITA2Go set up the directory structure and copy files on page 389
§20.5.1 Including a search-index link in the helpset file on page 397
§44.10 Gathering and processing Help-system files on page 802

20.5.3.1 Directing DITA2Go to create full-text sea rch for Oracle Help

To have DITA2Go run Indexer for you:
[OracleHelpOptions]
; FTSCommand = for Oracle Help, indexing command, t ypically:
FTSCommand = java -mx256m oracle.help.tools.index.I ndexer

When you specify a value for FTSCommand, DITA2Go uses the command you supply to
run Indexer after generating output files for Oracle Help. If your project is very large, you
might want to increase the value of the -mx option. If the Indexer command includes
spaces, you must enclose it (but not the parameters) in double quotes. Prefix options with
a dash (“- ”) rather than a forward slash.

If you specify a value for [Automation]WrapPath , DITA2Go copies all needed files
from the project directory to the Oracle Help directory structure before running Indexer;
see §20.3.6.2 Letting DITA2Go set up the directory structure and copy files on page 389.

CREATING AND VIEWING A JAVA ARCHIVE (JAR) FILE DITA2GO USER’S GUIDE

400 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

20.5.3.2 Creating full-text search for Oracle Help via command line

You can run Indexer yourself, from the directory where your helpset file is located. To run
Indexer directly from a .bat file, include the following commands:

cd /D path\to\hs
REM The following command must be typed all on one line:
java -mx256m oracle.help.tools.index.Indexer path\to\hs myproj.idx

Paths should be absolute rather than relative. If a path includes spaces, you must enclose it
(but not the parameters) in double quotes. Prefix options with a dash (“- ”) rather than a
forward slash.

20.5.3.3 Using the Oracle Help Wizard to create fu ll-text search

You can use the Oracle Help for Java HelpSet Authoring Wizard to generate a full-text
search index. According to the Oracle Help for Java User Guide:

When you install OHJ on Windows, a batch file and an initialization file for starting
the wizard are generated, using the path into which you installed OHJ. A shortcut for
starting the wizard is also installed on the Windows Start menu. Select this shortcut to
start the wizard. Alternatively, you can issue the following command at the command
prompt:

OHJ_path\launcher.exe OHJ_path\bin\authoringWizard.ini

Follow the prompts in the wizard.

Start the Wizard in the same directory as the helpset file. After browsing for the helpset
file in step 1, accept the defaults the Wizard presents for steps 2 through 9; it is best not to
stray from the Next path. Step 10 requires a value for Base Name : enter the base name of
your helpset file, make sure you allow the Wizard to create a backup, and click Finish .

Next, delete myproj.hs , and rename myproj.hs.BAK to myproj.hs . The result should
be a fully functional search index.

20.6 Creating and viewing a Java Archive (JAR) fil e
To deploy a JavaHelp system, it is best to archive all the required components in a single
executable JAR file. Although you can create a JAR file for an Oracle Help system, the
result probably will not be executable, at least on Windows.

In this section:
§20.6.1 Creating a JAR file on page 400
§20.6.2 Viewing a JAR file on page 401

20.6.1 Creating a JAR file

To create a JAR file you need archiving program jar.exe , which is included in the Java
Software Development Kit. You can download the JDK here:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

You have two choices:
Let DITA2Go create the JAR file
Create the JAR file yourself.

Let DITA2Go
create the JAR

file

To have DITA2Go create a JAR file for you, specify a jar command that works on your
system. For example:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

20 GENERATING JAVAHELP OR ORACLE HELP CONVERTING A GLOSSARY TO JAVAHELP 2

ALL RIGHTS RESERVED. MAY 19, 2013 401

[JavaHelpOptions] or [OracleHelpOptions]
; JarCommand = path to jar, without any parameters; the cvf and * are
; added before and after the HSFileName (with .jar ext) automatically
JarCommand = D:/j2sdk14/jdk/bin/jar

JarCommand must include an absolute path to jar.exe , unless jar.exe is on your
system PATH. Do not include parameters. DITA2Go provides the cvf and * parameters,
and gives the resulting JAR file the base name of your helpset file as specified by
HSFileName (see §20.3.7.1 Specifying helpset file name and title on page 392), and
extension .jar .

Create the JAR
file yourself

To create a JAR file yourself, run the jar command from the directory where your helpset
file is located. The following example creates file myproj.jar and places it in the same
directory as the helpset file. You can put the commands in a .bat file.

cd \path\to\MyOutput\help
path\to\JDK\files\bin\ jar cvf myproj.jar *

20.6.2 Viewing a JAR file

To view a JavaHelp JAR file (for example, myproj.jar):

1. Open a Command Prompt window.

2. Navigate to the directory where java.exe is located (see §20.3.4 Establishing a
JavaHelp environment on page 387).

3. Execute the following command (which must be all on one line):
java -jar path\to\hsviewer.jar -helpset path\to\myproj.jar

You can include navigation and execution commands in a .bat file for convenience. For
example:

cd C:\Program Files\Java\j2re1.4.2_03\bin
java -jar G:\jh20\demos\bin\hsviewer.jar -helpset g:\jh\myproj.jar

JAR files might
have broken links

If your document includes cross references or hypertext links that contain file names that
do not match the case of the target file name, the links will not work when you view the
JAR file. You can correct this problem either of the following ways:

 • Change all file names in your DITA document to lowercase, and set
[HTMLOptions]MakeFileHrefsLower=Yes ; see §28.2.6 Forcing link text to
lowercase on page 549.

 • Inspect every cross-reference and hypertext PI marker in your document, and either
fix the markers or change the case of the DITA file name.

On Windows you can get around the case mismatch problem by viewing the .hs file
instead of the .jar file.

Viewing an
Oracle Help JAR

file is problematic

Although creating a JAR file for an Oracle Help project appears to work correctly, at
Omni Systems we have not succeeded in viewing the resulting JAR file on Windows. On
the other hand, Oracle Help .hs files can be viewed successfully on Windows.

See also:
§20.3.5 Establishing an Oracle Help environment on page 388.

20.7 Converting a glossary to JavaHelp 2
If your DITA document includes a glossary that consists of alternating terms and their
definitions, you can take advantage of JavaHelp 2 glossary support.

CONVERTING A GLOSSARY TO JAVAHELP 2 DITA2GO USER’S GUIDE

402 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

In this section:
§20.7.1 Evaluating glossary usability on page 402
§20.7.2 Assigning glossary properties on page 402
§20.7.3 Configuring glossary IDs on page 402
§20.7.4 Eliminating glossary entries from the JavaHelp TOC on page 403

20.7.1 Evaluating glossary usability

The JavaHelp 2 glossary system is designed to work with a separate file for each glossary
term. The terms are listed in an index-style glossary navigation pane; clicking a term in the
glossary pane opens a small window that displays the definition. There are no links to
definitions from terms that appear in topics.

If you provide a single Glossary topic that contains all the terms and definitions, instead of
using the built-in JavaHelp 2 glossary, you can include cross references to the terms
wherever needed. You cannot insert jumps from topics to the JavaHelp 2 glossary.

20.7.2 Assigning glossary properties

To convert a DITA glossary to a JavaHelp 2 glossary:
[JavaHelpOptions]
; UseGlossary = No (default) or Yes (affects HelpSe t File rewrite)
UseGlossary = Yes

Assign property GlossTerm to each glossary-term paragraph format. For example:
[HTMLParaStyles]
; doc style (para or char) = keywords for functions and properties
; GlossTerm is used for JavaHelp 2 only, to identify para formats
; used for glossary terms (where they are defined in the next
; following paragraph).
Gterm = GlossTerm

Because every glossary term is followed by a definition, you do not have to assign a
property to the definition format.

20.7.3 Configuring glossary IDs

For each glossary term, DITA2Go creates an ID that consists of a special prefix, the term
itself (omitting or replacing any spaces), and an optional suffix.

To specify glossary-term prefix, suffix, and space replacer:
[JavaHelpOptions]
; GlossPrefix = prefix used to form glossary term I Ds, default GLO_
GlossPrefix=GLO_
; GlossSuffix = suffix used to form glossary term I Ds, default none
GlossSuffix=
; GlossSpace = replacement for spaces in glossary t erm IDs,
; default none
GlossSpace =

DITA2Go stores glossary terms, IDs, and glossary file names (allowing for splitting a
glossary file) in a ChapName.bhg file for each .ditamap file in your document.
DITA2Go uses the set of *.bhg files to do the following:

 • generate glossary.xml
 • add glossary IDs and filename#GLO_term entries to the .jhm file
 • add a glossary <view> to the helpset file.

20 GENERATING JAVAHELP OR ORACLE HELP DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP

ALL RIGHTS RESERVED. MAY 19, 2013 403

20.7.4 Eliminating glossary entries from the JavaH elp TOC

Material that DITA2Go converts to a JavaHelp 2 glossary no longer appears in the
resulting JavaHelp 2 system as a regular topic. Therefore you might find an orphaned
glossary entry in the JavaHelp TOC, pointing to a topic that contains only the original
heading of your DITA glossary.

To eliminate a TOC entry for the glossary, do the following:

 • Assign a distinct @outputclass to the heading in DITA XML, and in the
configuration file assign [HTMLParaStyles] property Delete to the resulting
format; see §30.2.6 Eliminating unwanted paragraphs on page 569.

You must also remove any cross references to the heading from other topics.

20.8 Defining windows for JavaHelp or Oracle Help
In this section:

§20.8.1 Specifying window parameters for JavaHelp 2 on page 403
§20.8.2 Specifying window parameters for Oracle Help on page 408
§20.8.3 Jumping to secondary windows in JavaHelp or Oracle Help on page 408

20.8.1 Specifying window parameters for JavaHelp 2

DITA2Go supports window definitions for JavaHelp 2. For JavaHelp 1, you have to roll
your own; see the JavaHelp System User’s Guide. For Oracle Help for Java, see §20.8.2
Specifying window parameters for Oracle Help on page 408.

In this section:
§20.8.1.1 Assigning default window parameters for JavaHelp 2 on page 403
§20.8.1.2 Mapping image names to graphics files on page 404
§20.8.1.3 Understanding JavaHelp 2 window-access limitations on page 404
§20.8.1.4 Specifying window-access object properties on page 405
§20.8.1.5 Overriding window-access properties with markers on page 407
§20.8.1.6 Designing your own window-access marker names on page 407

20.8.1.1 Assigning default window parameters for J avaHelp 2

Assign a name to each JavaHelp 2 window type you expect to define. For example:
[JavaHelpOptions]
; Windows = list of JH2 windows, each defined by it s own section
Windows = mainwin screenshot procwin

By default, the first name listed is the name of the main window.

Note: Window name popup is a reserved name that identifies the window as a pop-up
window; see §16.8 Creating pop-up topics for Help systems on page 263. Do not
list popup as a window type.

For each window name assigned to [JavaHelpOptions]Windows , specify parameters
for that window type in a separate configuration-file section of the same name as the
window. These parameters inform the window descriptions DITA2Go places in the
JavaHelp 2 helpset file. For example:

[JavaHelp window name] (such as [mainwin] or [secwin])
; Default = No (default) or Yes (to make this the d efault window)
Default = Yes

DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP DITA2GO USER’S GUIDE

404 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; Name = name used to reference in code
Name = mainwin
; Title = name in title bar
Title = DITA2Go User’s Guide
; Top = top edge, pixels from top of screen, defaul t 200
Top = 200
; Left = left edge, pixels from left side of screen , default 200
Left = 200
; Height = height in pixels, default 400
Height = 400
; Width = width in pixels, default 400
Width = 400
; NavPane = Yes (default, with toolbar is tripane)
; or No (for secondary windows)
NavPane = Yes
; NavIcons = Yes (default) or No (show text instead)
NavIcons = Yes
; Image = image ID, mapped in [JHImages] if used
Image = mainwinimage
; Toolbar = list of items to include, from: Back, F orward, Home,
; Reload, Favorites (add current page to), Print, Pr intSetup,
; Separator (on bar).
Toolbar = Home Back Forward Separator Print Separat or Favorites
; Optional images for toolbar items, itemImage=imag e file ID,
; mapped in the [JHImages] section
HomeImage = house

Note: Size and position settings for secondary windows (Top, Left , Height , and
Width) are always overridden by object properties of the links to those windows;
see §20.8.1.4 Specifying window-access object properties on page 405.

20.8.1.2 Mapping image names to graphics files

If you assign names to image parameters for specific windows (such as window Image or
toolbar HomeImage), map each image name to the location of its graphic file, relative to
the location of the helpset file. For example:

[JHImages]
; image ID = path, relative to .hs file
mainwinimage = graphics/floral.gif
house = graphics/littlehouse.gif

20.8.1.3 Understanding JavaHelp 2 window-access li mitations

In JavaHelp 2, pop-up links and jumps to secondary windows are represented as objects,
placed at the start of their hotspots, rather than as conventional links. Only the objects
themselves are active links. Hotspot text that you delimit with a character format assigned
to an inline element in DITA XML (see §16.8.2 Defining a pop-up hotspot on page 264)
looks like a hotspot in JavaHelp 2, but has no effect.

The only way to include link-specific hotspot text in DITA XML that both looks and acts
like a hotspot in JavaHelp 2 is to insert in your document special PI markers that contain
the hotspot text, plus (if necessary) additional special PI markers that designate font
properties for hotspot text; see §20.8.1.5 Overriding window-access properties with
markers on page 407.

In other words, for an active-link text hotspot, you have to use PI markers to recreate any
text for the hotspot that might already be present in the document. If you can, that is;
underlines, for example, are not possible. For this reason, the default window-access

20 GENERATING JAVAHELP OR ORACLE HELP DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP

ALL RIGHTS RESERVED. MAY 19, 2013 405

object DITA2Go produces is not a text object, but instead a button that immediately
precedes text that is already designated as a hotspot.

20.8.1.4 Specifying window-access object propertie s

You specify properties for window-access objects by assigning values to object-property
keywords in section [JavaHelpOptions] . Table 20-1 on page 405 and Table 20-2 on
page 406 list the keywords, the values you can assign to each keyword, and the default
when you do not assign a value.

In this section:
§20.8.1.4.1 Changing window type, size, or position via access object on page 405
§20.8.1.4.2 Specifying link properties via window-access object on page 406

20.8.1.4.1 Changing window type, size, or position via access object

For window type, size, and position you can do the following:
Specify pop-up window size but not position
Specify secondary window size and position
Override secondary window type

Specify pop-up
window size but

not position

Only one type of pop-up window can be defined, so in the absence of overrides, all pop-up
window-access properties apply to all pop-up links and windows. The only way to specify
different sizes for different pop-up windows is by inserting special markers before
individual pop-up hotspots; see §20.8.1.5 Overriding window-access properties with
markers on page 407.

Pop-up window position is not configurable; a pop-up window always pops up
immediately under the link.

Specify
secondary

window size and
position

The secondary-window size and position settings listed in Table 20-1 override the default
size and position parameters in the helpset file for all secondary windows, making the
default values moot. See §20.8.1.1 Assigning default window parameters for JavaHelp 2
on page 403. The only way to configure different sizes and positions for different
secondary window types is by inserting special markers before each jump; see §20.8.1.5
Overriding window-access properties with markers on page 407.

Override
secondary

window type

The default value for [JavaHelpOptions]SecName is empty (see Table 20-1). If you
do not include a setting for SecName, for each secondary-window jump the properties
specified for that jump in [SecWindows] apply. If you specify a value for SecName, then
for all secondary-window jumps, any properties (except size and position) you assign to
the SecName window type in its own configuration section override the corresponding
properties of whatever window type is specified for the jump in [SecWindows] . See:

§16.7 Jumping to secondary windows in Help systems on page 262
§20.8.1.1 Assigning default window parameters for JavaHelp 2 on page 403

Table 20-1 [JavaHelpOptions] pop-up and secondary window properties

Window Keyword Value Default Comments

Pop-up PopSize width,height 250,300 One comma, no space between pixel
values; these settings override
corresponding helpset parameters

Secondary SecSize width,height 250,300

SecLocation left,top 600,200

SecName window name Default is the secondary window assigned in
[SecWindows] to a given jump-hotspot format

DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP DITA2GO USER’S GUIDE

406 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

20.8.1.4.2 Specifying link properties via window-a ccess object

You can specify a button, a text string, or a graphic for JavaHelp 2 to display as a
window-access object for a pop-up link or a secondary-window jump. If you specify a text
string, you can assign values to font keywords to apply a limited amount of formatting.
Table 20-2 on page 406 lists the base keywords, and the values you can assign to those
keywords, to configure the appearance of a window-access object.

Prefix base
keywords with
“Pop” or “Sec”

You must supply a prefix for each of the object-property base keywords listed in
Table 20-2, to indicate whether the keyword represents a property for a pop-up window
link or for a secondary-window jump:

 • For a pop-up window, prefix the keyword with Pop; for example:
[JavaHelp window name]
PopType = Graphic
PopGraphic = ../graphics/popicon.gif

 • For a secondary window, prefix the keyword with Sec ; for example:
[JavaHelp window name]
SecType = Button

Table 20-2 [JavaHelp window name] window-access object properties

Keyword* Value Default value and comments

Type Button
Graphic
Text

When Type=Button (default), the value of keyword Text is the label
When Type=Graphic , the value of keyword Text (or keyword
Graphic) is the location of the image file
When Type=Text, Font* properties apply to the value of keyword
Text

Graphic URL for image
file

Default is ../graphics/1p.gif
When Type=Graphic , value is the relative URL of the GIF or JPEG file

Text plain text
<
>
&

Default is >
When Type=Text, Font* properties apply to the value of keyword
Text
When Type=Graphic , value can be the location of the image (which
can be specified as a value either for keyword Text or for keyword
Graphic)

FontFamily SansSerif
Serif
Monospaced
Symbol
Dialog
DialogInput

Pop-up window default is SansSerif
Secondary window default is Serif

Not all FontFamily values work the way you might expect them to
work

FontSize xx-small , x-small , small (default), medium, large , x-large

index number
bigger
smaller
+n
- n
nnpt

index number is a plain digit
bigger increases the size by one index
smaller decreases the size by one index
+n increases the size by n
-n decreases the size by n
nnpt specifies the font size in points

FontWeight plain (default), bold

FontStyle plain (default), italic

FontColor blue (default), black , cyan , darkGray , gray , green , lightGray , magenta , orange ,
pink , red , white , yellow

* Prefix the base keyword with one of the following:
Pop for a pop-up window property
Sec for a secondary-window property

20 GENERATING JAVAHELP OR ORACLE HELP DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP

ALL RIGHTS RESERVED. MAY 19, 2013 407

Eschew
Type=Text

Despite the limited font-tweaking possibilities listed in Table 20-2, you might want to
avoid setting PopType=Text or SecType=Text , unless you are happy with a link that
consists of a single >, <, or & character, or a little box (what you get when, for example,
you specify PopFontFamily=Symbol and choose a character from the Symbol font). See
§20.8.1.3 Understanding JavaHelp 2 window-access limitations on page 404.

Multiple markers
for each hotspot

To actually create a text hotspot with context-specific content, you would have to insert a
collection of markers, all different, before every pop-up link or secondary-window jump
in a file, to handle the varying text content and properties—to the limited extent that you
can do so. See §20.8.1.5 Overriding window-access properties with markers on page 407.

Not all “special”
characters work

Keep in mind that JavaHelp does not support the “undefined” characters with ASCII
decimal values from 128 through 159, even though these characters are used heavily in
Windows for quotes, bullets, and so forth.

20.8.1.5 Overriding window-access properties with markers

To change a JavaHelp 2 object property for a specific link that accesses a pop-up or
secondary window, you can insert a special PI marker somewhere in your document
before the link you want to tweak.

Marker name The name of the PI marker is the keyword for the property to be tweaked, prefixed by
JH2Pop for a pop-up window or JH2Sec for a secondary window, or by a prefix you
specify; see §20.8.1.6 Designing your own window-access marker names on page 407.
The keyword part of the marker name can be any of the following:

 • Size (see Table 20-1); for example, JH2PopSize or JH2SecSize

 • Name or Location , for secondary windows only (see Table 20-1): JH2SecName ,
JH2SecLocation

 • the base name of a window-object access keyword listed in Table 20-2; for example,
JH2PopText or JH2SecGraphic .

Marker content The content of the marker is any value you could assign to the keyword in section
[JavaHelpOptions] ; see §20.8.1.4 Specifying window-access object properties on
page 405. The marker content overrides the corresponding keyword setting, but only for
the next pop-up or secondary window link in the file.

Resize individual
pop-up windows

Use JH2PopSize markers to resize pop-up windows in JavaHelp 2 (something Oracle
Help for Java does for you). For example, to specify the dimensions of one particular
pop-up window, you could place a marker of type JH2PopSize with content 300,75
somewhere before the pop-up hotspot, for a 300-pixel-wide and 75-pixel-high pop-up
window.

20.8.1.6 Designing your own window-access marker n ames

To specify JavaHelp 2 window-access marker-name prefixes other than JH2Pop and
JH2Sec (see §20.8.1.5 Overriding window-access properties with markers on page 407):

[JavaHelpOptions]
; PopMarkerPrefix = prefix for pop-up window marker type,
; default JH2Pop
PopMarkerPrefix = JH2Pop
; SecMarkerPrefix = prefix for secondary window mar ker type
; default JH2Sec
SecMarkerPrefix = JH2Sec

Prefix required The window-access marker names require some prefix; if you try to assign an empty
prefix, DITA2Go ignores the setting and uses the default value for that prefix.

DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP DITA2GO USER’S GUIDE

408 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Same keyword,
different prefix

To provide different window-access settings for the same files in different DITA2Go
projects, you can insert two or more markers (with different contents) whose names have
the same keyword suffix but different prefixes, then just specify the appropriate prefix in
the configuration file to select a set of markers to use for a given project.

Correct a
document-wide

typo

Another possible reason for designating your own prefixes: if you make a systematic error
with the marker type name, such as using JHPop* instead of JH2Pop* , you can avoid
correcting the name in who knows how many DITA files, a change that cannot be
accomplished with a template.

20.8.2 Specifying window parameters for Oracle Hel p

DITA2Go puts Oracle Help for Java window descriptions into the .hs file when you
provide parameters in the following section:

[OracleHelpWindows]
; Windowname = height,width,xpos,ypos,textcolor,lin kcolor,background,
; buttons,title
; The first window listed becomes the default windo w.
Main = 50%,240,100,100,000000,0000ff,ffffff,c000,Ma in Help Window

List window properties in the order indicated, separated by commas. Table 20-3 describes
the properties you can specify for each window.

Do not define
pop-up windows

here

Window name popup is a reserved name that identifies the window as a pop-up window;
see §16.8 Creating pop-up topics for Help systems on page 263. Do not include an entry in
[OracleHelpWindows] for a pop-up window, unless you really do not like the Oracle
Help default yellow “sticky note” that pops up over the center of the parent window. A
secondary window defined in [OracleHelpWindows] replaces the parent window.

20.8.3 Jumping to secondary windows in JavaHelp or Oracle Help

Use a character or paragraph format to define a hotspot for a jump to a secondary window,
and assign the window name to that format:

[SecWindows]
; doc format = name of secondary window to use for jumps from

Table 20-3 Oracle Help for Java window properties

Property Description

height Height of window, in pixels or percent (indicated by suffix %)

width Width of window in pixels or percent (indicated by suffix %)

xpos Horizontal screen coordinate of upper left corner, in pixels

ypos Vertical screen coordinate of upper left corner, in pixels

textcolor RGB color of text in window, in hexadecimal

linkcolor RGB color of links in window, in hexadecimal

background RGB color of window background, in hexadecimal

buttons Sum of the following hexadecimal values, in hexadecimal:
4 - Remove default buttons

40 - Add URL display
400 - Add Navigator button

2000 - Print
4000 - Back and Forward
8000 - Search

10000 - Dock and Undock

title Display window title

20 GENERATING JAVAHELP OR ORACLE HELP LINKING TO DESTINATIONS WITHIN TOPICS

ALL RIGHTS RESERVED. MAY 19, 2013 409

; within the span marked by this format (same as W inHelp usage)
ProcWindow = procwin

See §16.7 Jumping to secondary windows in Help systems on page 262. The window
name popup is reserved for pop-up windows.

20.9 Linking to destinations within topics
After you convert a DITA document, you might find that anchors are missing for links to
destinations located within topic files. By default, for JavaHelp these anchors are
suppressed, as a workaround for a JavaHelp 1 defect: very bad things happen in the
JavaHelp viewer if you try to use destination anchors within topic files. In JavaHelp 1, you
can safely use references only to the start of a topic file.

Internal references are not a problem in JavaHelp 2, nor in Oracle Help for Java. On the
other hand, in JavaHelp, every anchor causes an extra space in text when you view output
with the JavaHelp viewer.

To allow internal references for JavaHelp 1:
[JavaHelpOptions] or [OracleHelpOptions]
; RemoveInternalAnchors = Yes (JavaHelp 1 default, avoid JavaHelp bug)
; or No (Oracle Help and JavaHelp 2 default)
RemoveInternalAnchors = No

20.10 Creating ALinks for Oracle Help
An ALink keyword in Oracle Help for Java must consist of a single term; no spaces or
punctuation. An ALink jump can specify only one ALink keyword.

Oracle Help for Java uses a link file for ALinks (regular JavaHelp does not support
ALinks). DITA2Go creates the ALink file for Oracle Help, by default. However, if you
know you are not using ALinks, you can save a little time and disk space by directing
DITA2Go not to include this file:

[OracleHelpOptions]
; MakeALinkFile = Yes (default, include OracleHelp ALinks) or No
MakeALinkFile = No

You can determine whether ALinks go to the beginning of the referenced topic file, or to
the beginning of the paragraph that contains the ALink keyword. The default is the
beginning of the topic file:

[OracleHelpOptions]
; ALinkRefs = File (default) or Para (start of cont aining para)
ALinkRefs = File

For ways to include ALink keywords and ALink jumps in your DITA document, see §16.6
Providing related-topic links for Help systems on page 258.

To create a “pool” of ALinks, where every instance serves both as a jump and a target, you
can use a format combined with DITA2Go macros. For example, suppose you designate
paragraph format AlinkUse for this purpose. You could create an ALink reference and get
both an ALink keyword (which makes the current topic a member of the group) and a
hotspot that calls up that list of topics:

[HTMLParaStyles]
; ALink uses the contents of the para for the valu e of the ALink
; Name parameter of an ALink object.
ALinkUse = ALink CodeBefore CodeAfter

MERGING JAVAHELP OR ORACLE HELP SYSTEMS DITA2GO USER’S GUIDE

410 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[ParaStyleCodeBefore]
ALinkUse = <a href="alink:

[ParaStyleCodeAfter]
ALinkUse = ">Related Topics

When you assemble ALink jumps using macros, you do not access DITA2Go code that
automatically interprets the alink protocol (see §16.6.5.1 Configuring ALink jumps on
page 261); what you build is passed through to Oracle Help unaltered.

20.11 Merging JavaHelp or Oracle Help systems
JavaHelp and Oracle Help for Java support limited merging of helpsets. You list
subprojects in the main project helpset; the subproject information is appended to the main
project information. In the contents, subprojects are listed one after the other, after the
main project, and each subproject has to begin at the top level. Index entries for each
subproject are appended to those for the main project, for JavaHelp; index merging is
implemented somewhat better for Oracle Help.

To specify that helpsets are to be merged:
[JavaHelpOptions] or [OracleHelpOptions]
; UseSubHelpSets = No (default) or Yes (requires [H elpMergePaths])
UseSubHelpSets = Yes

You must specify the path to the run-time location of each subproject helpset, relative to
the main project helpset. For example:

[HelpMergePaths]
; subproject name = path to its files during use (n ot construction)
mysub = ../mysub/

Only the path is used, not the helpset name.

For more information, see the following:
Merging HelpSets in JavaHelp System User’s Guide
Oracle Help Overview > Merged Helpsets in OHJ in Oracle Help Guide

See also:
§16.11 Setting up a dynamic modular Help system on page 280

20.12 Setting up CSH for JavaHelp or Oracle Help
For context-sensitive help, you insert symbolic IDs into your DITA files as TopicAlias
PI markers, at the appropriate topic start points. DITA2Go puts these IDs in the .jhm map
file for you.

By default, DITA2Go removes punctuation and spaces from TopicAlias PI marker
content. If you require symbolic IDs for CSH that contain characters such as periods, set
the following option:

[HTMLOptions]
; UseRawNewlinks = No (default, remove punctuation, spaces)
; or Yes (as is)
UseRawNewlinks = Yes

CSH map file:
needed?

The way an application calls JavaHelp or Oracle Help determines whether you need a
CSH map file; this is up to the application developers. You have to ask the developers how
the application calls the Help system:

20 GENERATING JAVAHELP OR ORACLE HELP SETTING UP CSH FOR JAVAHELP OR ORACLE HELP

ALL RIGHTS RESERVED. MAY 19, 2013 411

 • If the developers use numbers, you need a CSH map file, and the developers will
supply it. The map file lists a symbolic ID for each numeric ID.

 • If the developers use names, you do not need a CSH map file; however, the developers
must tell you what symbolic IDs they are using, or you must tell them what symbolic
IDs to use.

Non-CSH internal
map file

A CSH map file comes from a developer, and relates numeric IDs that are used in the
application to symbolic IDs. But JavaHelp and Oracle Help each have an internal map file
with extension .jhm , which relates symbolic IDs used in the Help system to locations in
the Help files, with different numeric IDs. These two map files and sets of numbers have
nothing to do with each other.

See §16.10 Setting up Context Sensitive Help (CSH) on page 277.

SETTING UP CSH FOR JAVAHELP OR ORACLE HELP DITA2GO USER’S GUIDE

412 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 413

21 Generating Eclipse Help

DITA2Go produces the XML and HTML files needed to support the core functionality of
Eclipse Help. This section addresses issues that are specific to generating Eclipse Help.
HTML settings described in section 22 and sections 27 through 43 apply also. Topics
include:

§21.1 Understanding how Eclipse Help works on page 413
§21.2 Setting up an Eclipse Help project on page 413
§21.3 Configuring Eclipse Help manifest files on page 416
§21.4 Configuring contents and index for Eclipse Help on page 420
§21.5 Configuring search properties for Eclipse Help on page 423
§21.6 Merging Eclipse Help projects on page 423
§21.7 Setting up CSH for Eclipse Help on page 425
§21.8 Packaging Eclipse Help files on page 427

See also:
§16 Producing on-line Help on page 243

21.1 Understanding how Eclipse Help works
Eclipse Help for the Eclipse Platform is based on an XML table of contents that specifies
the structure of the Help system and references content in standard XHTML files. An
Eclipse Help plug-in minimally consists of a plug-in manifest file, plugin.xml , and a
TOC (table of contents) file, toc.xml . The manifest provides information about the plug-
in, such as name, ID, and version number. The TOC file is registered with the Eclipse
Platform, using the org.eclipse.help.toc extension point.

DITA2Go supports the core functionality of Eclipse Help, including the following:

 • generation of primary and secondary TOCs
 • indexing (for later versions of Eclipse)
 • infopops: the Eclipse version of CSH (Context-Sensitive Help).

21.2 Setting up an Eclipse Help project
In this section:

§21.2.1 Creating an Eclipse Help project on page 413
§21.2.2 Deciding where to locate configuration settings on page 414
§21.2.2 Deciding where to locate configuration settings on page 414
§21.2.4 Making sure links work in Eclipse Help on page 415
§21.2.5 Disabling breadcrumb trails in Eclipse Help on page 415

21.2.1 Creating an Eclipse Help project

To create an Eclipse Help project:

1. Create a project directory for HTML files, separate from the directory where your
DITA document is located.

SETTING UP AN ECLIPSE HELP PROJECT DITA2GO USER’S GUIDE

414 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

2. Copy configuration file _d2eclipse.ini from your DITA2Go config directory
(see §1.3.1 Set up a framework for Omni Systems applications on page 29), or from
an existing DITA2Go project, to your newly created output directory:

3. Use a text editor to edit _d2eclipse.ini (see §3.1 Working with DITA2Go
configuration files on page 49).

21.2.2 Deciding where to locate configuration sett ings

When you set up an Eclipse Help project, if configuration file _d2htmlhelp.ini is not
already present in the project directory, you must copy this file from your DITA2Go
config\local directory (see §1.3.1 Set up a framework for Omni Systems applications
on page 29).

Which
configuration file?

To configure Eclipse Help output, add settings to one of the following files, depending on
the scope of each setting:

See §39.4 Deciding which configuration file to edit on page 734.

To determine which configuration settings will produce the appearance and functionality
you want, also see:

§22 Converting to HTML/XHTML on page 429
§27 Splitting and extracting files on page 523
§30 Mapping text formats to HTML/XML on page 565
§32 Including graphics in HTML on page 611
§33 Converting tables to HTML on page 625

21.2.3 Specifying Eclipse Help output options

To add or change any of the options described in this section, edit configuration file
_d2eclipse.ini , located in the project directory.

In this section:
§21.2.3.1 Specifying a different output file extension on page 414
§21.2.3.2 Specifying the target Eclipse version on page 414
§21.2.3.3 Choosing whether to generate plugin.xml on page 415

21.2.3.1 Specifying a different output file extens ion

The default output file extension for Eclipse Help is .htm . To change the file extension
(for example, to specify .html instead):

[Setup]
FileSuffix = .html

21.2.3.2 Specifying the target Eclipse version

By default, DITA2Go generates output for Eclipse version 3.3. To produce output for a
prior version of Eclipse:

Scope Configuration file Location

Current project
only

_d2eclipse.ini Current project directory

All Eclipse Help
projects

local_d2eclipse_config.ini %omsyshome%\d2g\local\con fig\

21 GENERATING ECLIPSE HELP SETTING UP AN ECLIPSE HELP PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 415

[EclipseHelpOptions]
; EclipseVer = Eclipse version point number, defaul t 3, for 3.3
EclipseVer = 2

The default value of EclipseVer is 3.

When EclipseVer > 1 , the <topic> elements in index.xml have a label attribute
in addition to the href attribute. You might need to produce a version of index.xml
without label attributes for 3.1 users, and one with for 3.2+ users.

When EclipseVer > 2 , the <extension> element in plugin.xml for contexts uses
the file attribute instead of the name attribute for the contexts file. If some of your
Eclipse Help users have Eclipse 3.2 and some have Eclipse 3.3, you must distribute two
different plugin.xml files.

21.2.3.3 Choosing whether to generate plugin.xml

By default, DITA2Go generates manifest file plugin.xml for Eclipse Help. If your
workflow does not require generating this file because it is produced by some other
process, you can exclude plugin.xml from your DITA2Go project.

To direct DITA2Go not to produce plugin.xml :
[EclipseHelpOptions]
; UsePlugin = Yes (default), or No (never write plu gin.xml, use if
; not part of the deliverable system because others provide it)
UsePlugin = No

21.2.4 Making sure links work in Eclipse Help

The case of file names is significant on the Eclipse platform, even on Windows systems.
To avoid case mismatch between links and the files they reference, in some circumstances
you might have to specify the following option:

[HTMLOptions]
; MakeFileHrefsLower = No (leave case unchanged) or Yes
MakeFileHrefsLower = Yes

MakeFileHrefsLower is set to Yes in system configuration file d2htm_config.ini .
If you want DITA2Go to leave case alone in hypertext links, you can override this setting
in a project or local configuration file.

See §28.2.6 Forcing link text to lowercase on page 549.

21.2.5 Disabling breadcrumb trails in Eclipse Help

Eclipse Help version 3.3 includes breadcrumbs (trails of links) by default. If you do not
want this navigation feature, you can disable it.

To disable breadcrumbs, find the file named:
org.eclipse.help.webapp\advanced\breadcrumbs.css

and replace its contents with:
...help_breadcrumbs {
 display: none;
}

Including anchors in TOC entries also disables Eclipse Help native breadcrumbs, but
might interfere with other features; see §21.4.3.3 Enabling mid-topic links from the TOC
on page 422.

CONFIGURING ECLIPSE HELP MANIFEST FILES DITA2GO USER’S GUIDE

416 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

21.3 Configuring Eclipse Help manifest files
In this section:

§21.3.1 Specifying a Java manifest file for Eclipse Help on page 416
§21.3.2 Specifying Eclipse Help plug-in properties on page 416
§21.3.3 Configuring the Java manifest file for Eclipse Help on page 417
§21.3.4 Configuring the plug-in manifest file for Eclipse Help on page 418

21.3.1 Specifying a Java manifest file for Eclipse Help

By default, DITA2Go includes a Java manifest file, MANIFEST.MF. To omit this file and
use only plugin.xml as a manifest:

[EclipseHelpOptions]
; UseManifest = Yes (default, required for .jars) o r No
UseManifest = No

If you intend to package your Eclipse Help files in a .jar file, you must keep the default
value: UseManifest=Yes .

If you intend to package your Eclipse Help files in doc.zip , set UseManifest =No.

When UseManifest=Yes , DITA2Go does the following:

 • Places title, ID, provider, and product-version properties in MANIFEST.MF. When
UseManifest=No , these properties are included in plugin.xml instead; see §21.3.2
Specifying Eclipse Help plug-in properties on page 416.

 • Includes a processing instruction in plugin.xml , and sets the plug-in schema version
to 3.2 unless you specify a different version; see §21.3.4.2 Including a processing
instruction to validate plugin.xml on page 418. When UseManifest=No , the
processing instruction is not included in plugin.xml .

 • Creates a subdirectory named META-INF in your Eclipse Help project wrap directory,
and moves MANIFEST.MF into META-INF; see §44.6.1 Specifying a wrap directory on
page 792. When UseManifest=No , subdirectory META-INF is not created.

21.3.2 Specifying Eclipse Help plug-in properties

The properties described here appear either as attributes of the <plugin> element in
plugin.xml or as values of entries in MANIFEST.MF, depending on the setting for
UseManifest (see §21.3.1 Specifying a Java manifest file for Eclipse Help on page 416):

Title To specify a title for your Eclipse Help plug-in:
[EclipseHelpOptions]
; PluginName = text used in <plugin> or manifest fo r name attribute
PluginName = DITA2Go Eclipse Help

Table 21-1: Eclipse Help properties in either MANIFEST.MF or plugin.xml

Property
Configuration
setting UseManifest=Yes UseManifest=No

How/where to specify MANIFEST.MF entry <plugin> attribute

Title PluginName Bundle-Name name

ID PluginID Bundle-SymbolicName id

Provider name PluginProvider Bundle-Vendor provider-name

Product version PluginVer Bundle-Version version

21 GENERATING ECLIPSE HELP CONFIGURING ECLIPSE HELP MANIFEST FILES

ALL RIGHTS RESERVED. MAY 19, 2013 417

In MANIFEST.MF, this title becomes the Bundle-Name value. The default value is the
base name of your.bookmap or .ditamap file.

ID To specify a plug-in ID:
[EclipseHelpOptions]
; PluginID = text used in <plugin> or manifest for id attribute
PluginID = com.dita2go.help

The plug-in ID identifies your plug-in to other components of the Eclipse Platform. In
MANIFEST.MF, this ID becomes the Bundle-SymbolicName value. The default value is
com.dita2go.help .

Provider name To specify the plug-in provider:
[EclipseHelpOptions]
; PluginProvider = text used in <plugin> or manifes t for provider-name
; attribute
PluginProvider = dita2go.com

In MANIFEST.MF, the provider name becomes the Bundle-Vendor value. The default
value is dita2go.com .

Product version To specify the version of the product your Eclipse Help content is about (not to be
confused with the Eclipse version):

[EclipseHelpOptions]
; PluginVer = text used in <plugin> or manifest for version attribute
PluginVer = 1.0

In MANIFEST.MF, this version number becomes the Bundle-Version value. The default
value of PluginVer is 1.0 .

21.3.3 Configuring the Java manifest file for Ecli pse Help

When you package Eclipse Help in a .jar file, the .jar file must include a Java
manifest, MANIFEST.MF. DITA2Go can create this file for you, and does so by default
when UseManifest=Yes ; see §21.3.1 Specifying a Java manifest file for Eclipse Help on
page 416.

To prevent DITA2Go from creating MANIFEST.MF when UseManifest=Yes :
[EclipseHelpOptions]
; WriteManifest = Yes (default, always write, even if it exists)
; or No (customized, write only if not found)
WriteManifest = No

When WriteManifest=Yes , DITA2Go creates MANIFEST.MF in the project directory;
if this file is already present, DITA2Go overwrites it.

When WriteManifest=No , DITA2Go creates MANIFEST.MF only if this file is not
already present in the project directory; DITA2Go does not overwrite an existing
MANIFEST.MF. This setting allows you to customize MANIFEST.MF outside of DITA2Go ,
without losing your customizations during subsequent conversions.

To specify that your plug-in must run as a singleton:
[EclipseHelpOptions]
; UseSingleton = No (default) or Yes (add "; single ton:=true" after
; PluginID in manifest file)
UseSingleton = Yes

When UseSingleton=Yes , DITA2Go adds “; singleton:=true ” after the value of
Bundle-SymbolicName in MANIFEST.MF.

CONFIGURING ECLIPSE HELP MANIFEST FILES DITA2GO USER’S GUIDE

418 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

21.3.4 Configuring the plug-in manifest file for E clipse Help

The plug-in manifest for your Eclipse Help project, plugin.xml , describes how your
Eclipse Help plug-in extends the Eclipse Platform, and how its functionality is
implemented. By default, DITA2Go creates this manifest file based on settings you
provide. However, you can exclude creation of plugin.xml from your project; see
§21.2.3.3 Choosing whether to generate plugin.xml on page 415.

In this section:
§21.3.4.1 Creating plugin.xml for Eclipse Help on page 418
§21.3.4.2 Including a processing instruction to validate plugin.xml on page 418
§21.3.4.3 Specifying the plug-in schema version for plugin.xml on page 419
§21.3.4.4 Specifying Eclipse Help TOC properties in plugin.xml on page 419
§21.3.4.5 Specifying Eclipse Help index properties in plugin.xml on page 419
§21.3.4.6 Including a runtime element in plugin.xml on page 419
§21.3.4.7 Including or excluding full-text search for Eclipse Help on page 420
§21.3.4.8 Specifying Eclipse Help CSH properties in plugin.xml on page 420

See also:
§21.3.3 Configuring the Java manifest file for Eclipse Help on page 417

21.3.4.1 Creating plugin.xml for Eclipse Help

To direct DITA2Go to create plugin.xml :
[EclipseHelpOptions]
; WritePlugin = Yes (default, write plugin.xml) or No (write only
; if not already present, use if customized)
WritePlugin = Yes

When WritePlugin=Yes , DITA2Go creates plugin.xml in the project directory; if
plugin.xml is already present, DITA2Go overwrites it.

When WritePlugin=No , DITA2Go creates plugin.xml only if this file is not already
present in the project directory; DITA2Go does not overwrite an existing plugin.xml .
This setting allows you to customize plugin.xml outside of DITA2Go , without losing
your customizations during subsequent conversions.

21.3.4.2 Including a processing instruction to val idate plugin.xml

By default, DITA2Go includes a processing instruction (PI) in plugin.xml , specifying
the plug-in schema version used to validate plugin.xml . To omit the processing
instruction:

[EclipseHelpOptions]
; IncludeVersionPI = Yes (default, include PI with version
; specified by PluginSchemaVersion at start of plug in.xml) or No
IncludeVersionPI = No

When IncludeVersionPI=Yes , DITA2Go includes a PI of the following form at the
start of plugin.xml :

<?eclipse version="3.2"?>

This processing instruction is required when you provide Eclipse Help files in a .jar file;
see §21.3.3 Configuring the Java manifest file for Eclipse Help on page 417. The value of
the version attribute represents the plug-in schema version; see §21.3.4.3 Specifying the
plug-in schema version for plugin.xml on page 419.

21 GENERATING ECLIPSE HELP CONFIGURING ECLIPSE HELP MANIFEST FILES

ALL RIGHTS RESERVED. MAY 19, 2013 419

21.3.4.3 Specifying the plug-in schema version for plugin.xml

To specify the plug-in schema version (not to be confused with the plug-in product version
or the Eclipse version):

[EclipseHelpOptions]
; PluginSchemaVersion = version used to validate pl ugin.xml.
PluginSchemaVersion = 3.2

The value of PluginSchemaVersion becomes the value of the version attribute in a
processing instruction (PI) in plugin.xml ; see §21.3.4.2 Including a processing
instruction to validate plugin.xml on page 418.

If you do not specify a value for PluginSchemaVersion , the default value depends on
the value of UseManifest :

 • If UseManifest=Yes , PluginSchemaVersion=3.2 .
 • If UseManifest=No , PluginSchemaVersion=3.1 .

If you are providing Eclipse Help in a .jar file (see §21.3.3 Configuring the Java
manifest file for Eclipse Help on page 417), the default value (in fact the only valid value)
of PluginSchemaVersion is 3.2 . Do not set PluginSchemaVersion to 3.3 , even if
EclipseVer=3 (see §21.2.2 Deciding where to locate configuration settings on
page 414).

If you are providing Eclipse Help in a .zip file, the value of PluginSchemaVersion
can be either 3.0 or 3.1 ; the default value is 3.1 .

21.3.4.4 Specifying Eclipse Help TOC properties in plugin.xml

To specify TOC properties in plugin.xml :
[EclipseHelpOptions]
; TocFilename = name for contents file, always toc. xml for primary
TocFilename=toc.xml
; TocPrimary = Yes (default, toc.xml) or No (second ary)
TocPrimary=Yes
; TocExtradir = path to dir for additional docs to include
; in search index, even if not referenced from any toc topic
TocExtradir =

See §21.4.3 Configuring contents properties for Eclipse Help on page 421.

21.3.4.5 Specifying Eclipse Help index properties in plugin.xml

To specify index properties in plugin.xml :
[EclipseHelpOptions]
; IdxFilename = name for index file, normally index .xml
IdxFilename=index.xml
; UseIndex = No (default) or Yes (for newer release s of Eclipse)
UseIndex = Yes

See §21.4.4 Configuring index properties for Eclipse Help on page 423.

21.3.4.6 Including a runtime element in plugin.xml

By default, DITA2Go omits the <runtime/> element from plugin.xml ; this element
can cause problems in Eclipse 3.6 and later versions. However, the <runtime/> element
was required in earlier versions of Eclipse, so whether it should be present depends on the
version of the Eclipse platform where your Eclipse Help system will be deployed.

To have DITA2Go include a <runtime/> element in plugin.xml :

CONFIGURING CONTENTS AND INDEX FOR ECLIPSE HELP DITA2GO USER’S GUIDE

420 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[EclipseHelpOptions]
UseRuntime = Yes

21.3.4.7 Including or excluding full-text search f or Eclipse Help

By default, DITA2Go includes an extension point for full-text search in plugin.xml . To
exclude this extension point:

[EclipseHelpOptions]
; UseFTS = Yes (default, adds extension point to pl ugin file) or No
UseFTS = No

21.3.4.8 Specifying Eclipse Help CSH properties in plugin.xml

To specify CSH properties used to produce infopops, in plugin.xml :
[EclipseHelpOptions]
; UseContext = Yes (default, add context ref to plu gin.xml) or No
UseContext = Yes
; WriteContext = Yes (default, write contexts.xml) or No
WriteContext = Yes
; ContextDescription = Yes (default, include) or No (omit)
ContextDescription = Yes
; DescriptionIsFirstLabel = No (default) or Yes (us e the label from
; the first context item as the description for the context)
DescriptionIsFirstLabel = No
; ContextAnchors = No (default, filename only) or Y es (refer to para)
ContextAnchors = No

To set contexts, use EclipseContext PI markers in your DITA document. Place an
EclipseContext PI marker that contains a context ID name in each topic to be referenced
by an infopop. Add the infopop description in the DITA2Go configuration file, in section
[EclipseHelpContexts] .

See §21.7 Setting up CSH for Eclipse Help on page 425.

21.4 Configuring contents and index for Eclipse He lp
In this section:

§21.4.1 Choosing contents and index methods for Eclipse Help on page 420
§21.4.2 Supplying path information for contents and index links on page 421
§21.4.3 Configuring contents properties for Eclipse Help on page 421
§21.4.4 Configuring index properties for Eclipse Help on page 423

21.4.1 Choosing contents and index methods for Ecl ipse Help

To direct DITA2Go to generate only contents, or both contents and index, for Eclipse
Help:

[EclipseHelpOptions]
; ListType (for filter to create) = Contents (defau lt)
; or Both (with index, for Eclipse 3.2+)
ListType = Contents

When ListType=Contents (the default), DITA2Go creates only toc.xml . Contents
file toc.xml is required for Eclipse Help.

When ListType=Both , DITA2Go creates both toc.xml and index.xml . Index file
index.xml is supported only in Eclipse version 3.2 and later versions.

21 GENERATING ECLIPSE HELP CONFIGURING CONTENTS AND INDEX FOR ECLIPSE HELP

ALL RIGHTS RESERVED. MAY 19, 2013 421

See also:
§16.3.1 Modifying contents or index production for HTML-based Help on page 249.
§21.4.3 Configuring contents properties for Eclipse Help on page 421
§21.4.4 Configuring index properties for Eclipse Help on page 423

21.4.2 Supplying path information for contents and index links

If your HTML files will not be in the same directory with toc.xml and idx.xml , links
from these files must include a path.

To supply a path for contents and index links, and also for <context> elements (see
§21.7 Setting up CSH for Eclipse Help on page 425):

[EclipseHelpOptions]
; TocIdxFilePrefix = prefix to insert at start of f ile URLs, when
; html files are placed in a subdirectory under th e toc and idx
TocIdxFilePrefix = path/to/htmlfiles

The path specified by TocIdxFilePrefix is relative to the directory where toc.xml
and idx.xml are located, and must designate a subdirectory under that directory.

21.4.3 Configuring contents properties for Eclipse Help

Each Eclipse Help system has one primary TOC, and can have any number of secondary
(linked) TOCs. The primary TOC file is always named toc.xml . A secondary TOC can
have any user-defined name with file extension .xml . In most cases, the TOC and helpset
DITA2Go generates will be the primary TOC and helpset.

Properties described in the following sections are included in toc.xml :
§21.4.3.1 Providing a title for the TOC on page 421
§21.4.3.2 Specifying a starting topic on page 421
§21.4.3.3 Enabling mid-topic links from the TOC on page 422
§21.4.3.4 Directing TOC links to top of topic page on page 422

Additional TOC properties are specified in the plug-in manifest; see §21.3.4.4 Specifying
Eclipse Help TOC properties in plugin.xml on page 419. See also §16.4 Configuring
contents entries for Help systems on page 250.

21.4.3.1 Providing a title for the TOC

To provide a label to be displayed as the “book” level of the helpset in the Eclipse Help
Contents pane:

[EclipseHelpOptions]
; TocLabel = text that appears in the Eclipse Help Contents pane
TocLabel = Title for your Eclipse Help system

The default value of TocLabel is the value supplied for PluginName ; see §21.3.1
Specifying a Java manifest file for Eclipse Help on page 416. This is not usually what you
want.

21.4.3.2 Specifying a starting topic

To specify which topic file to display when Eclipse Help opens:
[EclipseHelpOptions]
; TocTopic = name of opening topic file (required)
TocTopic = startingtopic.htm

CONFIGURING CONTENTS AND INDEX FOR ECLIPSE HELP DITA2GO USER’S GUIDE

422 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The default starting topic is the first HTML file listed in the generated contents. That is, if
you do not include any setting for TocTopic , DITA2Go generates an entry of the
following form in toc.xml :

<toc label=" Title of your Help system" topic=" firsttopiclisted.htm">

When an explicit file is named as a topic attribute, Eclipse does not generate a default
help page. To allow Eclipse (at least later versions) to generate a default help page, you
can avoid specifying an opening topic by giving TocTopic an empty value:

[EclipseHelpOptions]
TocTopic =

When you specify an empty value, DITA2Go omits the topic attribute and generates an
entry of the following form in toc.xml :

<toc label=" Title of your Help system">

In this case, Eclipse generates a default opening page with the following content:
Title of your Help system
Contents
Link to the first top-level topic
Link to the second top-level topic
. . .
Link to the last top-level topic

21.4.3.3 Enabling mid-topic links from the TOC

The presence of anchors in TOC entries (such as href=" topic.htm# anchor") breaks
Eclipse Help native breadcrumbs (Eclipse bug 184787), and possibly more. Therefore, by
default DITA2Go omits these anchors. However, omitting the anchors also prevents mid-
topic jumps from the TOC.

To enable mid-topic jumps by including anchors in Eclipse Help TOC entries:
[EclipseHelpOptions]
; TocNamesFileOnly = Yes (default, workaround for E clipse bug 184787,
; and others, where use of #aname breaks Eclipse na tive breadcrumbs),
; or No (allows direct midtopic jumps to points wit hin files).
TocNamesFileOnly = No

When TocNamesFileOnly=Yes (the default), DITA2Go omits anchors from TOC
entries, enabling Eclipse Help native breadcrumbs but disabling mid-topic jumps from the
TOC.

When TocNamesFileOnly=No , DITA2Go includes anchors in TOC entries, enabling
mid-topic jumps from the TOC, but disabling Eclipse Help native breadcrumbs.

See also:
§21.2.5 Disabling breadcrumb trails in Eclipse Help on page 415

21.4.3.4 Directing TOC links to top of topic page

To make sure links from toc.xml go to top-of-page, so that any navigation links you have
positioned above the topic heading are visible when a user clicks a TOC link, assign the
following property to each paragraph format that is a target of a TOC link:

[HTMLParaStyles]
TopicHeading = NoRef

See §28.3.1 Forcing links to top-of-page for selected paragraph formats on page 549.

21 GENERATING ECLIPSE HELP CONFIGURING SEARCH PROPERTIES FOR ECLIPSE HELP

ALL RIGHTS RESERVED. MAY 19, 2013 423

21.4.4 Configuring index properties for Eclipse He lp

Only Eclipse version 3.2 and later versions support an index. DITA2Go produces the
index from your DITA index entries, in the form of XML file index.xml with links to
your HTML topic files. When EclipseVer=2 or later (see §21.2.2 Deciding where to
locate configuration settings on page 414), DITA2Go includes a label attribute in each
index entry.

At present the only configuration settings that apply to an Eclipse Help index are those
you can specify for the plug-in manifest file; see §21.3.4.5 Specifying Eclipse Help index
properties in plugin.xml on page 419. See also §16.5 Configuring index entries for Help
systems on page 251.

21.5 Configuring search properties for Eclipse Hel p
For Eclipse version 3.4 or later, to prevent Eclipse from including in each search result the
first 170 or so characters after the <body> tag of the topic, provide a <meta> element
containing a description attribute in the <head> section of the topic; for example:

<meta name="description" content="How to polish wid gets."/>

You can specify the content value in a DITA PI marker of type MetaDescription , or use
the content of a dedicated paragraph format; see §22.4.6 Supplying content for the <meta>
tag on page 436.

Note: In Eclipse 3.4 this technique works only for HTML files, not XHTML files.

21.6 Merging Eclipse Help projects
If your customers are using Eclipse version 3.4 or later, you can simply insert PI marker in
DITA XML for links to secondary TOCs from the primary content. The secondary
modules do not need to know where they are used, and if any are missing, the primary
helpset still works without error. The missing TOC items are silently omitted. See §21.6.1
Linking primary content to secondary TOCs on page 423.

If you must support versions of Eclipse prior to Eclipse 3.4, you might have to use anchors
in the primary TOC and links to those anchors from any secondary modules; see §21.6.2
Linking secondary TOCs to primary content (deprecated) on page 424. For versions of
Eclipse starting with Eclipse 3.4, this method is deprecated.

In this section:
§21.6.1 Linking primary content to secondary TOCs on page 423
§21.6.2 Linking secondary TOCs to primary content (deprecated) on page 424

21.6.1 Linking primary content to secondary TOCs

To link a secondary helpset into your primary Eclipse Help system, insert a PI marker of
type EclipseLink in the DITA document to be converted to your primary helpset, in the
paragraph that immediately precedes the point where you want the secondary helpset to
appear. EclipseLink marker content consists of two items separated by a space:

 • TOC level number
 • Path to the secondary TOC file.

MERGING ECLIPSE HELP PROJECTS DITA2GO USER’S GUIDE

424 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The TOC level number is an integer that corresponds to whatever level number you
specified for primary-TOC entries at the same level; see §16.4.3 Setting contents levels for
HTML-based Help on page 251.

In Eclipse Help output, DITA2Go generates the following from each EclipseLink PI
marker:

<link toc=" path/to/secondary/toc.xml">

If you do not know ahead of time which secondary helpset (if any) will be needed at a
given point in a primary helpset, insert an EclipseLink marker for each possible secondary.
In Eclipse version 3.4 and later versions, those <link toc="..."> elements that specify
paths to helpsets that are not present at build time are ignored. For Eclipse Help versions
earlier than 3.4, see §21.6.2 Linking secondary TOCs to primary content (deprecated) on
page 424.

21.6.2 Linking secondary TOCs to primary content (deprecated)

The methods described in this section apply to Eclipse version 3.3 and earlier versions.
For Eclipse version 3.4 and later versions, see §21.6.1 Linking primary content to
secondary TOCs on page 423 instead.

To link a secondary TOC to an anchor in the primary content (or in another secondary
TOC):

[EclipseHelpOptions]
; TocLinkTo = path to another (secondary) TOC with anchor,
; such as ../anotherPlugin/api.xml#moreapi, for lin k_to attribute
TocLinkTo = ../path/to/anotherPlugin/otherTOC.xml#moreinfo

The value of TocLinkTo is used for a link_to attribute in the secondary TOC. The
secondary TOC file must have a name other than toc.xml .

To specify where in the primary helpset a secondary TOC should appear, in your DITA
document insert an EclipseAnchor PI marker in the paragraph that immediately precedes
the point where you want the secondary helpset linked.

You can use a PI marker either of type EclipseAnchor or of type EclipseLink . Marker
content consists of the following:

The TOC level number is an integer that corresponds to whatever level number you
specified for primary-TOC entries at the same level; see §16.4.3 Setting contents levels for
HTML-based Help on page 251. The anchor name provides a target for a link from a
secondary TOC.

Which marker type you use depends on which scenario you anticipate:
Alternative or optional secondary TOCs
Alternative primary TOCs.

Alternative or
optional

secondary TOCs

If you do not know ahead of time which sub-module (if any) will be needed at a given
point in a primary helpset, use an EclipseAnchor marker in the primary system. Each sub-
module subTOC.xml must include the anchor name in its link_to attribute.

EclipseAnchor
rationale

Suppose you are creating help systems to be deployed with Eclipse version 3.3 or earlier,
and you do not know which modules any given customer has, so you ship separate
modules to be merged. If you specify all possible modules in the primary helpset, using
EclipseLink , the customer gets broken links for any missing modules. So instead, you use
an EclipseAnchor in the primary helpset for each sub-module; the marker content is not

EclipseAnchor TOC level number, space, anchor name.
EclipseLink TOC level number, space, path to the secondary TOC file.

21 GENERATING ECLIPSE HELP SETTING UP CSH FOR ECLIPSE HELP

ALL RIGHTS RESERVED. MAY 19, 2013 425

rendered, but it tells the sub-module where to hook in. When the sub-modules are
alternatives, you do not need to rebuild the primary system even when you create more
alternatives; just use the existing anchor. You cannot do that with EclipseLink ; you would
have to rebuild the primary helpset with an added link every time you created a new
alternative sub-module.

Alternative
primary TOCs

If you do not know ahead of time into which system a given sub-module must fit, insert an
EclipseLink marker in each of the alternative primary systems, specifying the path to the
sub-module.

EclipseLink
rationale

Suppose you have many standard components, but a new framework for each customer.
Then it might seem more direct to use EclipseLink , and link from the primary helpset to
the secondary explicitly.

21.7 Setting up CSH for Eclipse Help
Infopops serve the purpose of Context-Sensitive Help for Eclipse Help. Infopops are
intended to contain only a sentence or two of descriptive information, plus one or more
hypertext links pointing to further information.

In this section:
§21.7.1 Understanding how DITA2Go generates context links on page 425
§21.7.2 Naming context file and attribute for secondary plug-ins on page 426
§21.7.3 Configuring context IDs and context anchors on page 426
§21.7.4 Configuring context descriptions on page 426
§21.7.5 Locating context information on page 427

See also:
§16.10 Setting up Context Sensitive Help (CSH) on page 277

21.7.1 Understanding how DITA2Go generates context links

DITA2Go recognizes EclipseContext PI markers as the targets of infopop calls. Each
infopop provides a link to the topic where an EclipseContext marker is inserted. The
<topic> elements included get their href and label attributes from the <topic>
elements of the containing paragraphs. This provides the equivalent of the aliases used for
CSH in other Help formats; see §16.10 Setting up Context Sensitive Help (CSH) on
page 277. For example:

In plugin.xml :
<extension point="org.eclipse.help.contexts">

<contexts file="contexts.xml"/>
</extension>

Note: Eclipse 3.1 and 3.2 require a name parameter for the <contexts> element in
plugin.xml ; Eclipse 3.3 requires a file parameter instead. See §21.2.2
Deciding where to locate configuration settings on page 414.

In contexts.xml :
<contexts>

<context id="help_button">
<description>Brief description of this control.</de scription>
<topic href="file_name_link1.html" label="Link1 Top ic Title"/>
<topic href="file_name_link2.html" label="Link2 Top ic Title"/>

</context>

SETTING UP CSH FOR ECLIPSE HELP DITA2GO USER’S GUIDE

426 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

. . .
</contexts>

DITA2Go creates contexts.xml afresh every time you run the conversion, unless you say
not to; see §21.3.4.8 Specifying Eclipse Help CSH properties in plugin.xml on page 420.

21.7.2 Naming context file and attribute for secon dary plug-ins

To specify a name for the context file:
[EclipseHelpOptions]
; ContextFileName = name for context file, default contexts.xml
ContextFileName=contexts.xml

The default name of the context file is contexts.xml .

To specify a plug-in attribute for secondary plug-ins:
[EclipseHelpOptions]
; ContextPluginName = plug-in attribute for seconda ry plugins,
; default none
ContextPluginName=

By default, no attribute is provided for a secondary plug-in.

21.7.3 Configuring context IDs and context anchors

To provide entry points for infopop calls from an application to an Eclipse Help system,
insert EclipseContext PI markers in target topics in your DITA XML file. The content of
an EclipseContext PI marker is the context ID for the infopop, which becomes a
<context> element in toc.xml .

By default, DITA2Go inserts each context anchor at the beginning of a topic, regardless of
where in the topic you place the EclipseContext PI marker. To produce mid-topic entry
points instead:

[EclipseHelpOptions]
; ContextAnchors = No (default, filename only) or Y es (refer to para)
ContextAnchors = Yes

When ContextAnchors=Yes , DITA2Go inserts a context anchor at the beginning of the
paragraph that contains an EclipseContext PI marker.

When ContextAnchors=No , the context anchor appears at the beginning of the topic.

21.7.4 Configuring context descriptions

By default, DITA2Go includes a <description> element for each <context> element
in toc.xml .

To provide content for the <description> element:
[EclipseHelpContexts]
; ContextID = short plain-text description for its infopop

For example:
[EclipseHelpContexts]
ChooseProject = Choose a project from the list, or name a new project.
Export = Choose final options and make last-minute changes.

To have DITA2Go copy the <description> value from the <topic label> value
instead:

[EclipseHelpOptions]
; DescriptionIsFirstLabel = No (default) or Yes (us e the label from

21 GENERATING ECLIPSE HELP PACKAGING ECLIPSE HELP FILES

ALL RIGHTS RESERVED. MAY 19, 2013 427

; the first context item as the description for the context)
DescriptionIsFirstLabel = Yes

To omit the <description> element:
[EclipseHelpOptions]
; ContextDescription = Yes (default, include) or No (omit)
ContextDescription = No

21.7.5 Locating context information

If the HTML files in your project will not reside in the same directory as toc.xml , you
must provide path information for the <context> elements; see §21.4.2 Supplying path
information for contents and index links on page 421.

21.8 Packaging Eclipse Help files
Eclipse Help allows you to deploy your HTML topic files (but not the XML files) in a ZIP
file called doc.zip , or XML and HTML files in a JAR file called doc.jar . Although
packaging for topic files is not required for Eclipse Help, it is recommended.

If you run DITA2Go in a .bat file, you can add a command to create doc.zip . For
example, if you are using the command-line version of WinZip:

"c:\program files\winzip\wzzip" -a doc.zip -x g:*.xml g:*.*

This command adds everything in the current directory to doc.zip , except files with
extension .xml .

DITA2Go provides ZIP packaging, if you provide a ZIP program (such as pkzip.exe or
WinZip command-line add-on wzzip.exe) and specify the command and parameters
required to execute the program.

In this section:
§21.8.1 Specifying a ZIP command for doc.zip on page 427
§21.8.2 Specifying ZIP command parameters on page 427
§21.8.3 Archiving Eclipse Help files on page 428

See also:
§16.2.2 Compiling and distributing Help systems on page 247
§44.6 Assembling files for distribution on page 792

21.8.1 Specifying a ZIP command for doc.zip

To specify a ZIP command to create doc.zip :
[EclipseHelpOptions]
; ZipCommand = zip command without parameters
ZipCommand = path/to/zip_program

If your ZIP program is not located in a directory that is on the system PATH, include a full
absolute path for ZipCommand. If the path includes spaces, enclose the entire path in
quotes. For example, for wzzip :

[EclipseHelpOptions]
ZipCommand = "c:/program files/winzip/wzzip"

21.8.2 Specifying ZIP command parameters

To specify parameters to the ZIP command (for example, for wzzip):

PACKAGING ECLIPSE HELP FILES DITA2GO USER’S GUIDE

428 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[EclipseHelpOptions]
; ZipParams = parameters to issue for ZipCommand
ZipParams = -a doc.zip *.htm *.jpg *.gif *.css

For parameters that are to be passed to the ZIP program, observe the following:

 • Do not enclose parameter values in quotes.
 • Use backslashes as separators in path-name parameters.
 • Use a dash (“- ”) instead of a forward slash to prefix a command option.

Note: The name of the file created by your ZIP program must be doc.zip .

If [Automation]WrapAndShip=Yes (see §44.2 Activating and logging production of
deliverables on page 788), file specifications you list as parameters for ZipParams
should be relative to the [Automation]WrapPath directory, otherwise to the project
directory.

Or, you can specify absolute paths (for example, for wzzip):
[EclipseHelpOptions]
ZipParams = -a doc.zip -x g:\eh_wrap*.xml g:\eh_wrap*.*

This wzzip parameter list includes everything in directory g:\eh_wrap except XML
files. Do not include plugin.xml , toc.xml , index.xml , or any other Eclipse Help
XML files in doc.zip . To archive files for storage or shipping, see §21.8.3 Archiving
Eclipse Help files on page 428.

21.8.3 Archiving Eclipse Help files

If you package your Eclipse Help files via ZIP (or if you do not package them at all), you
can use DITA2Go automation settings to archive everything needed for your Eclipse Help
plug-in: XML files along with HTML files or doc.zip . See §44.11 Archiving
deliverables on page 803. The default archive file name is plugin.zip .

If you package your Eclipse Help files via JAR, you do not need to do any further
archiving.

ALL RIGHTS RESERVED. MAY 19, 2013 429

22 Converting to HTML/XHTML

This section shows how to set options in your HTML project configuration file. Unless
otherwise indicated, settings for HTML apply also to XHTML and to HTML-based Help
systems. Topics include:

§22.1 Deciding which type of output to produce on page 430
§22.2 Setting up an HTML project on page 430
§22.3 Including starting code and entity references on page 432
§22.4 Supplying values for the <head> element on page 432
§22.5 Specifying HTML <body> attributes on page 438
§22.6 Specifying document-wide properties for HTML on page 438
§22.7 Defining text colors for HTML on page 439
§22.8 Importing HTML files as insets on page 441
§22.9 Providing hover text for links in HTML on page 441
§22.10 Generating XHTML for Confluence 4.x on page 442
§22.11 Exporting content for database input on page 443
§22.12 Specifying a starting topic for HTML or XHTML on page 443
§22.13 Using framesets on page 443
§22.14 Passing W3C validation tests on page 445

See also:

HTML-based help §16 Producing on-line Help on page 243, if you plan to generate a Help system.

Generic XML §23 Converting to generic XML on page 449, for settings specific to XML (but not
DITA or DocBook XML).

DITA XML §24 Converting to DITA XML on page 455.

DocBook XML §26 Converting to DocBook XML on page 499.

File splitting §27 Splitting and extracting files on page 523 for settings that govern the subdivision
of a DITA document into HTML topic files.

Links §28 Creating HTML links on page 545 and §29 Providing navigation in HTML on
page 555 for ways to create navigation links.

Formats §30 Mapping text formats to HTML/XML on page 565 for settings that map
paragraph and character formats to HTML elements, and that position graphics and
equations.

CSS §31 Setting up CSS for HTML on page 591 if you plan to use CSS.

Graphics §32 Including graphics in HTML on page 611 for ways to convert graphics and
equations, and specify image properties.

Tables §33 Converting tables to HTML on page 625 for ways to specify table structure and
display properties.

WAI markup §34 Generating WAI markup for HTML on page 649 for ways to add WAI (Web
Accessibility Initiative) attributes to tables, images, and links.

Macros §37 Working with macros on page 679 for ways to use DITA2Go macros.

Markers for
markup

§38 Working with processing instructions on page 717 for ways to use DITA PI
markers to include HTML code and DITA2Go directives in your DITA document.

DECIDING WHICH TYPE OF OUTPUT TO PRODUCE DITA2GO USER’S GUIDE

430 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

22.1 Deciding which type of output to produce
If you can choose between HTML 4.01 and XHTML 1.0, consider XHTML. If you might
eventually move to XML, the XHTML 1.0 Recommendation is a good way to make a
transition into that area:

http://www.w3.org/TR/xhtml1/

According to the W3C, XHTML 1.0 “defines an XML serialization for HTML 4”. Also,
HTML 5 uses XML syntax; see:

http://dev.w3.org/html5/html4-differences/Overview.html

For HTML 5 output, you will be concerned mainly with providing an appropriate value
for DOCTYPE; see §22.4.1 Specifying HTML/XML version, DOCTYPE, and DTD on
page 432.

Unless otherwise indicated, settings for HTML apply also to XHTML, to XML, and to
HTML-based Help systems.

Electronic books If your output is destined for electronic books, XHTML provides input to third-party ePub
production tools. The ePub format is basically XHTML with some icing. To produce
ePub, you can use DITA2Go XHTML output as input to Calibre, which is free:

http://calibre-ebook.com/

Internet browsers If your output will be displayed on the Web, consider the differences among browsers. If
you use CSS (see §31 Setting up CSS for HTML on page 591), some browsers, such as
Mozilla, do not display XHTML output properly on the Web; they ignore your CSS files.
However, these browsers properly display the same XHTML output viewed locally, and
properly display standard HTML output both locally and on the Web.

22.2 Setting up an HTML project
To add or change HTML options, edit the project configuration file appropriate for the
output type, located in the project directory:

Or, to apply the changes to all of your HTML (or XHTML) projects, edit the
corresponding configuration template:

%omsyshome%\d2g\local\config\local_d2*ml_config.ini

See §39.4 Deciding which configuration file to edit on page 734.

In this section:
§22.2.1 Creating an HTML or XHTML project on page 430
§22.2.2 Specifying a different output file extension on page 431
§22.2.3 Checking HTML or XML output files for DITA2Go version on page 431
§22.2.4 Using XHTML tagging rules for HTML on page 431

22.2.1 Creating an HTML or XHTML project

Easier: use the DITA2Go Project Manager to start a new project; see §2.1 Creating a
DITA2Go conversion project on page 39.

Output type Project configuration file
Standard HTML _d2html_config.ini

XHTML _d2xhtml_config.ini

http://www.w3.org/TR/xhtml1/
http://dev.w3.org/html5/html4-differences/Overview.html
http://calibre-ebook.com/

22 CONVERTING TO HTML/XHTML SETTING UP AN HTML PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 431

To create an HTML or XHTML project without using the DITA2Go Project Manager:

1. Create a directory for output files, separate from the directory where your DITA
document is located.

2. Copy the appropriate configuration file _d2*ml.ini from
%OMSYSHOME%\d2g\system\starts , or from an existing DITA2Go -to-HTML
project, to your newly created project directory.

3. Use a text editor to edit the configuration file (see §3.1 Working with DITA2Go
configuration files on page 49).

22.2.2 Specifying a different output file extensio n

To change the output file extension for HTML or XHTML:
[Setup]
FileSuffix = . ext

For DITA or DocBook output, see:
§24.2.2 Specifying DITA output options on page 456
§26.2.2.1 Changing the DocBook output file extension on page 501

22.2.3 Checking HTML or XML output files for DITA2 Go version

If you recently installed a DITA2Go upgrade or beta version, after you run DITA2Go ,
check to make sure the latest version was actually used to produce HTML output.
Windows sometimes caches DLLs, and does not always use a newly replaced DLL until
after the system is rebooted.

Open an HTML output file and look at the fourth line. You should see something like the
following:

<!-- generated by DCL filter dwhtm, Ver 4.0 m193 h2 72a -->

The last two entries identify the build numbers of the DITA2Go drxml.dll and
dwhtm.dll components that were used to create the HTML file. See §A.1.5 Check your
version of DITA2Go on page 820.

22.2.4 Using XHTML tagging rules for HTML

Even if you are creating standard HTML, consider using XHTML tagging. These are the
main points to remember:

 • Use lowercase for element and attribute names.
 • Enclose all attribute values in double quotes.
 • Explicitly close all tags.
 • Include a space after an element name, even in a closing tag (such as
).

All current HTML browsers accept these rules.

When you specify XHTML as your output type, in addition to a name attribute for
anchors, DITA2Go provides an id attribute; for example:

<h3>B2D</h3>

This is because XML expects an id attribute for many purposes that are handled by the
name attribute in HTML. The only way to suppress the id attribute is to specify HTML
instead of XHTML as the output type.

INCLUDING STARTING CODE AND ENTITY REFERENCES DITA2GO USER’S GUIDE

432 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

22.3 Including starting code and entity references
You can specify macro code to be inserted at the very beginning of each HTML output
file, and entity references to be inserted before the <head> element:

[Inserts]
; location = macro to insert, can call another macr o
; BeginFile is placed at the very start of the file
; Entities is placed before the HEAD element

See §37 Working with macros on page 679.

To specify an entity reference, create a macro with the entity reference code as the body of
the macro, and indicate that the macro is to be placed before the <head> element. For
example:

[Inserts]
Entities=<$MyEntities>

[MyEntities]
<!ENTITY % HTMLlat1 PUBLIC "-//W3C//ENTITIES Latin 1//EN//HTML">
%HTMLlat1;
<!ENTITY % HTMLsymbol PUBLIC "-//W3C//ENTITIES Symb ols//EN//HTML">
%HTMLsymbol;

Entity references are placed before the <head> element in each HTML output file,
including split and extracted files.

22.4 Supplying values for the <head> element
DITA2Go normally provides a header that indicates compliance with W3C’s HTML 4
specification. The default header includes a “transitional” qualifier that permits use of
some formatting code that in HTML 4 is deprecated in favor of CSS. Unfortunately,
browsers have not quite managed yet to implement CSS well enough so that you can
depend on CSS alone; not even CSS1, let alone CSS2. So “strict” compliance has to wait.

In this section:
§22.4.1 Specifying HTML/XML version, DOCTYPE, and DTD on page 432
§22.4.2 Specifying namespace and language on page 433
§22.4.3 Specifying character encoding for HTML on page 434
§22.4.4 Including or omitting HTML/XML generator information on page 435
§22.4.5 Specifying page titles for HTML output files on page 435
§22.4.6 Supplying content for the <meta> tag on page 436
§22.4.7 Specifying nonstandard values for declarations on page 437

22.4.1 Specifying HTML/XML version, DOCTYPE, and D TD

You can change the HTML or XML header, perhaps to accommodate noncompliant code
you are using in a macro, or to conform to the requirements of third-party tools:

[HTMLOptions]
; HTMLVersion = version used: 4 (default), 3 (JavaH elp), or 2 (old)
HTMLVersion=4
; UseDOCTYPE = Yes (default) or No (when writing Do cBook entity files)
UseDOCTYPE=Yes
; HTMLDocType, PUBLIC identifier required at start of HTML documents
; Default for v4 is: "-//W3C//DTD HTML 4.01 Transi tional//EN"
; or if frameset is: "-//W3C//DTD HTML 4.01 Frames et//EN"
; Default for v3 is: "-//W3C//DTD HTML 3.2 Final// EN"

22 CONVERTING TO HTML/XHTML SUPPLYING VALUES FOR THE <HEAD> ELEMENT

ALL RIGHTS RESERVED. MAY 19, 2013 433

; Default for v2 is: "-//IETF//DTD HTML 2.0//EN"
; Default for XHTML is: "-//W3C//DTD XHTML 1.0 Tra nsitional//EN"
; Uncomment and give alternate if needed;
; do not leave blank uncommented:
;HTMLDocType="-//W3C//DTD HTML 4.01 Transitional//E N"
; HTMLDTD, the optional SYSTEM identifier in <!DOCT YPE>;
; default is to omit. If you want to add it back, although it breaks
; CSS usage, for v4 it is:
; "http://www.w3.org/TR/1999/REC-html401-19991224/ loose.dtd"
; or for v4 frameset is:
; "http://www.w3.org/TR/1999/REC-html401-19991224/ frameset.dtd"
; For XHTML, it is:
; "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transiti onal.dtd"
; Uncomment and leave blank for no DTD (v2 and v3) ,
; or give an alternate
;HTMLDTD=

DITA2Go generates code that is completely compliant with the W3C DTD cited, for
whatever version you select. However, it is your responsibility to use only valid syntax for
that version in your macros.

HTML 5 For HTML 5 output, leave HTMLVersion=4 , and set the other values in this section as
appropriate.

JavaHelp When you specify JavaHelp or Oracle Help for Java as the output type, DITA2Go
automatically sets [HTMLOptions]HTMLVersion=3 , unless you override this setting in
the configuration file.

XHTML When you specify XHTML as the output type, DITA2Go automatically sets the
corresponding HTMLDocType and HTMLDTD, unless you override these settings in the
configuration file:

[HTMLOptions]
HTMLDocType="-//W3C//DTD XHTML 1.0 Transitional//EN "
HTMLDTD="DTD/xhtml1-transitional.dtd"

DITA XML When you specify DITA XML as the output type, DITA2Go sets HTMLDocType and
HTMLDTD as follows, depending on the DITA version and topic type. For example, for
DITA version 1.1 and topic type concept :

[HTMLOptions]
HTMLDocType="-//OASIS//DTD DITA 1.1 Concept//EN"
HTMLDTD="docs.oasis-open.org/dita/v1.1/CS01/dtd/con cept.dtd"

You can override the default values; see §24.3 Specifying general options for DITA on
page 458.

DocBook XML When you specify DocBook XML as the output type, DITA2Go sets HTMLDocType and
HTMLDTD as follows:

[HTMLOptions]
HTMLDocType="-//OASIS//DTD DocBook XML V4.5//EN"
HTMLDTD="www.oasis-open.org/docbook/xml/4.5/docbook x.dtd"

22.4.2 Specifying namespace and language

You can specify the namespace and language of the <html> tag:
[HTMLOptions]
; XHNamespace default for XHTML 1.0 is "http://www. w3.org/1999/xhtml"
; Uncomment and give alternate if needed, do not l eave blank
;XHNamespace=http://www.w3.org/1999/xhtml
; XHLanguage default is "en"
;XHLanguage=en
; XHLangAttr = xml:lang (default, set as needed;

SUPPLYING VALUES FOR THE <HEAD> ELEMENT DITA2GO USER’S GUIDE

434 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; DocBook wants just lang)
;XHLangAttr=xml:lang

Although DITA2Go always produces valid code, it does not attempt to validate the
content of your macros. We suggest you validate your document with the W3C’s free
HTML validator:

http://validator.w3.org/

 and CSS validator services:
http://jigsaw.w3.org/css-validator/

If your document is valid, you are offered a little graphic to include in it. See §22.14
Passing W3C validation tests on page 445.

22.4.3 Specifying character encoding for HTML

HTML is based on Unicode. DITA2Go does not directly support non-Unicode double-
byte languages (except for Asian and Cyrillic code pages for HTML Help), nor right-to-
left languages such as Hebrew and Arabic.

Character encoding determines what method is used to represent double-byte characters in
the <body> section of HTML output. To specify encoding or, alternatively, numeric
references:

[HTMLOptions]
; Encoding = ISO-8859-1 (HTML default, numeric refs),
; or None (write 0x80-0xFF as single characters)
Encoding=ISO-8859-1
; QuotedEncoding = No (default, W3C usage, required for JavaHelp),
; or Yes (put encoding in meta tag in single quotes, needed by some
; older browsers)
QuotedEncoding=No
; NumericCharRefs = Yes (default, always use &#nnn;)
; or No (use UTF-8 for XML)
NumericCharRefs=Yes

For XHTML, the DITA2Go default is to claim UTF-8 as the encoding, but to use numeric
references of the form &#nnn; for all characters that would have to be encoded; this
satisfies all browsers. That is, DITA2Go does not actually produce any characters with
values greater than 127 using the UTF-8 encoding; instead, DITA2Go uses entities for
such characters, readable under any eight-bit encoding scheme.

For XHTML, you can specify a value for XMLEncoding (see §23.2.3 Specifying
character encoding for generic XML on page 450) other than the default UTF-8 . If you set
Encoding=UTF-8 , you get real UTF-8 encoding (two characters) in place of the numeric
character references. However, you can still force use of numeric references by also
setting NumericCharRefs=Yes .

While Encoding=None is not strictly compliant, this setting can be useful in places like
Russia, where almost the entire text would otherwise consist of numeric character
references. Encoding=None provides a 6:1 reduction in such references.

To direct DITA2Go to supply single quotes around the charset attribute value, specify
QuotedEncoding=Yes :

<meta http-equiv="Content-type" content="text/html; charset='ISO-8859-1'">

The default is not to enclose the value in quotes.

See also:
§23.2.3 Specifying character encoding for generic XML on page 450

http://validator.w3.org/
http://jigsaw.w3.org/css-validator/

22 CONVERTING TO HTML/XHTML SUPPLYING VALUES FOR THE <HEAD> ELEMENT

ALL RIGHTS RESERVED. MAY 19, 2013 435

22.4.4 Including or omitting HTML/XML generator in formation

The header of each HTML and XML file generated by DITA2Go contains an element
identifying the DITA2Go program that generated the file. By default this element appears
in a comment. For example:

<!-- generated by DCL filter dwhtm, Ver 3.0 -->

You can put this information in a meta tag instead, with the following setting:
[HTMLOptions]
; GeneratorTag = Comment (dwhtm version in comment) , Meta (tag),
; or None (omit)
GeneratorTag = Meta

The generator information is included for accountability, and for troubleshooting; a
programmer working with a file created by DITA2Go can identify the software version
that produced the file.

You can omit the generator information by specifying GeneratorTag=None . However, if
you need to send files to Omni Systems for support, our developers absolutely need that
information to tell what version of DITA2Go created the file. It is also helpful for
downstream tool vendors, such as editor providers, to know how a file was created. This is
an industry standard practice, and the comment form of GeneratorTag should be quite
harmless.

22.4.5 Specifying page titles for HTML output file s

You can specify page titles for an HTML output files any of these ways:
Assign a default or computed title
Use a heading paragraph
Use a DITA PI marker
Assign title text to the HTML file.

The text you supply becomes the content of the <title> tag in the HTML <head>
element. For more information, see §27.5.2 Specifying page titles for split or extract files
on page 531.

Note: If some of your output files show Test File from DITA2Go as the title, this means
you did not manage to specify titles for those files.

Assign a default
or computed title

To specify a default page title for all output files:
[HTMLOptions]
;Title = default title for HTML files,
; overridden by all other settings
;Title=Test File from DITA2Go
Title= My default page title

You can assign a macro or macro variable to the Title keyword. For example, to use the
base name of the DITA source file as the page title for each HTML file derived from that
DITA file:

[HTMLOptions]
Title=<$$_basefile>

See §27.5.2.6 Assigning a default title on page 533.

Use a heading
paragraph

The easiest way to provide HTML page titles is to assign the Title property to all
paragraph formats (usually headings) that begin new HTML files. For example:

SUPPLYING VALUES FOR THE <HEAD> ELEMENT DITA2GO USER’S GUIDE

436 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[HTMLParaStyles]
; Title uses head as HTML page title, see [Titles]
Heading2=Title

With this setting, every HTML output file that begins with a Heading2 paragraph would
have the text of that paragraph for a page title. See §27.5.2.2 Assigning a title with a
paragraph format on page 532.

Use a DITA PI
marker

You can specify an individual page title with a DITA Title PI marker; the content of the
Title marker becomes the title of the HTML file generated from the section of your
document where you inserted the marker. See §27.5.2.5 Assigning a title with a marker on
page 533.

Assign title text to
the HTML file

You can provide arbitrary text for the title by assigning the text to the HTML output file
name; for example:

[Titles]
; html filename = title, overrides [HTMLParaStyles] Title setting
m2r=DCL MIF2RTF Filter Description

You must assign the title text to the internal file name assigned by DITA2Go , not to any
replacement name you may have specified for a split or extract file. See §27.5.2.4
Assigning a title with a file name on page 533.

22.4.6 Supplying content for the <meta> tag

DITA2Go supports several ways to provide content for <meta> tags in the <head>
element of each HTML page.

In this section:
§22.4.6.1 Providing meta content with paragraph formats on page 436
§22.4.6.2 Providing meta content with DITA PI markers on page 437
§22.4.6.3 Providing meta content with DITA2Go macros on page 437

22.4.6.1 Providing meta content with paragraph for mats

When you assign the Meta property and a <meta> tag name attribute to a paragraph
format, the text of such a paragraph becomes a <meta> tag content attribute for the
specified <meta> tag:

[HTMLParaStyles]
ParaFmt = Meta

Explicitly assigning the Meta property to a paragraph format is optional when you assign
a tag name to that format in the following section:

[StyleMetaName]
; doc style = name to use for meta tag whose conten t is the para text
ParaFmt = metaname

For example, suppose you use paragraph format Metakeys to supply content for the
keywords attribute:

[StyleMetaName]
Metakeys=keywords

With this setting, the text of every Metakeys paragraph would become content for a
“keywords” <meta> tag in the <head> element of the HTML file. For example, if the text
of a Metakeys paragraph is “staff, location, reporting, roster”, the <meta> tag would look
like this:

<meta name="keywords" content="staff, location, rep orting, roster">

22 CONVERTING TO HTML/XHTML SUPPLYING VALUES FOR THE <HEAD> ELEMENT

ALL RIGHTS RESERVED. MAY 19, 2013 437

You need a different paragraph format for each <meta> tag. For example, if you want
author and source tags, you might define paragraph formats MetaAuthor and
MetaSource, and map them as follows:

[HTMLParaStyles]
Meta*=Meta Delete

[StyleMetaName]
MetaAuthor=author
MetaSource=source

The Delete property prevents the content of these special paragraphs from appearing in
body text; see §30.2.6 Eliminating unwanted paragraphs on page 569.

22.4.6.2 Providing meta content with DITA PI marke rs
 • If you give a custom PI marker type a name that starts with Meta, DITA2Go

automatically makes the marker text the value of whatever attribute is named by the
rest of the marker-type name, and puts the attribute and its value in the generated
<meta> tag.

For example, MetaKeywords :
<meta name="Keywords" content="whatever was in the marker(s)" />

You must ensure that the content of each marker is valid for the named attribute.
DITA2Go concatenates all markers for the same attribute in the same HTML file. You can
just add more PI markers of the same type, and continue the content. Meta* PI markers are
concatenated into one <meta> tag within the same split or extract file, but not across file
boundaries.

22.4.6.3 Providing meta content with DITA2Go macro s

You can put <meta> tags directly into the configuration file as macros, and not have them
in your DITA document at all. See §27.6.2 Assigning code to [Inserts] keywords for splits
and extracts on page 535 and §37.1 Defining and invoking macros on page 679.

22.4.7 Specifying nonstandard values for declarati ons

You can specify different values for several header fields or declarations; however, unless
you know you need nonstandard values, you should not need to change any of these. For
some settings, the default values vary based on whether the output type is HTML,
XHTML, or XML:

[HTMLOptions]
; UseXMLRoot = Yes (default) or No (when writing Do cBook entity files)
UseXMLRoot=Yes
; XMLRoot default is "html" for XHTML, or "doc" for generic XML.
XMLRoot=html
; UseHeadAndBody = Yes (HTML/XHTML default)
; or No (generic XML and DITA default)
UseHeadAndBody=Yes
; ContentType = text/html (default for HTML and XHT ML)
; or application/xml (default for XML); try not to use text/xml
; (for interoperability)
ContentType=text/html

Content-Type is part of MIME, and is used by document-processing tools. Unless you
know exactly what you want and need only a mechanism to specify it, leave this setting
alone. For more information, see:

http://www.w3.org/Protocols/rfc1341/4_Content-Type.html

http://www.w3.org/Protocols/rfc1341/4_Content-Type.html

SPECIFYING HTML <BODY> ATTRIBUTES DITA2GO USER’S GUIDE

438 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

For XHTML, you can suppress the <?xml...?> declaration, as required by some
browsers:

[HTMLOptions]
;UseXMLDeclaration = Yes to start with <?xml...?>, or No to omit
UseXMLDeclaration=No

22.5 Specifying HTML <body> attributes
You can use configuration settings to assign values to HTML <body> attributes:

[Attributes]
; body= attributename=value

Keep all attributes on one line, regardless of line length. For XHTML, all attribute names
must be lowercase. For example:

[Attributes]
body= bgcolor="#FFFFE1" text="#000080" link="#00802 0" vlink="#804000"

You can insert JavaScript for <body> attributes; for example:
[Attributes]
body= onLoad="if (self != top) top.location = self. location"

In addition to attributes for the <body> tag, you can use the [Attributes] section to
specify attribute values for <table> , <tr> , <td> , <th> , <thead> , <tfoot> , and
<tbody> tags; see §33.4.1 Specifying attributes for all tables on page 632.

22.6 Specifying document-wide properties for HTML
In this section:

§22.6.1 Specifying a default DPI setting on page 438
§22.6.2 Suppressing closing </p> tags for HTML on page 438
§22.6.3 Suppressing line breaks in HTML and XML output on page 439
§22.6.4 Preventing adjacent <pre> elements from merging on page 439

22.6.1 Specifying a default DPI setting

To convert from other sizes to pixels, for such purposes as table-column sizing, indenting
tables, and indenting graphics, DITA2Go uses this DPI setting:

[HTMLOptions]
; ConversionDPI = 96 (default), used when convertin g sizes to pixels
ConversionDPI = 96

22.6.2 Suppressing closing </p> tags for HTML

By default, DITA2Go provides closing tags </ tagname>, to conform to W3C validation
requirements for XHTML. (One exception: unless you specify XHTML as the output
type, DITA2Go does not generate closing tags for list items; see §30.11.2 Converting list
formats to HTML list styles on page 585.)

To eliminate </p> closing tags:
[HTMLOptions]
; NoParaClose = No (default) or Yes (suppress </p> closing tags)
NoParaClose = Yes

22 CONVERTING TO HTML/XHTML DEFINING TEXT COLORS FOR HTML

ALL RIGHTS RESERVED. MAY 19, 2013 439

22.6.3 Suppressing line breaks in HTML and XML out put

By default, DITA2Go inserts \n line breaks in HTML and XML output in several places,
including (but not limited to) the following:

 • after each <a name= so the tag name always appears as the first item on the next line,
to make the names easier to find when you inspect DITA2Go output

 • at the first space that occurs in a paragraph at or after 70 characters (not counting
character tags), to make long paragraphs easier to inspect or edit.

These line breaks do not affect HTML display. However, if you are generating XML to be
imported into a system that treats \n line breaks as though they were paragraph breaks,
you might want to get rid of all unintended line breaks in text. See §23.2.5 Preventing
arbitrary line breaks in XML text elements on page 451.

To suppress \n line breaks after <a name= :
[HTMLOptions]
; ATagLineBreak = Yes (default, \n before first att r) or No
ATagLineBreak=No

To suppress \n line breaks only in preformatted text:
[HTMLOptions]
; UnwrapPRE = No (default) or Yes (ignore line brea ks in PRE)
UnwrapPRE = Yes

To suppress \n line breaks in all paragraphs:
[HTMLOptions]
; NoWrap = No (default, \n where space occurs) or Y es
NoWrap = Yes

When NoWrap=Yes, each paragraph comes out in a single line, without any line wrap.
Also, leading spaces are preserved. To apply this option to a single paragraph format, see
§30.2.4 Stripping paragraph properties on page 568.

22.6.4 Preventing adjacent <pre> elements from mer ging

By default, for HTML output DITA2Go merges successive elements mapped to <pre> ,
provided they are assigned the same CSS class. To prevent such elements from being
merged:

[HTMLOptions]
; MergePre = Yes (default, merge adjacent pre eleme nts, or No
MergePre = No

When MergePre=No , adjacent <pre> elements are not merged, even if they lack a CSS
class assignment or have the same CSS class.

22.7 Defining text colors for HTML
The best way to adjust text colors for HTML output is to assign colors to output formats;
see:

§7.6.5 Specifying inline properties for paragraph and character formats on page 123
§7.6.6 Specifying block properties for paragraph formats on page 124
§8.3 Defining shading format components on page 145

Those methods use CSS. Consider using the method described here only if you cannot use
CSS.

DEFINING TEXT COLORS FOR HTML DITA2GO USER’S GUIDE

440 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

In this section:
§22.7.1 Numbering and defining text colors on page 440
§22.7.2 Using Web-safe colors on page 440

22.7.1 Numbering and defining text colors

You can assign hexadecimal RGB color values to arbitrary index numbers, and then use
those index numbers in certain configuration settings to represent color values.

To number colors and specify color values:
[Colors]
; color number 1-254 = hex RGB value; color number 0 is invisible
; 1..8 = black, white, red, green, blue, cyan, mage nta, yellow
; numbers up to 254 may be defined here and used in [HTML*Styles]
; for example, 100=804000 defines 100 as olive brow n

The reserved color numbers have the following hexadecimal RGB values:

To map a reserved color to some other color, assign its number a new RGB value; for
example:

[Colors]
; Replace Cyan with SeaWater
6 = 0099CC

See also §30.8 Specifying text colors for HTML on page 580.

To define a new color, assign a hexadecimal RGB value to any decimal integer from 9
through 254 (0 through 8 are reserved). For example:

[Colors]
; Use deep pink for table headings
105 = FF3399

22.7.2 Using Web-safe colors

It is best to use Web-safe colors for HTML; otherwise you could run into browser palette
issues.

For Web-safe colors that are rendered the same by all browsers, use color numbers 1
through 8, or define colors with elements of 00, 33, 66, 99, CC, or FF For example, RGB
hexadecimal value 0099CC yields the color shown in Figure 22-1.

Figure 22-1 RGB color 0099CC

Table 22-1 lists the values you can use to define Web-safe RGB colors, in three different
units of measurement.

1 black 000000

2 white FFFFFF

3 red FF0000

4 green 008000

5 blue 0000FF

6 cyan 00FFFF

7 magenta FF00FF

8 yellow FFFF00

22 CONVERTING TO HTML/XHTML IMPORTING HTML FILES AS INSETS

ALL RIGHTS RESERVED. MAY 19, 2013 441

22.8 Importing HTML files as insets
To include existing HTML code as an inset, by importing HTML from a source other than
the DITA files you are converting, use a DITA HTML Macro PI marker. The content of the
marker should look like this:

<?dthtm HTML Macro="<$.\\ filename.htm>" ?>

where filename.htm is the name of the HTML file you want to import. Place the marker
in your DITA document wherever you want the imported HTML to appear in your
DITA2Go output.

If the HTML you are importing is not a fragment, but a complete HTML file with both
<head> and <body> sections, to omit all but the <body> part use a DITA2Go macro
expression (see §37.6 Using expressions in macros on page 700) in the content of the
HTML Macro marker. Code such as the following would select all text between <body>
and </body> from filename.htm :

<?dthtm HTML Macro='<$(($.\\ filename.htm after "<body>") before
"</body>")>' ?>

The single dot after the second $ indicates that the file you are importing is in the current
directory; if it is in some other directory, use a full path name.

Note: You must use the two-backslash form of separator: backslash (\) instead of a
forward slash (/) so that the DITA2Go expression evaluator does not take it as a
division operator; and two of them, the first to escape the second backslash in the
PI marker.

22.9 Providing hover text for links in HTML
Hover text in HTML is produced from the value of the HTML title attribute of a tag
(usually a tag) that encloses the term. The attribute value may not contain a
carriage return, nor the symbols <, >, " , ' , or &.

DITA2Go provides mouseover hover text for all cross references and links to topics in
your DITA source, including those added by @keyref , internal scope only:

 • For links to topics the hover text is the content of the <shortdesc> or <abstract>
element; if neither is present, the link has no hover text.

 • For <glossentry> topics, the hover text is the content of the <glossdef> element;
links are still present and active, if (for example) a user wants more detail.

 • For a cross reference to a section or figure or table, the hover text is the title, and any
autonumber would be included also.

If an element has an @href attribute either because of the element type (such as <xref>)
or because it has a @keyref to a <keydef> with an @href , DITA2Go can use the
reference for HTML title attribute text. The exceptions are:

 • external and peer scope, where DITA2Go cannot access the other end of the @href

Table 22-1 Ways to express Web-safe RGB color values

Units Web-safe values for Red, Green, or Blue Where u sed

Percent 0% 20% 40% 60% 80% 100% FrameMaker color definitions

Hexadecimal 00 33 66 99 CC FF HTML; DITA2Go [Colors]

Decimal 0 51 102 153 204 255 Windows, some applications

GENERATING XHTML FOR CONFLUENCE 4.X DITA2GO USER’S GUIDE

442 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • references to elements that lack titles, where the text to use is not necessarily clear.

No special settings are needed to enable hover text for DITA links and cross references.

22.10 Generating XHTML for Confluence 4.x
XHTML output that will work as input to Confluence requires a different syntax for links,
and several special settings. Thanks to research by Robert Lauriston, DITA2Go provides a
way to produce the required markup. See:

https://confluence.atlassian.com/display/DOC/Confluence+Storage+Format

To direct DITA2Go to produce XHTML for Confluence 4.x:
[HTMLOptions]
; Confluence = No (default, use normal linking)
; or Yes (make Confluence links)
Confluence = Yes

When Confluence=Yes , DITA2Go automatically sets the options listed in Table 22-2.
You can override these individually if necessary.

To configure Confluence links:
[HTMLOptions]
; ConfluenceLinks = No (default, use normal links)
; or Yes (use the link parts specified below)
ConfluenceLinks = Yes
; These are the default parts for Confluence links:
ConfluenceLinkStart = <ac:link>
ConfluenceLinkPage = <ri:page ri:content-title="
ConfluenceLinkPageEnd = "/>
ConfluenceLinkText = <ac:link-body>
ConfluenceLinkTextEnd = </ac:link-body>
ConfluenceLinkEnd = </ac:link>

When ConfluenceLinks=Yes , the remaining ConfluenceLink* settings are in effect.

Note: The XHTML files you produce with DITA2Go must be imported into Confluence
one at a time. As of this writing, no batch import utility is available.

Table 22-2 Default options for Confluence 4.x XHTML

Configuration section Setting Value Reference
[HTMLOptions] ConfluenceLinks Yes 22.10

RemoveANames Yes 23.4

NoLocations Yes 28.3.2

NoFonts Yes 30.6.3

UseHash No 23.4

AlignAttributes No 30.4

UseXMLDeclaration No 22.4.7

UseDOCTYPE No 22.4.1

UseHeadAndBody No 22.4.7

[CSS] UseCSS No 31.4.1

UseSpanAsDefault No 31.7.3

https://confluence.atlassian.com/display/DOC/Confluence+Storage+Format

22 CONVERTING TO HTML/XHTML EXPORTING CONTENT FOR DATABASE INPUT

ALL RIGHTS RESERVED. MAY 19, 2013 443

22.11 Exporting content for database input
If you are generating HTML that is destined for input to a database, you might want to
exclude everything except the <body> content. You can use the following setting to
generate HTML without the prolog, <html> tags, <head> tags and content, or <body>
tags. This leaves just the body content, in a form suited to inclusion in a database:

[HTMLOptions]
; BodyContentOnly = No (default) or Yes (omit prolo g, root element,
; and head and body tags, leaving only body content, for DBMS use)
BodyContentOnly = Yes

22.12 Specifying a starting topic for HTML or XHTM L
To specify which topic file should open first in a browser when you click View Output in
the DITA2Go Project Manager:

[HTMLOptions]
; ViewOutputFile = file in wrap directory for Proje ct Manager to open
; in browser upon View Output.
ViewOutputFile = filename.ext

The file you specify must be present in the wrap directory; see §44.6.1 Specifying a wrap
directory on page 792. Or, if you include a path, the path must be relative to the wrap
directory.

By default, the Project Manager uses the value of [Contents]TOCFile , and looks for a
file of that name in the wrap directory (see §14.3.1 Specifying a file name and title for the
TOC on page 199). If TOCFile is not set, or the named file is not present in the wrap
directory, the Project Manager looks in the wrap directory for a file that has the map name
for your project and a FileSuffix extension (see §4.1.6 Checking output type and file
extension on page 70).

The Project Manager opens the starting topic file in the default browser. To specify a
different browser or viewer:

[HTMLOptions]
; ViewOutputCommand = path\to\browser, default none

See View-output command under §1.3.7 Establish system-wide configuration settings on
page 33.

22.13 Using framesets
To use framesets, you must create the HTML that defines the frames yourself, possibly
using another HTML tool. You can make the resulting HTML code into a DITA2Go
macro (see §37 Working with macros on page 679), as follows:

1. Give the macro a name.

2. Copy the name and HTML code into your project configuration file or into a macro
library file (d2h_macro.ini , or another macro library file you have created).

3. Include an entry for the macro in the [Inserts] section.

The generated frameset file is more a starting point than a finished product. The result
might look like the following, using an example from the W3C reference on framesets:

http://www.w3.org/TR/1999/REC-html401-19991224/present/frames.html

The following example produces a simple three-frame layout:

http://www.w3.org/TR/1999/REC-html401-19991224/present/frames.html

USING FRAMESETS DITA2GO USER’S GUIDE

444 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[Inserts]
Frames=<$MyFrameset>
End=</noframes></frameset>
. . .
[MyFrameset]
<frameset cols="20%, 80%">
 <frameset rows="100, 200">
 <frame name="frame1" src="contents_of_frame1.h tml">
 <frame name="frame2" src="contents_of_frame2.g if">
 </frameset>
 <frame name="frame3" src="contents_of_frame3.html ">
 <noframes>

If the browser is too old to display frames, or is set not to display frames, the page contents
are shown instead, as the noframes section.

The frameset document itself must use the frameset header:
[HTMLOptions]
; UseFrameSet = No (default) or Yes (if included fr ameset tags)
UseFrameSet=Yes
; HTMLDocType, required at start of HTML documents
; for v4 frameset is: "-//W3C//DTD HTML 4.01 Frame set//EN"
; HTMLDTD, default for v4 frameset is:
; "http://www.w3.org/TR/1999/REC-html401-19991224/ frameset.dtd"

The frames defined in the frameset get their initial content as specified in the src attribute
of the frame element. After that, they are reloaded by making jumps for which the target
attribute is set to the frame name, such as:

<p>C lick here.</p>

You can set the target attribute for a jump by applying, to the hotspot and PI marker, a
paragraph or character format that you list in the configuration file with a frame target
name. For example:

[Targets]
; doc format = name of frame to use for jumps from within this format
; For OmniHelp ALink and KLink jumps, targets make no sense
; and are ignored.
Top Left=frame1

If the format in effect at the jump is not listed, DITA2Go checks to see if all jumps to that
file, or to that URL destination, are intended for a particular frame. For example:

[TargetFiles]
; filename (no ext) or URL destination = target fra me to be used
; a URL destination is the last element in the URL (no extension)
procedures=frame2

You can also set a default target to be used by all jumps in the file that are not otherwise
set; for example:

[HTMLOptions]
; DefaultTarget = target to use for all jumps not o therwise set
DefaultTarget=frame3

To have a jump to a target open another window, you can use an HTML reserved name for
the target; one such name is _blank , which causes opening in a new browser window. Or,
you can specify the opening method in the target file, with an onload attribute in the
<body> tag.

In HTML, you can force a new window with , or
better yet with an href to a JavaScript function that sets document.location. In any
case, you get a newnew window every time.

22 CONVERTING TO HTML/XHTML PASSING W3C VALIDATION TESTS

ALL RIGHTS RESERVED. MAY 19, 2013 445

See also §28.4 Creating jumps to particular windows for HTML on page 550.

Note: You cannot use framesets in compiled HTML Help (.chm file); you can use them
in uncompiled HTML Help only, which is of questionable value. Using framesets
for HTML Help makes sense only if the result will be viewed on UNIX systems.

22.14 Passing W3C validation tests
DITA2Go generates W3C-valid code, and with the appropriate settings is completely
conformant.

To check the validity of your HTML output:
http://validator.w3.org/

In this section:
§22.14.1 Understanding limitations of W3C validation on page 445
§22.14.2 Replacing high ASCII characters for W3C validation on page 445
§22.14.3 Eliminating <nobr> tags on page 447
§22.14.4 Avoiding redundant attribute assignments in tables on page 447

22.14.1 Understanding limitations of W3C validatio n

DITA2Go can produce many varieties of HTML, including some that are intended for use
with older browsers such as Netscape Navigator 4.x. Some default settings allow such
back-compatible code generation, which does not validate to HTML 4 specifications.
Also, one particular HTML tag is not accepted by W3C, certain table anomalies in your
DITA document can cause validation errors, and several high-ASCII characters cause
validator warnings.

If you require clean validation for your output, you might have to make some adjustments
to your DITA document and to your configuration settings.

22.14.2 Replacing high ASCII characters for W3C va lidation

W3C validation tests complain if a file includes any characters with ASCII decimal values
128 through 159. Presence of these characters does not preclude validation. However, if
the file contains real validation errors, the W3C validator reports these characters along
with the actual errors. If you fix the errors, and leave the characters, the complaint
becomes just a note about “non-SGML” characters.

Note: Leaving these characters in your document does not make the output invalid,
despite the somewhat misleading way the W3C validator lists them when
something else in the output is not valid.

For most purposes you should not need to do anything about the characters in question.
However, if you want to have DITA2Go remap or remove the offending characters, you
can set the following option:

[HTMLOptions]
; ValidOnly = No (default, allow normal use of char s from 128 to 160),
; or Yes (for warning-free W3C validation, remaps or removes
; those chars)
ValidOnly=Yes

This option affects the following characters:

 • 128 through 159 (first 32 high ASCII characters), in all fonts except the following:

http://validator.w3.org/

PASSING W3C VALIDATION TESTS DITA2GO USER’S GUIDE

446 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 – Symbol
 – Zapf Dingbats
 – Webdings

 • 171 and 187 (the guillemets), in macros only.

Setting ValidOnly=Yes changes the output as follows:

 • curly quotes become straight quotes
 • en dashes become hyphens
 • em dashes become a pair of hyphens
 • bullets (except those produced by tags) become mid-dots
 • all other characters in the range are dropped, unless you map them yourself; see §30.4

Assigning properties to text formats on page 570.

Table 22-3 shows how DITA2Go treats characters in this range when ValidOnly=Yes .
Depending on which version of the DITA2Go User’s Guide you are using to view the
table, some characters might not be displayed.

Table 22-3 Characters replaced or removed for W3C validation

Value Character Name Replacement character (if any)

128 € euro Removed

129 (none) (none) Removed

130 ‚ single base quote ' 039 (single quote)

131 ƒ florin Removed

132 „ double base quote " 034 (double quote)

133 … ellipsis Removed

134 † dagger Removed

135 ‡ double dagger Removed

136 ˆ circumflex Removed

137 ‰ per thousand Removed

138 Š S caron Removed

139 ‹ left single guillemet Removed

140 Œ OE ligature Removed

141 ˘ (none) Removed

142 Ž Z caron Removed

143 (none) (none) Removed

144 (none) (none) Removed

145 ‘ left single quote ' 039 (single quote)

146 ’ right single quote ' 039 (single quote)

147 “ left double quote " 034 (double quote)

148 ” right double quote " 034 (double quote)

149 • bullet · 183 (mid-dot), except in lists

150 – en dash - 045 (hyphen)

151 — em dash - 045 (hyphen) in text,
-- (two hyphens) in macros

152 ˜ tilde Removed

153 ™ trademark Removed

22 CONVERTING TO HTML/XHTML PASSING W3C VALIDATION TESTS

ALL RIGHTS RESERVED. MAY 19, 2013 447

See also:
§22.4.3 Specifying character encoding for HTML on page 434
§23.2.3 Specifying character encoding for generic XML on page 450
§30.4 Assigning properties to text formats on page 570

22.14.3 Eliminating <nobr> tags

By default, DITA2Go generates <nobr> tags around non-breaking hyphens. However,
the <nobr> tag is not included in the W3C DTD, despite the fact that all browsers support
it. To eliminate <nobr> tags from the output, specify the following option:

[HTMLOptions]
; AllowNobr = Yes (default, use <nobr> tags around nonbreaking
; hyphens, supported properly by all browsers),
; or No (required for W3C validation)
AllowNobr = No

22.14.4 Avoiding redundant attribute assignments i n tables

If you use more than one method to add the same attribute to a table, you might end up
with duplicate attribute assignments, which are not allowed for W3C validation. For
example, suppose you specify access method scope for all tables (see §35.1.3.2 Applying
the scope method to all tables on page 658):

[Tables]
AccessMethod=Scope

Then if you happen to include a CellScope PI marker in some table (see §35.2.4 Assigning
table-cell attribute values with PI markers on page 6660, the scope attribute assignment
appears twice in the output for that table cell.

154 š s caron Removed

155 › right single guillemet Removed

156 œ oe ligature Removed

157 ˝ (varies; not used) Removed

158 ž z caron Removed

159 Ÿ Y diaeresis Removed

···

171 « left double guillemet " 034 (double quote), in macros only

187 » right double guillemet " 034 (double quote), in macros only

Table 22-3 Characters replaced or removed for W3C validation (continued)

Value Character Name Replacement character (if any)

PASSING W3C VALIDATION TESTS DITA2GO USER’S GUIDE

448 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 449

23 Converting to generic XML

XML emphasizes document structure rather than presentation. This section shows how to
generate generic XML tags and how to set XML-specific options in your project
configuration file. If you are converting to DITA XML or to DocBook XML, consult one
of the following sections instead:

§24 Converting to DITA XML on page 455
§26 Converting to DocBook XML on page 499

Topics for generic XML include:
§23.1 Setting up a generic XML project on page 449
§23.2 Specifying generic XML output settings on page 449
§23.3 Providing XML tags and structure on page 451
§23.4 Configuring links for generic XML on page 454

Check the W3C Extensible Markup Language (XML) 1.0 (Second Edition)
recommendation for information about XML:

http://www.w3.org/TR/REC-xml

23.1 Setting up a generic XML project
For the most part DITA2Go conversions to XML employ the same project set-up options,
conversion methods, macros, and configuration settings as conversions to HTML or
XHTML; see §22.2 Setting up an HTML project on page 430.

Conversion files The same conversion files are generated and named the same way for XML as for HTML
or XHTML.

Default settings Default values for configuration settings are the same for XML as for XHTML, with the
following exceptions:

23.2 Specifying generic XML output settings
To add or change any of the options described in this section, edit configuration file
_d2xml.ini , located in the project directory.

In this section:
§23.2.2 Changing output XML version or file extension on page 450
§23.2.3 Specifying character encoding for generic XML on page 450
§23.2.4 Specifying the root element and content type on page 451

Section Keyword XML default XHTML default
[CSS] ClassIsTag Yes No

[Graphics] GraphScale No Yes

[HTMLOptions] AlignAttributes No Yes

Footnotes Inline Jump

NoFonts Yes No

UseAnums No Yes (except lists)
UseFootXrefTag Yes No

UseHeadAndBody No Yes

XMLRoot doc html

[Tables] UseCALSModel Yes No

http://www.w3.org/TR/REC-xml

SPECIFYING GENERIC XML OUTPUT SETTINGS DITA2GO USER’S GUIDE

450 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§23.2.5 Preventing arbitrary line breaks in XML text elements on page 451
§23.2.6 Specifying a starting topic for generic XML on page 451

23.2.1 Creating a generic XML project

Easier: use the DITA2Go Project Manager to start a new project; see §2.1 Creating a
DITA2Go conversion project on page 39.

To create a generic XML project without using the DITA2Go Project Manager:

1. Create a directory for output files, separate from the directory where your DITA
document is located.

2. Copy configuration file d2xml.ini from your DITA2Go config directory (see
§1.3.1 Set up a framework for Omni Systems applications on page 29), or from an
existing DITA2Go project, to your newly created output directory:

3. Use a text editor to edit d2xml.ini (see §3.1 Working with DITA2Go configuration
files on page 49).

23.2.2 Changing output XML version or file extensi on
XML version To change the version of generic XML:

[HTMLOptions]
; XMLVersion default is "1.0".
XMLVersion = 1.0

File extension To change the output file extension:
[Setup]
FileSuffix = . ext

The default output file extension for XML files is .xml .

23.2.3 Specifying character encoding for generic X ML

Character encoding determines the method used to represent character value greater than
0x7F (decimal 127). Such double-byte characters constitute the “high ASCII” set. The
default for XML output is UTF-8 :

[HTMLOptions]
; Encoding = UTF-8 (XML default), ISO-8859-1 (HTML default, numeric
; refs), or None (write 0x80-0xFF as single charac ters)
Encoding=UTF-8
; XMLEncoding default is "UTF-8", entities are used for ANSI chars
XMLEncoding=UTF-8
; NumericCharRefs = Yes (default, always use &#nnn;)
; or No (use UTF-8 for XML)
NumericCharRefs=No

Entity references
for browsers

If your XML output is to be rendered by Web browsers, be aware that even though UTF-8
is the XML standard encoding, many browsers do not support it. The DITA2Go default is
to claim UTF-8 as the encoding, but to use numeric references of the form &#nnn; for all
characters that would have to be encoded; this satisfies all browsers. That is, with default
settings, DITA2Go does not actually produce any characters with values greater than 127
using the UTF-8 encoding; instead, DITA2Go uses entities for such characters, readable
under any eight-bit encoding scheme.

The setting for XMLEncoding controls the content of the encoding attribute of the XML
declaration. If you set Encoding=UTF-8 , you get real UTF-8 encoding (two characters)

23 CONVERTING TO GENERIC XML PROVIDING XML TAGS AND STRUCTURE

ALL RIGHTS RESERVED. MAY 19, 2013 451

in place of the numeric character references. However, you can still force use of numeric
references by also setting NumericCharRefs=Yes .

While Encoding=None is not strictly compliant, this setting can be useful in places like
Russia, where almost the entire text would otherwise consist of numeric character
references. Encoding=None provides a 6:1 reduction in such references.

See also:
§22.3 Including starting code and entity references on page 432
§22.4.3 Specifying character encoding for HTML on page 434

23.2.4 Specifying the root element and content typ e

The default value for root is doc for generic XML. Because XML does not have <head>
and <body> sections, the default is to omit these:

[HTMLOptions]
XMLRoot=doc
UseHeadAndBody=No
; ContentType = text/html (default for HTML and XHT ML)
; or application/xml (default for XML); try not to use text/xml
; (for interoperability)
ContentType=application/xml

Content-Type is part of MIME, and is used by document-processing tools. Unless you
know exactly what you want and need only a mechanism to specify it, leave this setting
alone. For more information, see:

http://www.w3.org/Protocols/rfc1341/4_Content-Type.html

23.2.5 Preventing arbitrary line breaks in XML tex t elements

If you are generating XML to be imported into a system that treats \n line breaks as
though they were paragraph breaks, you might have to prevent DITA2Go from
introducing line breaks into XML paragraph text.

To suppress \n line breaks in all paragraphs:
[HTMLOptions]
; NoWrap = No (default, \n where space occurs) or Y es
NoWrap=Yes

See §22.6.3 Suppressing line breaks in HTML and XML output on page 439.

23.2.6 Specifying a starting topic for generic XML

To specify which topic file should open first in a viewer when you click View Output in
the DITA2Go Project Manager, and which viewer or editor should be used, see §22.12
Specifying a starting topic for HTML or XHTML on page 443.

23.3 Providing XML tags and structure
In this section:

§23.3.1 Deriving XML tags from format and class names on page 452
§23.3.2 Eliminating HTML attributes and tags for generic XML on page 452
§23.3.3 Including or excluding autonumbers on page 453

See also:
§37.10 Using macros to fine-tune HTML or XML output on page 713

http://www.w3.org/Protocols/rfc1341/4_Content-Type.html

PROVIDING XML TAGS AND STRUCTURE DITA2GO USER’S GUIDE

452 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

23.3.1 Deriving XML tags from format and class nam es

To aid in mapping formats to elements for XML output from an unstructured document,
by default DITA2Go uses the following for XML tags:

 • all CSS class names
 • names of any formats to which you have not assigned a CSS class name:

 – in an outputclass attribute
 – in CSS
 – in the [ParaClasses] or [CharClasses] section
 – in any other configuration-file section.

To produce valid XML, DITA2Go converts all tags to valid CSS names, without spaces,
non-alphanumeric characters, leading digits, or accented characters (which become
unaccented).

Paragraph and
character tags
and attributes

DITA2Go uses any tags and attributes you assign in configuration sections [ParaTags]
and [CharTags] ; see §30.2.1 Assigning HTML tags and attributes to paragraph formats
on page 566. To apply an attribute to an individual paragraph or character span, insert an
attribute PI marker in the instance; see §38.1 Understanding DITA2Go PI markers on
page 717.

You can specify which names to use for XML tags in any or all of the following ways:
Map class names to XML tags
Map format names to classes

Map class names
to XML tags

To map all CSS class names to XML tags (the default for XML output):
[CSS]
; ClassIsTag = No (default for HTML/XHTML)
; or Yes (default for Generic XML)
ClassIsTag=Yes

When ClassIsTag=Yes , any class names you assigned to formats in the [ParaTags]
and [CharTags] sections become XML tags; see §31.5 Understanding how CSS affects
other options on page 596. If ClassIsTag=Yes , also specify
[CSS]WriteClassAttributes=No ; see §31.4.1 Specifying CSS options in a DITA2Go
configuration file on page 593.

Map format
names to classes

To explicitly map individual format names to class names:
[ParaClasses] or [CharClasses]
; Format name = class to use (default is based on n ame)
; For XML, the class is used as the tag name by def ault.

Specify all
margins in CSS

The following setting causes CSS entries to explicitly include all four margin values, even
if some are zero:

[CSS]
; ZeroCSSMargins = No (default)
; or Yes (specify CSS margins even if zero)
ZeroCSSMargins=Yes

23.3.2 Eliminating HTML attributes and tags for ge neric XML

You can use configuration settings to eliminate the following HTML tags and attributes:
Paragraph tags
Table attributes
Graphics tags and attributes

Paragraph tags Use either of the following methods to make HTML <p>...</p> tags go away:

23 CONVERTING TO GENERIC XML PROVIDING XML TAGS AND STRUCTURE

ALL RIGHTS RESERVED. MAY 19, 2013 453

 • Best: supply your own XML tags in [ParaTags] ; see §30.2.1 Assigning HTML tags
and attributes to paragraph formats on page 566

 • Use the NoPara property in [HTMLParaStyles] ; see §30.2.4 Stripping paragraph
properties on page 568.

Table attributes By default, when you specify XML as the output type, DITA2Go refrains from
automatically generating HTML table and cell attributes (see §33.4.1 Specifying attributes
for all tables on page 632), while preserving any attributes you add specifically for XML
in the configuration file or in PI markers:

[Tables]
; TableAttributes = Yes (HTML default, to allow aut omatically
; generated border, cellspacing, cellpadding, or No (XML default,
; to exclude those while keeping any attributes expl icitly added
; in the .ini or in markers)
TableAttributes=No

By default, DITA2Go places in each table cell that would otherwise be empty
(either because the cell contained only an empty paragraph, or because another
configuration setting eliminated the content). This is because some browsers do not render
correctly the borders, margins, and padding of a completely empty cell. To suppress this
feature:

[Tables]
EmptyTbCellContent=

The empty value eliminates the . Or, you can specify any other content; see
§33.4.10 Deciding what to do with empty paragraphs in table cells on page 640. However,
a better approach would be to define common entities such as in your XML DTD;
see §22.3 Including starting code and entity references on page 432.

Graphics tags
and attributes

To eliminate width and height attributes from images:
[Graphics]
; GraphScale = Yes to put out width and height attr ibutes,
; or No to eliminate them all (default for Generic XML)
GraphScale = No

If you do not specify any setting for GraphScale , you get the correct default for either
HTML or XML.

To eliminate paragraph tags around graphics:
[Graphics]
; GraphWrapPara = Yes (default, wrap graphics that are not inline in
; paragraph tags) or No (eliminate wrapping tags)
GraphWrapPara = No

23.3.3 Including or excluding autonumbers

By default, DITA2Go omits all autonumbers from XML output:
[HTMLOptions]
; UseAnums = Yes (HTML default, use unless list typ e)
; or No (XML default)
UseAnums = No

To include autonumbers in XML output for selected paragraph formats:
[HTMLParaStyles]
; Anum includes autonumber, default omits it
ParaFmt = Anum

To exclude autonumbers from XML output only for selected paragraph formats:

CONFIGURING LINKS FOR GENERIC XML DITA2GO USER’S GUIDE

454 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[HTMLOptions]
UseAnums = Yes

[HTMLParaStyles]
; NoAnum excludes autonumber in non-list items, def ault keeps it
ParaFmt = NoAnum

See also:
§30.4 Assigning properties to text formats on page 570.

23.4 Configuring links for generic XML
There is no standard way to represent links in XML. Configure links whatever way your
DTD or schema says; anything “well formed” is valid. See W3C XML Pointer, XML Base
and XML Linking for more information:

http://www.w3.org/XML/Linking

To configure links for DocBook XML, see §26.3.2 Configuring links for DocBook XML
on page 502. To configure links for DITA XML, see §24.9 Configuring cross references
and links for DITA on page 489.

To manage links and cross references in generic XML:
[HTMLOptions]
; These are mainly intended for making links for Ge neric XML use:
; RemoveANames = No (default) or Yes (eliminate tags)
; RemoveATags = No (default) or Yes (eliminate <a h ref=...> tags)
; RemoveAHrefAttrs = No (default)
; or Yes (remove href attrs, keep tags)
; XMLLinkAttrs = No (default)
; or Yes to add attrs to tags:
; xml:link="simple" show="replace" actuate="user" class="url"
XMLLinkAttrs=No
; ATagElement = tag to use for all link elements, d efault is "a"
; except for DITA, where it is "xref"
ATagElement=a
; HrefAttribute = name to use for link source attr, default href
HrefAttribute=href
; UseHash = Yes (default, start local hrefs with #) or No
UseHash=Yes
; UseUlink = No (default, use ATagName for URLs) or Yes (use
; ulink for URLs, and url as the HrefAttribute wit hin them)
UseUlink=No
; RemoveXrefHotspots = No (default) or Yes (remove hotspot text for
; xrefs and hyperlinks to Frame files, retain it f or external URLs)
RemoveXrefHotspots=No
; UseListedXrefFilesOnly = No (default) or Yes (con sider any xref
; target files not listed in [XrefFiles] to refer to the current
; file.) This suppresses filenames for DocBook where files are in the
; same DocBook book; files not in the book must be l isted in
; [XrefFiles].
UseListedXrefFilesOnly=No

See also:

§24.9 Configuring cross references and links for DITA on page 489
§26.3.2 Configuring links for DocBook XML on page 502
§28.2.6 Forcing link text to lowercase on page 549

(No illustrations)
(No tables)

http://www.w3.org/XML/Linking

ALL RIGHTS RESERVED. MAY 19, 2013 455

24 Converting to DITA XML

DITA2Go generates topics and maps for DITA XML output from DITA XML input This
section shows how to configure DITA-specific options. Topics include:

§24.1 Generating DITA XML output from DITA input on page 455
§24.2 Setting up a DITA XML project on page 455
§24.3 Specifying general options for DITA on page 458
§24.4 Configuring DITA elements on page 459
§24.5 Nesting DITA block elements on page 471
§24.6 Specifying options for tables in DITA XML on page 480
§24.7 Specifying options for images in DITA XML on page 482
§24.8 Configuring DITA topics on page 484
§24.9 Configuring cross references and links for DITA on page 489
§24.10 Including CSH targets in DITA XML on page 491
§24.11 Overriding DITA settings with markers on page 491

See also:
§25 Configuring DITA maps on page 493
§41 Working with content models on page 753

24.1 Generating DITA XML output from DITA input
Why would you want to do such a thing? Perhaps to reorganize elements, move to a
different DTD, adapt content or restructure for a different purpose?

To transform or repurpose DITA XML with DITA2Go requires two steps:

1. Map DITA input elements to formats.

2. Map those formats to DITA output elements.

You can name the formats directly after elements, either input or output elements, if that
makes sense for your conversion. Conserving elements that do not require reworking is
very simple: map unaffected elements to formats of the same name. However, you also
have the flexibility to do much more when a clear element-to-element mapping will not
suffice.

The only other way to rework DITA XML is to use XSLT, which for anything non-trivial
requires serious programming skills.

24.2 Setting up a DITA XML project
To add or change any of the options described in this section, edit configuration file
_d2dita.ini , located in your project directory. Or, to apply the changes to all of your
DITA XML projects, edit the configuration file referenced by _d2dita.ini :

%omsyshome%\d2g\local\config\local_d2dita_config.in i .

See §39.4 Deciding which configuration file to edit on page 734.

In this section:
§24.2.1 Creating a DITA XML project on page 456
§24.2.2 Specifying DITA output options on page 456

SETTING UP A DITA XML PROJECT DITA2GO USER’S GUIDE

456 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§24.2.3 Specifying DITA version on page 456
§24.2.4 Configuring the DITA DTD SYSTEM identifier on page 457

24.2.1 Creating a DITA XML project

Easier: use the DITA2Go Project Manager to start a new project; see §2.1 Creating a
DITA2Go conversion project on page 39.

To create a DITA XML project without using the DITA2Go Project Manager:

1. Create a directory for DITA output, separate from the directory where your DITA
input document is located.

2. Copy configuration file d2dita.ini from your DITA2Go config directory (see
§1.3.1 Set up a framework for Omni Systems applications on page 29), or from an
existing DITA2Go project, to your newly created output directory:

DITA2Go copies a new project configuration file, _d2dita.ini , to your project
directory. This file contains a series of empty configuration sections. It is up to you to fill
these sections with the rest of the settings required to convert your document. Use a text
editor to edit _d2dita.ini ; see §3.1 Working with DITA2Go configuration files on
page 49.

24.2.2 Specifying DITA output options

To change the file extension for DITA output (not recommended):
[Setup]
FileSuffix = . ext

The default file extension is .dita . Unless you have a compelling reason, use .dita , not
.xml , for the output file extension. Many places in DITA depend on that extension, and
will break if you do not use it; for example, related links would be assigned the wrong
@format value, and so would not work correctly in many tools.

24.2.3 Specifying DITA version

By default, DITA2Go produces output for DITA version 1.1. However, you can restrict
output to features that conform to DITA version 1.0, and you can generate version 1.2
output by specifying 1.1 and using the mechanism provided for specializations and
content models; see §41 Working with content models on page 753.

To specify DITA version 1.0 output:
[DITAOptions]
; DITAVer = DITA version point number, 1 (default, for 1.1)
; or 0 (for 1.0)
DITAVer = 0

When DITAVer=1 , output can include the following DITA 1.1 features:

 • elements <index-see> , <index-see-also> , and <index-sort-as>

 • index range attributes
 • elements <abstract> , <foreign> , <unknown> , and <data>

 • topic types glossentry and bookmap, and the elements they contain.

When DITAVer=0 , these features are omitted from output.

24 CONVERTING TO DITA XML SETTING UP A DITA XML PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 457

24.2.4 Configuring the DITA DTD SYSTEM identifier

To have DITA2Go use a DTD SYSTEM identifier without a path, when required for other
DITA processing applications:

[DITAOptions]
; UseDTDPath = Yes (default, use full URL to DTD at OASIS) or No (just
; use the DTD name with no path, required for XMeta L and some CMSs).
UseDTDPath = No

24.2.5 Substituting document format names for defa ult names

When DITA2Go creates a configuration file for a new DITA project, the default settings
in all configuration sections that involve assigning a property to a format are based on the
format names in a standard template.

If you want format names different from those in the standard template, you must change
these settings. You must also add settings for other formats that you want to map to other
than the default block and inline elements, which are <p> and <ph> , respectively.

Note: It is best not to delete any default settings until you know what you are doing.

Default settings in the following configuration sections are based on formats in the
standard template:

[DITAParaTags]

[DITACharTags]

[DITACharTypographics]

[DITALevels]

[DITAParents]

[DITAParaTags] Only a few paragraph formats are automatically mapped to DITA elements:
[DITAParaTags]
; para format (wildcards OK) = DITA element
Body=p
Heading*=title
Numbered=li
Numbered1=li
Bulleted=li
FigureTitle=title
CellBody=p
CellHeading=p

See §24.4.3 Mapping paragraph formats to DITA block elements on page 460.

[DITACharTags] Only one character format is automatically mapped to a DITA element:
[DITACharTags]
Emphasis=i

See §24.4.4 Mapping character formats to DITA inline elements on page 465.

[DITACharTypog
raphics]

The only character format automatically included here is Emphasis; combined with its
default mapping in [DITACharTags] , this setting makes Emphasis both bold and italic:

[DITACharTypographics]
; char format (wildcards OK) = DITA typographic
; elements (any or all of b, i, u, tt, sup, or sub) to use in
; addition to the element to which the format is map ped in
; [DITACharTags].
Emphasis=b

See §24.4.5 Assigning multiple typographic elements to a format on page 467.

SPECIFYING GENERAL OPTIONS FOR DITA DITA2GO USER’S GUIDE

458 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[DITALevels] By default, a paragraph format named Title that is not explicitly mapped in
[DITAParaTags] becomes a <title> element, which is always at level 1 in its DITA
topic:

[DITALevels]
; format (para or char, wildcards OK) = level in DI TA
; file required for the DITATag specified for this element.
Title=1
Heading*=3

See §24.5.12 Specifying DITA element levels on page 479.

[DITAParents] Only a few paragraph formats are automatically assigned DITA parents:
[DITAParents]
; format (para or char, wildcards OK) = required pa rents
Title=topic
Heading*=section
Numbered1=ol
Numbered=ol
Bulleted=ul
FigureTitle=fig

See §24.5.2 Designating DITA ancestor elements on page 472.

24.3 Specifying general options for DITA
This section summarizes DITA-specific default values and recommended options for
configuration settings in the following areas:

Declaration
Standard XML options
Filtering options
Style options
CSS
Context-sensitive help

Declaration DITA2Go sets the following default values for the PUBLIC declaration, depending on the
DITA version and on the topic type. For example, for DITA version 1.1 and topic type
concept :

[HTMLOptions]
HTMLDocType="-//OASIS//DTD DITA 1.1 Concept//EN"
HTMLDTD="docs.oasis-open.org/dita/v1.1/CS01/dtd/con cept.dtd"

If you need the declaration to comply with the requirements of third-party tools, you can
override the default values. See §41.7.2 Overriding settings in a DITA content model on
page 762 and §41.7.4 Overriding declarations in a DITA map content model on page 763.

Standard XML
options

The following XML settings cannot be overridden:
[HTMLOptions]
AlignAttributes = No
NoFonts = Yes

[Tables]
TableAttributes = No

Filtering options These settings provide DITA-specific default values for assorted options; you do not have
to include the following settings in your configuration file unless you change their values:

[HTMLOptions]
; The following are the DITA-specific defaults for each setting:
FileSuffix = .dita
RemoveANames = Yes

24 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 459

ATagElement = xref
XMLEncoding = UTF-8
NumericCharRefs = No
FootInlineTag = fn
HardRetPara = No
RemoveEmptyParagraphs = Yes
RemoveEmptyTableParagraphs = Yes

See §22 Converting to HTML/XHTML on page 429.

Style options Keep empty paragraphs empty (if not removed):
[HTMLOptions]
EmptyParaContent =

See §30.2.5 Providing content for empty paragraphs on page 569.

CSS The CSS file DITA2Go generates for DITA specifies classes only, no tags, so that it can
be used for HTML outputs generated from the DITA files. These options are in effect by
default:

[CSS]
WriteClassAttributes = No
ClassIsTag = No

which results in [DITAOptions]UseOutputClass=No .

To include CSS class names, specify [DITAOptions]UseOutputClass=Yes , then
convert @outputclass to class attributes in the HTML. Setting [CSS]UseCSS=Yes
also sets [DITAOptions]UseOutputClass=Yes ; see §31.4.1 Specifying CSS options
in a DITA2Go configuration file on page 593.

Note: To include CSS class names as outputclass attributes, make sure your
configuration file does not specify [CSS]WriteClassAttributes=No .

Context-sensitive
help

By default, DITA output includes all context-sensitive help targets provided in your source
document via TopicAlias PI markers, in the following form:

<data name="topicalias" value="IDH_ about" />

To exclude these targets from DITA output:
[DITAOptions]
; UseTopicAlias = Yes (default, include CSH targets in DITA output)
; or No
UseTopicAlias=No

See:
§16.10 Setting up Context Sensitive Help (CSH) on page 277
§24.10 Including CSH targets in DITA XML on page 491

24.4 Configuring DITA elements
In this section:

§24.4.1 Understanding how DITA2Go delimits DITA elements on page 460
§24.4.2 Treating format names as DITA element names on page 460
§24.4.3 Mapping paragraph formats to DITA block elements on page 460
§24.4.4 Mapping character formats to DITA inline elements on page 465
§24.4.5 Assigning multiple typographic elements to a format on page 467
§24.4.6 Assigning attributes to DITA elements on page 468
§24.4.7 Preserving whitespace in block elements on page 471

CONFIGURING DITA ELEMENTS DITA2GO USER’S GUIDE

460 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

24.4.1 Understanding how DITA2Go delimits DITA ele ments

DITA2Go closes each element mapped from a paragraph format when a paragraph in that
format ends. For example, even though a DITA list can be inside a <p> element,
DITA2Go does not put it there; instead, the <sl> follows the <p>. Only elements that are
marked as inline, including elements mapped from character formats, and inline images,
are placed within a <p> element.

An interpolated block element stays open until DITA2Go encounters a paragraph that is
not valid in that block.

Lists are identified by the format mapped to the list element it populates, such as or
<sli> ; see §24.4.3 Mapping paragraph formats to DITA block elements on page 460, or
by the parent of the mapped element; see §24.5.2 Designating DITA ancestor elements on
page 472. DITA2Go provides the wrappers around the list items and around the whole
list.

24.4.2 Treating format names as DITA element names

If most formats are named for DITA elements, you can lessen the chore of mapping
formats to elements by directing DITA2Go to use the format name as the DITA element
name wherever possible (that is, where the content model includes an element of that
name). This works only if the named element is of an appropriate type: block allowing text
for a paragraph format, or inline allowing text for a character format; see §41.6 Inspecting
and correcting element types on page 760.

However, leaving any paragraph format unmapped is risky; some formats might match the
names of DITA elements that do not do what you want.

To map format names to DITA elements of the same name where possible:
[DITAOptions]
; UseFormatAsTag = No (default, if tag unmapped use default elem),
; or Yes (if unmapped, use format name if valid in c ontent
; model).
UseFormatAsTag = Yes

When UseFormatAsTag=Yes , any format with a name that is the same as a DITA
element name in the current content model is mapped to that element.

When UseFormatAsTag=No , unmapped format names that do not correspond to
appropriate DITA element names are mapped to the default element; see:

§24.4.3.3 Specifying a default element for unmapped paragraph formats on page 462
§24.4.4.3 Specifying a default element for unmapped character formats on page 466.

24.4.3 Mapping paragraph formats to DITA block ele ments

Paragraph formats must be mapped to DITA block elements that can contain text, not to
inline elements or topic containers.

Make sure target
elements can

contain text

When you map paragraph formats to DITA block elements, you must ensure that the
element mapped to is allowed to contain text. For example, in a <task> , do not map to
<step> ; map to <cmd> or <info> , which fit inside <step> . For list items that can
include more than one paragraph, map the paragraph format(s) to <p>, and designate their
including list element; see §24.5 Nesting DITA block elements on page 471.

In this section:
§24.4.3.1 Assigning DITA elements to paragraph formats on page 461

24 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 461

§24.4.3.2 Omitting element tags for selected paragraph formats on page 462
§24.4.3.3 Specifying a default element for unmapped paragraph formats on page 462
§24.4.3.4 Omitting invalid tags for default DITA block elements on page 462
§24.4.3.5 Overriding element mapping for paragraph formats on page 463
§24.4.3.6 Providing aliases for paragraph formats on page 463
§24.4.3.7 Mapping paragraph format aliases to different elements on page 463
§24.4.3.8 Mapping paragraph format aliases algorithmically on page 464
§24.4.3.9 Mapping several paragraphs formats to the same element on page 465

24.4.3.1 Assigning DITA elements to paragraph form ats

To map paragraph formats in your document to DITA elements, assign the element name
to the format name:

[DITAParaTags]
; paragraph format (wildcards OK) = DITA element, c an be
; overridden by a DITATag marker; or format = No.
ParaFmtName = elementname

For example:
[DITAParaTags]
Heading* = title
Meta = keyword
Body = p
Example = p
List = sli
Numbered1 = p
Numbered = p
Bulleted = p
DefTerm = dt
DefDescription = dd
ParamTerm = pt
ParamDescription = pd
TableTitle = title
CellHeading = p
CellBody = p
Figure Title = title
Step = cmd
Syntax = p
CellContent = No
GlossItem = glossterm

Default element The default element for a paragraph format that is not mapped in [DITAParaTags]
depends on the value of [DITAOptions]UseFormatAsTag ; see §24.4.2 Treating format
names as DITA element names on page 460.

Do not map to
footnote or table

elements

DITA2Go processes footnotes and table components separately; do not map any
paragraph formats to footnote elements, or to any table component (table, title, row, or
cell) elements. If you are using the DITA Open Toolkit, see §24.9.4 Omitting <xref>
elements from footnotes on page 490.

Do not map to
element sets

You can assign element sets in [DITAParents] and in [DITAFirst] , but you cannot
use them for tags in [DITAParaTags] . See §24.5.5 Specifying alternate ancestries for the
same element on page 474.

Specify ancestry
for list formats

For list formats, if mapping the format to an element is not sufficient to identify the list
type, you must also specify the parent of the element; see §24.5.2 Designating DITA
ancestor elements on page 472. Definition lists can be derived from paragraph pairs.

CONFIGURING DITA ELEMENTS DITA2GO USER’S GUIDE

462 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Add typographic
elements

To add typographic elements (b, i , u, tt , sup , or sub) in addition to the element to which
a format is mapped, see §24.4.5 Assigning multiple typographic elements to a format on
page 467.

24.4.3.2 Omitting element tags for selected paragr aph formats

To specify that a particular paragraph format should not be mapped to any element:
[DITAParaTags]
ParaFmt = No

When ParaFmt=No, tags for the format are omitted from output, leaving the text of the
paragraph inside the enclosing element. Compare this setting with the effect of the
NoPara format property; see §30.2.4 Stripping paragraph properties on page 568. The
ParaFmt=No setting is similar, but for DITA output it is recognized in places where the
NoPara property is not. If you do not get the correct result with one, try the other.

DITA2Go assumes a paragraph mapped to No contains PCDATA, and checks to ensure
PCDATA is valid at the current point. If a paragraph format mapped to No has no text
content, DITA2Go ignores it, checking to see if PCDATA is valid only if there really is
some PCDATA.

Delete
paragraphs with

unwanted text

If an instance of a paragraph format mapped to No contains text, and PCDATA is not valid
in the current enclosing element, then if closing current tags does not solve the problem,
DITA2Go does not try to interpolate. Instead, DITA2Go issues a “parent error”. In this
case it is your responsibility to map such a paragraph format to an appropriate element
rather than to No.See §30.2.6 Eliminating unwanted paragraphs on page 569.

Map code-
example formats

to No

You can map formats to No for code examples (which can run on for pages), to avoid
having each line of code mapped to a separate <codeblock> element:

[DITAParaTags]
Code* = No

[DITAParents]
Code* = codeblock

In this example, specifying ancestry guarantees that DITA2Go will retain the original line
breaks, instead of normalizing them as for HTML or XML. See §24.5.2 Designating DITA
ancestor elements on page 472.

24.4.3.3 Specifying a default element for unmapped paragraph formats

To specify a default element to use for unmapped paragraph formats:
[DITAOptions]
; DefParaElem = element to use for para formats tha t are
; not mapped in [DITAParaTags], default is "p".
DefParaElem = p

If your configuration file does not include a value for DefParaElem , DITA2Go uses one
of the following as the element for an unmapped format: if UseFormatAsTag=Yes and
the format name (adjusted as for CSS class names) matches the name of a valid element in
the current content model, the format is mapped to that element; otherwise, the format is
mapped to p, the default value of DefParaElem . See §24.4.2 Treating format names as
DITA element names on page 460.

24.4.3.4 Omitting invalid tags for default DITA bl ock elements

Some DITA block elements allow only #PCDATA, not paragraph tags. When a “normal”
paragraph must be placed inside one of these blocks, the paragraph tag should be omitted.

24 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 463

For enclosing block elements that allow mixed content, you can avoid this problem by
directing DITA2Go to omit the default paragraph tags instead of interpolating a parent.

To omit invalid default paragraph tags where mixed content is allowed:
[DITAOptions]
; DropInvalidParaTag = No (default) or Yes (if the para tag is the
; default DefParaElem <p> and is invalid, but #PCDAT A is valid,
; drop the tag)
DropInvalidParaTag = Yes

See also:
§24.5.3 Fixing up interpolated ancestries on page 473

24.4.3.5 Overriding element mapping for paragraph formats

To override the element-name mapping for a given paragraph, insert a DITATag marker in
the paragraph, with content the desired element name.

If mapping (or overriding mapping) does not suffice, and you do not need to specify a
required ancestry for the element, use the following instead:

 • [HTMLParaStyles] CodeBefore and CodeAfter properties for the format
 • [ParaStyleCodeBefore] and [ParaStyleCodeAfter] sections to specify the

element tags to surround the text.

See §37.9.3 Surrounding or replacing text with code or macros on page 711.

Another alternative would be to bracket the text with Config PI markers, with content such
as [ParaStyleCodeBefore]=< element> and [ParaStyleCodeAfter]=
</ element>; see §42.2.2 Overriding settings with configuration PI markers on
page 767.

Note: Mappings provided via [ParaStyleCode*] settings or markers do not
participate in any ancestry you specify for the element in question; see §24.5
Nesting DITA block elements on page 471.

24.4.3.6 Providing aliases for paragraph formats

To specify an alternate name, or alias, for a paragraph format:
[DITAAliases]
; paragraph format = format name to use in place of that
; paragraph format for DITA purposes, or DITA2Go selection macro.
ParaFmtName = AlternateName

An alias works in any [DITA*] configuration section that uses format names. The alias
can be the name of another paragraph format, provided the two formats map to exactly the
same element with all the same DITA settings; or, the alias can be a name you invent.

For additional aliases for the same format, insert a DITAAlias marker in each instance of
the format that requires a different alias, with content the name of another alias. You can
also use a DITAAlias marker to override an alias assigned in section [DITAAliases] .

You can use as many different aliases for the same paragraph format as your document
requires.

24.4.3.7 Mapping paragraph format aliases to diffe rent elements

Suppose your document includes a paragraph format named Body2, used in the following
situations:

 • most often as a continuation of a Numbered1 or Numbered paragraph

CONFIGURING DITA ELEMENTS DITA2GO USER’S GUIDE

464 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • less often as a continuation of a Bulleted paragraph
 • occasionally as a quotation, not part of any list.

This means that in different places in your document Body2 would have to be mapped to
different elements, or participate in different DITA hierarchies.

To resolve this conflict, you would assign aliases to the alternate uses of Body2. You could
keep the original format name for the most frequent use; however, the name Body2 does
not convey anything about the differing semantics. Therefore you might want to use
aliases for every use; for example, Body2OList, Body2UList, and Body2Quote.

To create an alias for the most prevalent use of Body2:
[DITAAliases]
Body2 = Body2OList

For the other two uses of Body2, you must insert a DITAAlias PI marker in each instance,
with content one of the other aliases: Body2UList or Body2Quote. Then you could specify
the following in configuration file d2dita.ini :

[DITAParaTags]
Body2?list = p
must = lq

Instead of using a DITAAlias PI marker, you can provide differential mappings of the same
format by assigning DITA2Go macros to the aliases; see §37 Working with macros on
page 679.

24.4.3.8 Mapping paragraph format aliases algorith mically

Suppose you use the same paragraph formats for numbered lists (for example, NumFirst
and NumNext) both in material for <concept> topics and in material for <task> topics:

 • When the list occurs in a <concept> , it should be mapped to ol > li .
 • When the list occurs in a <task> , it should be mapped to steps > step > cmd .

To choose between alternate format aliases depending on the DITA context, you can
assign to a format a DITA2Go macro that selects an alias according to the start tag of the
current topic. For example:

[DITAAliases]
NumFirst = <$(($$_ditastart is "task") ? "StepFirst " : "OLFirst")>
NumNext = <$(($$_ditastart is "task") ? "StepNext" : "OLNext")>

These assignments say that if the topic start tag is task , use the Step* format name,
otherwise use the OL* format name, in place of the original Num* format name. The
assignments use predefined macro variable $$_ditastart, which contains the start tag
of the current DITA topic.

You would assign the desired DITA elements to the alternate format names. For example:
[DITAParaTags]
Step* = step
OL* = li

You would also create entries for the alternate formats in [DITAParents] , and if needed
in [DITALevels] , and so forth. In effect, you have created semantic formats from
descriptive format.s.

The macros you assign do not have to select based on topic type; you can set macro
variables to test for other properties or situations. The ability to assign a macro to a format
name provides a general-purpose algorithmic way to map from formats to DITA elements,
allowing you to deal with cases that normal mapping cannot handle.

24 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 465

24.4.3.9 Mapping several paragraphs formats to the same element

Suppose your document includes three different paragraph formats for quotations:
Quote in body text
FtnQ in footnotes
CellQ in table cells.

All three map to DITA element <lq> . You can make this semantic equivalence explicit in
section [DITAAliases] , and use the collective alias in other configuration sections:

[DITAAliases]
FtnQ = Quote
CellQ = Quote

[DITAParaTags]
Quote = lq

24.4.4 Mapping character formats to DITA inline el ements

When you map character formats to DITA elements, make sure that the element mapped to
is allowed to contain text. For example, do not map to <menucascade> , map to a
<uicontrol> with <menucascade> as parent.

In this section:
§24.4.4.1 Assigning DITA elements to character formats on page 465
§24.4.4.2 Including typographic elements in addition to mapped formats on page 466
§24.4.4.3 Specifying a default element for unmapped character formats on page 466
§24.4.4.4 Overriding element mapping for character formats on page 466
§24.4.4.5 Using alternate character formats for menu cascades on page 467

24.4.4.1 Assigning DITA elements to character form ats

To map character formats in your document to DITA inline elements, assign the element
name to the format name:

[DITACharTags]
; character format (wildcards OK) = DITA element, c annot be
; overridden by a DITATag marker; or format = No.
CharFmtName = elementname

For example:
[DITACharTags]
Strong=b
Emphasis=i
BoldItalic=b
Subscript=sub
Superscript=sup
Mono=tt
Link=No

To specify that a particular character format should not be mapped to an element:
[DITACharTags]
CharFmtName = No

The value No means that the tags for the format should be omitted, leaving the text inside
the enclosing element. For example, map the character formats you use for links and cross
references to No. DITA2Go automatically generates <xref> tags from the cross
references in your document, based on the format, but you do not need to map the format

CONFIGURING DITA ELEMENTS DITA2GO USER’S GUIDE

466 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

itself to any element. See §24.9 Configuring cross references and links for DITA on
page 489.

The default element for a character format that is not mapped in [DITACharTags] is the
element designated by DefCharElem ; see §24.4.4.3 Specifying a default element for
unmapped character formats on page 466. It is best to map each character format to the
most specific element possible, which is not often the default element.

24.4.4.2 Including typographic elements in additio n to mapped formats

You can add typographic elements in addition to the element to which a character format
is mapped.

To include typographic elements in DITA XML output:
[Typographics]
; UseTypographicElements = No (XML default, suppres s b, i, u, tt, sub,
; and sup even when specified in a format) or Yes (HTML default)
UseTypographicElements = Yes

When UseTypographicElements=Yes , typographic elements b, i , u, tt , sup , and
sub appear in DITA XML output in addition to any elements to which character formats
are mapped.

If any character formats are mapped to elements, and your project configuration file
includes a UseTypographicElements setting, to avoid double nesting make sure you
use the XML default value: UseTypographicElements=No .

Incorporate typographic elements sparingly, especially if you are using <outputclass> ;
see §24.4.6.6 Providing outputclass attributes for all elements on page 471. DITA asks for
semantic, not presentational, tags. It is best to let CSS handle the presentation later.

See also:
§24.4.5 Assigning multiple typographic elements to a format on page 467
§30.7 Managing typographic elements for HTML or XML on page 579

24.4.4.3 Specifying a default element for unmapped character formats

To specify a default element to use for unmapped character formats:
[DITAOptions]
; DefCharElem = element for char formats that are n ot
; mapped in [DITACharTags], default is "ph"
DefCharElem = ph

If your configuration file does not include a value for DefCharElem , DITA2Go uses one
of the following as the element for an unmapped format: if UseFormatAsTag=Yes and
the format name (adjusted as for CSS class names) matches the name of a valid element in
the current content model, the format is mapped to that element; otherwise, the format is
mapped to ph, the default value of DefCharElem . See §24.4.2 Treating format names as
DITA element names on page 460.

24.4.4.4 Overriding element mapping for character formats

If mapping a character format does not suffice for a phrase element, you can use
DITAStartElem and DITAEndElem markers placed at the start and end, respectively, of the
character span to be delimited as a phrase element. The content of each marker is the tag
name for the inline element; DITA2Go provides the < > and </ > . You cannot use a
DITATag marker to override the element-name mapping for an inline element.

24 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 467

24.4.4.5 Using alternate character formats for men u cascades

Because the DITA <menucascade> element allows only <uicontrol> as content, text
is excluded; you cannot use spaces, or any other character outside the <uicontrol>
format, as separators.

The workaround is to create two character formats; for example, mc1 and mc2; and apply
them alternately to <uicontrol> elements when those elements are in a
<menucascade> . You would map both formats to <uicontrol> :

[DITACharTags]
mc* = uicontrol

And indicate that the elements mapped from both formats must be in a <menucascade> :
[DITAParents]
mc* = menucascade

See §24.5.2 Designating DITA ancestor elements on page 472.

24.4.5 Assigning multiple typographic elements to a format

DITA2Go suppresses overrides that are not part of a paragraph or character format, and
uses only the single element mapped from the format name in [DITAParaTags] or in
[DITACharTags] . This can be problematic if, for example, a character format should
map to both and <i> . In that case, you have to map the format to one of the elements
in [DITACharTags] , and assign the other(s) as follows:

[DITACharTypographics]
; character format (wildcards OK) = DITA typographi c elements
CharFmtName = typelem1 typelem2 ...

Likewise for paragraph formats:
[DITAParaTypographics]
; paragraph format (wildcards OK) = DITA typographi c elements
ParaFmtName = typelem1 typelem2 ...

You can assign any or all of b, i, u, tt , sup , or sub , in addition to the element to which
the format is mapped in [DITAParaTags] or in [DITACharTags] . You must map the
format to an element (not to No) in [DITAParaTags] or in [DITACharTags] , then add
the rest of the elements (but not the one already mapped) here. For example:

[DITACharTags]
CodeBoldItal = tt

List the elements separated by spaces:
[DITACharTypographics]
CodeBoldItal = b i

The tags are applied in the order listed. For example, with these settings a CodeBoldItal text
fragment would be enclosed in <tt><i>...</i></tt> .

We advise minimal use of this feature. Typographic presentation markup is best left to
later processing, such as with a CSS rule based on the outputclass attribute of the
DITA semantic element. For example, map character format CodeBoldItal to <ph> , and
expect the HTML output to produce , which can be
handled by CSS for selector span.codeboldital .

See §24.4.6.6 Providing outputclass attributes for all elements on page 471.

CONFIGURING DITA ELEMENTS DITA2GO USER’S GUIDE

468 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

24.4.6 Assigning attributes to DITA elements

You can apply attributes to a DITA block or inline element by assigning attribute=
" value" pairs to the format mapped to the element. The attributes you assign with
configuration settings apply to all instances of the element in question. Only those
attributes assigned to elements mapped from paragraph formats can be overridden with
markers.

The following are special cases:

 • A value for the id attribute can be assigned only with a DITAElemID marker.
 • Attributes of <xref> elements require different settings; see §24.9 Configuring cross

references and links for DITA on page 489.
 • The outputclass attribute can be assigned to the root element only with a

DITATopicOutputclass marker.

In this section:
§24.4.6.1 Specifying a value for the id attribute on page 468
§24.4.6.2 Including an id attribute in every element on page 469
§24.4.6.3 Specifying attribute values for the root element of a topic on page 469
§24.4.6.4 Specifying attribute values for a block element or parent on page 469
§24.4.6.5 Specifying attribute values for an inline element on page 470
§24.4.6.6 Providing outputclass attributes for all elements on page 471

See also:
§24.6 Specifying options for tables in DITA XML on page 480

24.4.6.1 Specifying a value for the id attribute

To specify an ID for a block element, place a DITAElemID PI marker in the paragraph. The
content of the marker is the value of the id attribute. When you place a DITAElemID PI
marker at the start of a topic, the content of the marker becomes the id attribute of the
<title> element for that topic.

Note: For an embedded topic (as opposed to a block element), you must use a
DITATopicID PI marker instead; see §24.8.3 Specifying the ID for a DITA topic on
page 487.

Note: The id attribute value must start with a letter.

DITA2Go provides a default id attribute for each of the following block elements:
<table> (all types)
<fig> (but not <image>)
<section>
<example>
<refsyn>
<fn>

Links to any of these elements automatically pick up the id attribute, and also the correct
type attribute of the element. For links to other elements, you have to insert either a PI
marker or a DITAElemID PI marker in the target paragraph, and specify the link type
attribute with a DITALinkType PI marker; see §24.9.5.3 Specifying the <xref> type
attribute on page 491.

24 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 469

Interpolated
parent id attribute

When the parent of the current block element is interpolated by DITA2Go (see §24.4.1
Understanding how DITA2Go delimits DITA elements on page 460), you cannot use a
DITAElemID PI marker to specify an ID for that parent.

To specify an ID for the parent of the current block element, place a DITAParentID PI
marker in the element, with content as follows:

parentname=parentid

Do not include spaces around the equals sign.

24.4.6.2 Including an id attribute in every elemen t

By default, DITA2Go automatically provides id attributes only for elements that require
them; basically, any element that is a link target. To direct DITA2Go to include an id
attribute in every element where the id attribute is valid:

[DITAOptions]
; SetElementIDs = No (default) or Yes (add @ids whe rever possible)
SetElementIDs = Yes

When SetElementIDs=Yes , DITA2Go constructs an ID to use for the id attribute of
every element for which an id attribute is valid, provided the element does not already
have an id attribute assigned some other way, such as with a DITAElemID PI marker (see
§24.4.6.1 Specifying a value for the id attribute on page 468).

24.4.6.3 Specifying attribute values for the root element of a topic

To apply attributes to the root element of the current topic, assign attribute=" value"
pairs, separated by spaces, to the paragraph format for the topic title:

[DITATopicRootAttrs]
; para format for topic title (wildcards OK) = attr ibutes for
; the root element of the current topic.
ParaFmt = attribute1=" value1" attribute2=" value2" ...

For example, for attributes to support another tool such as Docato that you will use to
manage the DITA XML output, suppose your paragraph format for concept topic titles is
ConHead:

[DITATopicRootAttrs]
ConHead = xmlns:xsa3="http://dita.oasis-open.org/ar chitecture/2005/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
xsi:noNamespaceSchemaLocation="../../catalog/concep t.xsd"

Of course this assignment would have to be all on one line in your configuration file,
though it might not look that way here.

You can override root-element attributes with a DITATopicRootAttr PI marker.

24.4.6.4 Specifying attribute values for a block e lement or parent

For attributes of block elements, you can do the following:
Assign block element attributes
Override block element attributes
Assign interpolated parent attributes
Override interpolated parent attributes

When you want to override default or assigned attributes, keep in mind:
Where to use DITAAttribute markers

CONFIGURING DITA ELEMENTS DITA2GO USER’S GUIDE

470 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Assign block
element attributes

To apply attributes (other than id) to a block element (other than <xref>), assign
attribute=" value" pairs, separated by spaces, to the paragraph format(s) mapped to
the element:

[DITAParaAttributes]
; para format (wildcards OK) = attributes
ParaFmt = attribute1=" value1" attribute2=" value2" ...

You can use DITA2Go macros for any part of the assignment, or even for the entire
assignment. For example:

[DITAParaAttributes]
ParaFmt = <$ MacroToWriteAttrs>

Override block
element attributes

To override a setting in [DITAParaAttributes] or to override default attributes for a
particular instance of a block element, place a DITAAttribute PI marker in a paragraph
mapped to the element, with content as follows:

elementname: attribute1=" value1" attribute2=" value2" ...

For example:
linklist: role="friend" type="reference"

The name of the element must be followed by a colon. Separate attribute=" value"
pairs with a space. Each value must be enclosed in double quotes. You can use DITA2Go
macros for everything after the colon.

Assign
interpolated

parent attributes

To assign attributes to an interpolated parent of a block element:
[DITAParentAttributes]
; para format (wildcards OK) = parentname: attribut es
ParaFmt = parentname: attribute1=" value1" attribute2=" value2" ...

You can use DITA2Go macros for the assignment.

Override
interpolated

parent attributes

To override a setting in [DITAParentAttributes] or to override default attributes for
an interpolated parent of a block element, place a DITAAttribute PI marker in a paragraph
mapped to the element, with content as follows:

parentname: attribute1=" value1" attribute2=" value2" ...

To apply attributes to more than one interpolated parent, use a separate marker for each
parent.

Where to use
DITAAttribute

markers

Use DITAAttribute PI markers only to supply attribute values other than the DTD default
values for an element, or to override attribute values specified in a configuration file. Do
not use DITAAttribute PI markers for any of the following:

 • The id attribute of the current element; use a DITAElemID PI markermarker instead.
See §24.4.6.1 Specifying a value for the id attribute on page 468.

 • The id attribute of an interpolated parent of the current element; use a DITAParentID
PI marker instead. See §24.4.6.1 Specifying a value for the id attribute on page 468.

 • Any <xref> element attributes; use DITALink* PI markers instead. See §24.9.5
Overriding <xref> attribute values on page 490.

A DITAAttribute PI marker overrides settings in [DITAParaAttributes] and
[DITAParentAttributes] , but does not override settings in
[DITACharAttributes] (see §24.4.6.5 Specifying attribute values for an inline
element on page 470) or [TableAttributes] (see §24.6 Specifying options for tables
in DITA XML on page 480).

24.4.6.5 Specifying attribute values for an inline element

To apply attributes (other than id) to an inline element, assign attribute=" value"
pairs, separated by spaces, to the character format(s) mapped to the element:

24 CONVERTING TO DITA XML NESTING DITA BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 471

[DITACharAttributes]
; char format (wildcards OK) = attributes
CharFmt = attribute1=" value1" attribute2=" value2" ...

You cannot use markers to override settings in [DITACharAttributes] .

24.4.6.6 Providing outputclass attributes for all elements

By default, DITA2Go does not try to assign CSS classes to DITA elements (unless you set
[CSS]UseCSS=Yes ; see §31.4 Specifying CSS file and link options on page 593).

To direct DITA2Go to provide an outputclass attribute for elements that allow this
attribute:

[DITAOptions]
; UseOutputClass = No (default when [CSS]UseCSS=No)
; or Yes (default when [CSS]UseCSS=Yes)
UseOutputClass = Yes

When UseOutputClass=Yes , DITA2Go includes an outputclass attribute where
allowed. The value of the attribute is the [ParaClasses] or [CharClasses]
assignment (if any) for the format mapped to the element, otherwise the name of the
format mapped to the element. See §31.7 Assigning CSS classes on page 599.

Note: To include outputclass attributes, make sure your configuration file does not
specify [CSS]WriteClassAttributes=No .

Root element
outputclass

The only way to include an outputclass attribute in the root element is with a
DITATopicOutputclass marker: place the marker anywhere in the topic, and make the
content of the marker the value of the outputclass attribute.

24.4.7 Preserving whitespace in block elements

To make sure content will be processed with whitespace preserved:
[DITAPreformatted]
; element name = Yes (default for <codeblock>)
; or No (default for all other block elements)
codeblock = Yes

When elementname=Yes , DITA2Go processes the element in question with whitespace
unchanged, as in HTML <pre> elements (see §30.9 Configuring preformatted text for
HTML/XML on page 581).

24.5 Nesting DITA block elements
In this section:

§24.5.1 Understanding how DITA2Go determines element nesting on page 472
§24.5.2 Designating DITA ancestor elements on page 472
§24.5.3 Fixing up interpolated ancestries on page 473
§24.5.4 Deciding when to fully specify ancestry on page 474
§24.5.5 Specifying alternate ancestries for the same element on page 474
§24.5.6 Avoiding invalid ancestries on page 475
§24.5.6 Avoiding invalid ancestries on page 475
§24.5.8 Configuring nested lists on page 476
§24.5.9 Closing DITA ancestor elements on page 476
§24.5.10 Opening DITA ancestor elements on page 477

NESTING DITA BLOCK ELEMENTS DITA2GO USER’S GUIDE

472 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§24.5.11 Configuring multi-paragraph list items on page 478
§24.5.12 Specifying DITA element levels on page 479

See also:
§24.7.1 Designating ancestors for <image> and <fig> elements on page 482

24.5.1 Understanding how DITA2Go determines elemen t nesting

For each element, DITA2Go considers whether that element can go inside the current
parent element. If not, DITA2Go uses heuristic methods based on the possible parents,
level limitations, and current context. To provide a parent element DITA2Go selects, in
alphabetical order, the first wrapper element that can validly fit and that is permitted by
your settings. DITA2Go does not interpret the DTD to determine element nesting.

For example, in the absence of project configuration settings that designate valid parent
elements, you might find that most of your content ends up nested in <abstract> ,
because “abstract” is near the beginning of the alphabet.

As another example, suppose your document uses a sequential structure for steps in a
procedure: paragraph format Step1 for the first step, followed by several StepNext
paragraphs, all containing both commands and informational text. To convert this
structure to a hierarchical DITA structure, with paragraphs in both formats becoming
<step> children of a <steps> element, you would specify just one setting (see §24.4.3
Mapping paragraph formats to DITA block elements on page 460):

[DITAParaTags]
Step* = step

The first paragraph in the group forces creation of <steps> , because DITA requires
<steps> or <steps-unordered> as the parent of <step> , and of the two valid
candidate parents, <steps> comes first alphabetically. As soon as DITA2Go encounters a
paragraph format mapped to an element that is not valid in <steps> , the parent tag is
closed.

For problem cases, you can use a DITALevel PI marker to explicitly set the level for an
element; see §24.5.12 Specifying DITA element levels on page 479. However, for nested
lists, use a different approach; see §24.5.5 Specifying alternate ancestries for the same
element on page 474.

24.5.2 Designating DITA ancestor elements

For block elements such as that can have more than one possible ancestry, map any
paragraph formats to the intended (required) parent element, and if necessary, grandparent
element, even great-grandparent element. List ancestors in hierarchical order. Specify a
parent only if it is required to prevent incorrect output. If you find “Parent Error”
comments in the resulting XML, first try commenting out any related parent assignment in
[DITAParents] .

To specify required ancestors of elements mapped from formats (for example):
[DITAParents]
; Frame para format (wildcards OK) = required paren ts
Title = topic
Heading* = section
Numbered1 = ol li
Numbered = ol li
Bulleted = ul li
Figure Title = fig

24 CONVERTING TO DITA XML NESTING DITA BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 473

Syntax = refsyn
Example = example

In this example a Numbered1 paragraph (which is mapped to <p> in [DITAParaTags])
must have these ancestors:

.........

Therefore, each Numbered1 paragraph starts a new if and only if an is not
already open; and starts a new if and only if an under the is not already
open. To force a new for Numbered1 paragraphs, you must also give the
Numbered1 paragraph format first-child status under both parent and grandparent
elements; see §24.5.6 Avoiding invalid ancestries on page 475.

Note: For list items that can include more than one paragraph, map the paragraph format
to <p>, then designate its including list element as a parent.

Use this mapping for formats such as lists, in which elements are needed under
 or in addition to the <p> elements mapped in [DITAParaTags] .

List ancestors in
hierarchical order

If a parent element has more than one possible parent, and only one of those parents can be
a grandparent of the paragraph format in question, list both the grandparent and parent, in
hierarchical order.

Override
individual

ancestries

To override the [DITAParents] assignment for a given instance of a paragraph format,
place a DITAParent PI marker in the paragraph. Make the content of the marker the
name(s) of the ancestor element(s), in hierarchical order. A DITAParent PI marker
specifies the required ancestry for the current block element, overriding whatever is
specified in [DITAParents] .

See also:

§24.7.1 Designating ancestors for <image> and <fig> elements on page 482

24.5.3 Fixing up interpolated ancestries

Creating DITA structure from formats necessarily involves some trial and error. When you
see unexpected interpolation of inappropriate parent elements in your output, it is usually
because you have not specified parents for a particular format-to-element mapping. For
example, suppose you map paragraph format Ref to <p>, and use a Ref paragraph at the
top level of each reference topic, where <p> is not valid. On encountering a Ref paragraph
in this situation, with no parents specified for the Ref format, DITA2Go would go through
the list of valid parents for <p> in a reference topic, and interpolate the first set that works;
which might be <codeblock><draft-comment> .

The remedy is to figure out what would be a more appropriate lineage for the element in
question. You could specify that lineage for the format in [DITAParents] if it applies
generally, or insert a DITAParent PI marker in the paragraph for an isolated instance. In
this example, the following mapping would produce better results:

[DITAParents]
Ref = refbody section

The DITA2Go search algorithm finds the shortest path, but that is not always the only
shortest path, or the best path.

See also:
§24.4.3.4 Omitting invalid tags for default DITA block elements on page 462
§24.5.6 Avoiding invalid ancestries on page 475

NESTING DITA BLOCK ELEMENTS DITA2GO USER’S GUIDE

474 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

24.5.4 Deciding when to fully specify ancestry

You do not need to map paragraphs in [DITAParents] for elements that can have only
one possible ancestry, or for cases where DITA2Go can determine heuristically which of
the possible ancestors fits the context best. Specify ancestry in [DITAParents] when
more than one lineage is possible in the context of use.

Include as many ancestors as necessary to fully specify ancestry for the element to which a
paragraph format is mapped in [DITAParaTags] . If your document includes actual
instances of different ancestries for the same element, use sets of ancestors to specify the
alternatives; see §24.5.5 Specifying alternate ancestries for the same element on page 474.
In some cases you might have to include all ancestors up to the topic level, and you might
have to determine this necessity by trial and error; that is, list them all whenever not
including all ancestors causes unwanted nesting.

When DITA2Go encounters a set of ancestors specified either in [DITAParents] or in a
DITAParent marker, DITA2Go tries to nest the ancestor hierarchy in the current element.
If the entire hierarchy is valid in that position, that is where it stays. This means that if
your source document uses paragraph format Body (for example) for all text that is not
nested in a list, and you map Body to DITA element <p>, you must also specify non-list
parents for Body, because <p> can nest in ; in fact, in almost any block element.
Unless you can make sure every block element that could precede a Body paragraph gets
closed (see §24.5.9 Closing DITA ancestor elements on page 476), the Body <p> is likely
to be nested in the preceding element.

24.5.5 Specifying alternate ancestries for the sam e element

If your document uses the same paragraph format in several lineages, you can create a set
of alternate ancestor elements for DITA2Go to choose from, depending on the context.
The following predefined element sets are included in your project configuration file when
you first set up a DITA project. You can alter or delete these sets, and you can define
additional sets.

To define sets of elements to be considered as alternate ancestors:
[DITAElementSets]
; $setname = DITA elements in the set.
; These element sets are predefined in the starting .ini for DITA:
$top = body conbody taskbody refbody section step
$text = body conbody taskbody refsyn section step e ntry stentry
$list= ol ul

Each set name must start with a dollar sign ($). You must define each set as a collection of
elements; you may not define one element set in terms of other element sets.

You can use an element set name in place of an element name in [DITAParents] , in
[DITAFirst] , or in the corresponding DITAParent and DITAFirst PI markers. For
example:

[DITAParents]
Body = $text
Body2 = $top $list li

Any element in the set is acceptable at the point where it appears in the hierarchical
sequence. There is no equivalent marker.

See also:
§24.5.6 Avoiding invalid ancestries on page 475

24 CONVERTING TO DITA XML NESTING DITA BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 475

24.5.6 Avoiding invalid ancestries

For the purpose of constructing ancestries, by default DITA2Go treats topic as a
synonym for concept , task , reference , glossentry , and any other topic type, and
treats body as a synonym for any of the body types, such as conbody . This can cause
invalid interpolated ancestries, because DITA2Go might include an element, or wrap an
element in a parent, that is not valid for the topic type.

To avoid this problem and direct DITA2Go to treat topic and body as applying only to
the generic topic type:

[DITAOptions]
; UseCommonNames = Yes (default, in [DITAParents] a nd
; in [DITAElementSets], treat "topic" as a synonym for
; concept, task, reference, glossentry, and any oth er
; topic type, and treat "body" as a synonym for any of
; the body types like conbody), or No (treat topic and
; body as applying only to the generic "topic" type)
UseCommonNames = No

For example, when UseCommonNames=Yes (the default), a paragraph whose format is
Body will be allowed as a <body> element n a reference topic, where <body> is not
valid.

See also:
§24.5.5 Specifying alternate ancestries for the same element on page 474

24.5.7 Specifying first-child status for nested el ements

To specify parent elements in which the paragraph format mapped to a given block
element must appear as the first child:

[DITAFirst]
; Frame para format = parents under which the curre nt block element
; (or one of its parents) must be the first child.
Numbered1 = ol li
Numbered = li
Bulleted = li

If the parent element you assign to a paragraph format has more than one possible parent,
and the paragraph format in question needs to be first only for one of its possible
grandparents, list both the grandparent and parent, separated by spaces. You can list as
many ancestors as necessary to fully specify first-child status for the paragraph format.
List the ancestors in hierarchical order. The list must match the ancestor list in
[DITAParents] ; see §24.5.2 Designating DITA ancestor elements on page 472.

Use these settings mainly for lists, to ensure that a paragraph format starts a new list item
or a new list. For example, these settings specify the following for the list paragraph
formats mapped to <p> in [DITAParaTags] :

 • A Numbered1 <p> element must be the first child of its parent element, which
 element must be the first child of its parent; this setting forces first-child
status for the entire lineage of the elements listed, not just the last.

 • A Numbered <p> element or a Bulleted <p> element must be the first child of its parent
 element.

If you use definition lists or parameter lists, you must specify first-child status for the
paragraph format of the term. For example:

[DITAFirst]
DefTerm = dlentry
ParamTerm = plentry

NESTING DITA BLOCK ELEMENTS DITA2GO USER’S GUIDE

476 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To override the [DITAFirst] assignment for a given instance of a paragraph, place a
DITAFirst PI marker in the paragraph. Make the content of the marker the name(s) of the
desired ancestor element(s), in hierarchical order. A DITAFirst PI marker specifies that the
current block element must be the first child of its listed ancestor elements, overriding
whatever is specified in [DITAFirst] .

24.5.8 Configuring nested lists

If your document includes nested ordered or unordered lists (or a mix of the two), it is best
to specify a set of ancestor elements that includes both; see §24.5.5 Specifying alternate
ancestries for the same element on page 474. For example:

[DITAElementSets]
$list= ol ul

This particular element set is predefined in the starting configuration file for DITA output.
Specifying $list as an ancestor lets you have bullets subordinate to either bulleted or
numbered items, and vice-versa:

In your list items you must use <p> , not just , because the nested needs to
be inside the , and the smallest enclosing tag always closes at the end of the
paragraph (to prevent “pernicious mixed content” wherever possible). This way, the <p>
closes, but the stays open for the nested list.

Suppose your document includes a hierarchy of paragraph formats like this:
Body

Bulleted
BulletedSub
BulletedSub

Bulleted
BulletedSub
BulletedSub
BulletedSub

Body

You would specify the following settings for the bulleted items:
[DITAParaTags]
Bulleted = p
BulletedSub = p

[DITAParents]
Bulleted = $text ul li
BulletedSub = $text $list li ul li

[DITAFirst]
Bulleted = li
BulletedSub = li

Note: Do not try to use DITA levels to nest lists.

24.5.9 Closing DITA ancestor elements

To get a block element under the correct parent, you might have to specify that an ancestor
element (and all its descendants) must end when the current block element ends; or that
the prior block must end before the current block element begins.

In this section:
§24.5.9.1 Ending ancestor elements before the current block on page 477
§24.5.9.2 Ending ancestor elements after the current block on page 477

24 CONVERTING TO DITA XML NESTING DITA BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 477

24.5.9.1 Ending ancestor elements before the curre nt block

In some cases, it is not clear whether a paragraph is supposed to be a child of the preceding
element (or nest of elements). For example, by default a <p> element following a list item
becomes part of the , and that is not necessarily what you want.

To close an element (or a hierarchy of elements) before starting the current block (for
example):

[DITACloseBefore]
; para format = elements to be closed, with any oth er elements
; nested under them, before the current block eleme nt starts.
Recap = li
Body = ul ol

Use this setting to force closure of elements that were opened based on settings in
[DITAParents] ; see §24.5.2 Designating DITA ancestor elements on page 472. You can
list as many possible ancestors as necessary; order is not important.

For individual cases, you can insert a DITACloseBefore PI marker in the paragraph for the
current block element instead, with content the name(s) of the element(s) to close. You can
also use a DITACloseBefore PI marker to override a [DITACloseBefore] setting when
you want to close a higher (or lower) ancestor than the setting specifies.

24.5.9.2 Ending ancestor elements after the curren t block

In some cases, it is not clear whether the end of a block element should also end the
enclosing parent element. For example, if your document includes illustrations with the
figure title above the image, body paragraphs following the image would normally be
included in the <fig> element, because the content model allows <p> inside <fig> .

To close a parent element at the end of the current block element (for example):
[DITACloseAfter]
; para format = parent to be closed, with any other elements
; nested under it, at the end of the current block e lement.
FigAnchor = fig

Use this setting to force closure of elements that were opened based on settings in
[DITAParents] ; see §24.5.2 Designating DITA ancestor elements on page 472. You can
list as many possible ancestors as necessary; order is not important.

For individual cases, you can insert a DITACloseAfter PI marker in the paragraph for the
current block element instead, with content the name(s) of the ancestor element(s) to
close. You can also use a DITACloseAfter PI marker to override a [DITACloseAfter]
setting when you want to close a higher (or lower) ancestor than the setting specifies.

24.5.10 Opening DITA ancestor elements

To get a block element in the correct position in a hierarchy, you might have to force the
opening of interpolated ancestor elements first; or, in some cases, specify elements that
must be opened after the current element ends.

In this section:
§24.5.10.1 Starting ancestor elements before the current block on page 477
§24.5.10.2 Starting a new hierarchy after the current block on page 478

24.5.10.1 Starting ancestor elements before the cu rrent block

To open interpolated ancestor elements before starting the current block:

NESTING DITA BLOCK ELEMENTS DITA2GO USER’S GUIDE

478 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[DITAOpenBefore]
; Frame para format = elements to be opened, with a ny other elements
; nested under them, before the current block eleme nt starts.
somefmt = someancestor

Use this setting to force opening of elements when [DITAParents] does not suffice.

For individual cases, you can insert a DITAOpenBefore PI marker in the paragraph for the
current block element instead, with content the name(s) of the element(s) to open. You can
also use a DITAOpenBefore PI marker to override a [DITAOpenBefore] setting when
you want to open a higher (or lower) ancestor than the setting specifies.

24.5.10.2 Starting a new hierarchy after the curre nt block

To open a new element or hierarchy of elements after the current block ends:
[DITAOpenAfter]
; Frame para format = elements to be opened, with a ny other elements
; nested under them, after the current block elemen t ends.
somefmt = someancestor

Use this setting to force opening of elements when [DITAParents] does not suffice.

For individual cases, you can insert a DITAOpenAfter PI marker in the paragraph for the
current block element instead, with content the name(s) of the element(s) to open. You can
also use a DITAOpenAfter PI marker to override a [DITAOpenAfter] setting when you
want to open an element or hierarchy other than what the setting specifies.

24.5.11 Configuring multi-paragraph list items

By default, at the end of each paragraph DITA2Go closes the block element to which the
paragraph format is mapped (see §24.4.3 Mapping paragraph formats to DITA block
elements on page 460). If any list items in your document include multiple paragraphs or
sublists, you must make sure that each can include more than one block element, but
also that the last item in each list or sublist does not slurp up any following paragraphs.

To configure list elements:
Map formats to <p> instead of .
Specify ancestry for each format.
Make each format first in .
Make sure each list ends where it should.

Map formats to
<p> instead of

Map all list-item paragraph formats to <p> rather than to ; for example:
[DITAParaTags]
Numbered1 = p
Numbered = p
Bulleted = p
BulletedLast = p

Specify ancestry
for each format

Designate the appropriate ancestors for each type of list element:
[DITAParents]
Numbered1 = ol li
Numbered = ol li
Bulleted = ul li
BulletedLast = ul li

Make each format
first in

Make sure each list-item paragraph is first in its element:
[DITAFirst]
Numbered1 = ol li
Numbered = li

24 CONVERTING TO DITA XML NESTING DITA BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 479

Bulleted = li
BulletedLast = li

Make sure each
list ends where it

should

If the last paragraph in a multi-paragraph list item is followed by a paragraph whose
format is mapped to an element that is valid in , that paragraph will be included in the
list item. To prevent including the following paragraph, you can explicitly close the list:

[DITACloseAfter]
BulletedLast = ul li

Or insert a DITACloseAfter PI marker in the last list-item paragraph, with content ul li .

As an alternative, you can make sure the list closes before the following paragraph:
[DITACloseBefore]
Body = ul ol

Or insert a DITACloseBefore PI marker in the following paragraph, with content ul ol .

24.5.12 Specifying DITA element levels

To specify the level at which a block element should appear in DITA output, you can
assign a level number to any paragraph formats that are mapped to the element (see
§24.4.3 Mapping paragraph formats to DITA block elements on page 460). However, for
most nesting issues, you should use settings that specify ancestry rather than level; see
§24.5.2 Designating DITA ancestor elements on page 472.

Assign levels only for the following purposes:

 • to identify paragraph formats mapped to <title> that should start new topics; assign
level 1 to each such format

 • to handle unusual situations that cannot be addressed any other way.

To specify the level of a DITA block element:
[DITALevels]
; Frame para format (wildcards OK) = level in DITA (not Frame) file
; required for the DITAParaTag specified for this el ement.
FmtName = N

The lower the level number, the higher the level; <topic> is level 0, the root. You cannot
put anything else at level 0. The topic title is at level 1. The first heading in the topic body
is at level 3 (a title below <topic> , <body> , and <section>).

Specify level 1 for each paragraph format that starts a topic. For example:
[DITALevels]
Title = 1
Heading* = 1
GlossItem = 1

Assign level 1 only to topic-title formats. If you assign level 1 to a paragraph format that
does not start a topic, each topic in which such a paragraph occurs will end prematurely,
and a new topic will start at the level-1 paragraph. Probably not what you want.

Do not try to use DITA levels to achieve nested lists; instead see §24.5.8 Configuring
nested lists on page 476.

To override the assigned level of a particular paragraph, place a DITALevel PI marker in
the paragraph. A DITALevel PI marker specifies the level at which the current block
element should appear in the DITA file, overriding whatever is specified for the format in
[DITALevels] . The content of a DITALevel PI marker is a single integer.

See also:
§25.1.2 Specifying topic levels in ditamaps on page 495

SPECIFYING OPTIONS FOR TABLES IN DITA XML DITA2GO USER’S GUIDE

480 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

24.6 Specifying options for tables in DITA XML
§24.6.1 Designating ancestors for <table> elements on page 480
§24.6.2 Applying attributes to DITA tables on page 480
§24.6.3 Configuring DITA table components on page 481

24.6.1 Designating ancestors for <table> elements

To specify the ancestor elements DITA2Go must use for <table> elements:
[DITAOptions]
; TableParents = parents for table tags, including simpletable
; and others; default none (use content model), may include sets
; from [DITAElementSets].
TableParents =

List ancestors in hierarchical order; see §24.5.2 Designating DITA ancestor elements on
page 472. You can include element sets, as well as single elements; see §24.5.5 Specifying
alternate ancestries for the same element on page 474. If you do not specify any ancestor
elements, DITA2Go picks the first valid element listed in the content model, which might
not be what you had in mind.

To specify ancestry for a single <table> element or a discrete group of <table>
elements, assign the list to the table ID (see §33.2 Defining sets of tables on page 626). For
example:

[TableGroup]
FormatA = chart
aa654321 = chart
FormatC = textframe
Unruled = textframe

[DITATableParents]
; table ID group (not type) = parents to be used fo r root table
element
chart = section
aa654321 = example
textframe = conbody

You can make a single [DITATableParents] setting in an HTMConfig PI marker, also;
see §42.2.2 Overriding settings with configuration PI markers on page 767.

24.6.2 Applying attributes to DITA tables

Suppose you want to apply a DITA outputclass attribute to a table or group of tables.

If you want to be able to use outputclass for pretty much everything, based on the table
format name (fixed for CSS use) for tables, and on either the paragraph or character
format name or the [Class] setting for paragraph and character elements, just use
[DITAOptions]UseOutputClass=Yes ; see §24.4.6.6 Providing outputclass attributes
for all elements on page 471.

To apply a DITA outputclass attribute value to table formats only:
[TableAttributes]
MySpecialTableFormatName = outputclass=" myspecialclass"

Add any other special attributes you want for that table format on the same line, and use
another line for each additional format; see §33.4.2 Overriding attributes for selected
tables on page 633.

24 CONVERTING TO DITA XML SPECIFYING OPTIONS FOR TABLES IN DITA XML

ALL RIGHTS RESERVED. MAY 19, 2013 481

You can also specify an outputclass attribute for an individual table with a
TableOutputclass PI marker in the text flow before the table anchor, or in the table title or
first table row; see §33.1.1 Understanding precedence of assignment methods on
page 625.

24.6.3 Configuring DITA table components

In this section:
§24.6.3.1 Omitting ancestries of DITA table components on page 481
§24.6.3.2 Retaining empty paragraph tags in DITA table cells on page 481
§24.6.3.3 Specifying relative vs. absolute widths for table columns on page 481

24.6.3.1 Omitting ancestries of DITA table compone nts

Do not specify required parents (see §24.5.2 Designating DITA ancestor elements on
page 472) for elements that are part of a table. DITA2Go uses a different mechanism to
determine nesting of table components. You can specify parents for the contents of table
cells, but do not go above <entry> .

24.6.3.2 Retaining empty paragraph tags in DITA ta ble cells

By default, for DITA output DITA2Go omits paragraph tags for otherwise empty non-
preformatted paragraphs in table cells. However, you can choose to keep the tags:

[Tables]
; RemoveEmptyTableParagraphs = No (default)
; or Yes (DITA/DocBook default)
RemoveEmptyTableParagraphs = No

When RemoveEmptyTableParagraphs=No , paragraph tags (such as <p></p>) for
empty paragraphs are retained in table cells in DITA XML.

When RemoveEmptyTableParagraphs=Yes , paragraph tags for empty paragraphs in
table cells are omitted (except for preformatted text, where tags are always preserved). A
table cell that is blank (contains only empty paragraphs) would become just <td></td>
in DITA XML output.

Note: This setting is independent of the setting for removing empty paragraphs in text;
see §24.3 Specifying general options for DITA on page 458.

See also:
§33.4.10 Deciding what to do with empty paragraphs in table cells on page 640

24.6.3.3 Specifying relative vs. absolute widths f or table columns

DITA <simpletable> elements do not have absolute column widths or table widths; all
you get are relative column widths. For valid DITA XML, you have to use a PI to set
absolute column or table width. However, for <table> elements you can specify either
absolute or relative column widths. By default, DITA2Go uses absolute widths.

To specify relative instead of absolute table and column widths for <table> elements:
[DITAOptions]
; TableColsRelative = No (default, in points using pt, in colspec
; width attributes) or Yes (in percents using *)
TableColsRelative = Yes

When TableColsRelative=Yes , for relative widths DITA2Go produces (for example):
<colspec colnum="1" colname="col1" colwidth="81*" / >
<colspec colnum="2" colname="col2" colwidth="108*" />

SPECIFYING OPTIONS FOR IMAGES IN DITA XML DITA2GO USER’S GUIDE

482 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Those relative widths (denoted by the *) turn inches into points, resulting in 1.125" = 81pt,
and 1.5" = 108pt.

When TableColsRelative=No , DITA2Go produces instead:
<colspec colnum="1" colname="col1" colwidth="81pt" />
<colspec colnum="2" colname="col2" colwidth="108pt" />

24.7 Specifying options for images in DITA XML
In this section:

§24.7.1 Designating ancestors for <image> and <fig> elements on page 482
§24.7.2 Specifying what to include in a <fig> wrapper on page 483
§24.7.3 Omitting size attributes from images for DITA output on page 484

24.7.1 Designating ancestors for <image> and <fig> elements

To specify the ancestor elements DITA2Go must use to wrap <image> and <fig>
elements:

[DITAOptions]
; ImageParents = parents for <image> tags, whether wrapped in <fig>
; or not; default none (use content model), may inc lude sets from
; [DITAElementSets].
ImageParents = list of parent elements

List ancestors in hierarchical order; see §24.5.2 Designating DITA ancestor elements on
page 472. You can include element sets, as well as single elements; see §24.5.5 Specifying
alternate ancestries for the same element on page 474. If you do not specify any ancestor
elements, DITA2Go picks the first valid element listed in the content model, which might
not be what you had in mind.

Note: Do not include fig either in the list for ImageParents or in an element set in
that list.

For example, suppose you want most of your images wrapped in <section> , except for
those that occur in paragraphs that are mapped to <example> :

[DITAOptions]
ImageParents = $iparents

[DITAElementSets]
$iparents = section example

To specify ancestry for a single <image> element or a discrete group of <image>
elements, assign the parent name or parent set name to the graphic ID of the image (see
§4.3 Identifying files and elements on page 76), or to the graphic group ID (see §32.4.1.4
Creating named groups of graphics on page 615). For example, to make sure icons in table
cells have <entry> as a parent:

[GraphGroup]
ab01f853 = alerts
ab012c13 = alerts
ab00b5d3 = alerts

[DITAImageParents]
; image ID (may be group) = parents to be used for image/fig element.
alerts = entry

You can make a single [DITAImageParents] setting in an HTMLConfig marker, also;
see §42.2.2 Overriding settings with configuration PI markers on page 767.

24 CONVERTING TO DITA XML SPECIFYING OPTIONS FOR IMAGES IN DITA XML

ALL RIGHTS RESERVED. MAY 19, 2013 483

Sequence
matters in

element sets

Although DITA2Go knows which elements are valid within other elements, DITA2Go
has no idea at all about required sequences of elements. For example, if you set:

[DITAElementSets]
$iparents = conbody section entry example context c hoice

DITA2Go will always choose example over context when in <taskbody> . Where the
image is valid in both <context> and <example> , DITA2Go lacks any real criterion for
choosing one over the other. Instead, DITA2Go selects, from the list of candidates, the
first element that is valid as a parent of the <image> element.

In this example, if more of your images belong in <context> , you could set:
[DITAElementSets]
$iparents = conbody section entry context example c hoice

and then use [DITAImageParents] for the lesser number of images that should be in
<example> .

24.7.2 Specifying what to include in a <fig> wrapp er

When DITA2Go wraps image and title in a <fig> element, by default DITA2Go closes
the <fig> element before moving on to the following content. To direct DITA2Go to
include in <fig> any following elements that are valid:

[DITAOptions]
; CloseFigAfterImage = Yes (default) or No (leave f ig open for more)
CloseFigAfterImage = No

By default, DITA2Go wraps all contiguous images and their titles in a single <fig>
element. To make sure each of a series of images is wrapped in its own <fig> element:

[DITAOptions]
; MultiImageFigures = Yes (default)
; or No (allow only one image in a fig)
MultiImageFigures = No

To specify that figure titles precede their images:
[DITAOptions]
; FigureTitleStartsFigure = No (default, title is b elow image),
; or Yes (title is above image)
FigureTitleStartsFigure = Yes

To prevent an image from being wrapped in a <fig> element, assign the NoFig format
property to the enclosing paragraph format. For example:

[HTMLParaStyles]
; NoFig is used in DITA for a graphic anchor para t o prevent wrapping
; of the image inside it in a fig tag.
GraphAnchor = NoFig

This works only if the enclosing format is used consistently for images that should not be
wrapped, and not for any that should be wrapped.

To make sure images with one particular enclosing format are wrapped, when the rest are
not (for example):

[HTMLParaStyles]
; Figure is used in DITA for a graphic anchor para to ensure wrapping
; of the image inside it in a fig tag.
SpecialGraphAnchor = Figure
* = NoFig

See §3.6 Using wildcards in configuration settings on page 65.

CONFIGURING DITA TOPICS DITA2GO USER’S GUIDE

484 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

24.7.3 Omitting size attributes from images for DI TA output

To eliminate width and height attributes from images:
[Graphics]
; GraphScale = Yes (default) to put out width and h eight attributes,
; or No to eliminate them all
GraphScale = No

If you do not specify any setting for GraphScale , width and height attributes are
included.

24.8 Configuring DITA topics
DITA2Go delimits DITA topics in your document according to paragraph formats you
identify as <title> elements at DITA level 1.

In this section:
§24.8.1 Designating starting points for DITA topics on page 484
§24.8.2 Specifying the DITA topic type on page 486
§24.8.3 Specifying the ID for a DITA topic on page 487
§24.8.4 Adjusting DITA topic IDs generated from file names on page 488
§24.8.5 Specifying alternate titles for a DITA topic on page 488
§24.8.6 Omitting a DITA topic from the TOC on page 489

24.8.1 Designating starting points for DITA topics

DITA2Go bases starting points for DITA topics on the occurrence in your document of
paragraph formats that have certain configuration settings. By default, DITA2Go also
treats the very first paragraph format in each file as the start of a DITA topic.

In this section:
§24.8.1.1 Identifying starting elements for non-glossary topics on page 484
§24.8.1.2 Identifying the starting element for glossary topics on page 485
§24.8.1.3 Preventing the first paragraph format from starting a topic on page 485

24.8.1.1 Identifying starting elements for non-glo ssary topics

For topics of all built-in DITA types except glossary , the required starting element is
<title> . DITA2Go identifies a topic start by the paragraph format mapped to title in
[DITAParaTags] .

To designate a paragraph format as a DITA topic start:

1. Unless the format is already named Title, map the format to the <title> element:
[DITAParaTags]
ParaFmt = title

See §24.4.3 Mapping paragraph formats to DITA block elements on page 460.

2. Assign the format DITA level 1:
[DITALevels]
ParaFmt = 1

See §24.5.12 Specifying DITA element levels on page 479.

24 CONVERTING TO DITA XML CONFIGURING DITA TOPICS

ALL RIGHTS RESERVED. MAY 19, 2013 485

24.8.1.2 Identifying the starting element for glos sary topics

For glossary topics (DITA version 1.1+ only), the required starting element is
<glossterm> . Unless the default topic type is glossary , you must tell DITA2Go that
the topic start is the paragraph format mapped to glossterm in [DITAParaTags] .

You do not have to specify parents for glossary elements, because <glossterm> and
<glossdef> can have only <glossentry> as parent; and you do not have to specify an
element level for the format mapped to glossterm , because it will always be level 1.

Glossary in a
separate file

If the glossary for your document is in a separate file, not mixed with other types of topics,
create a file-specific configuration file glossfile.ini , and include in it the following
setting:

[DITAOptions]
DefTopic = glossary

See §24.8.2.2 Specifying a default DITA topic type on page 486.

Setting the default topic type to glossary tells DITA2Go that the topics in the current
file start with the paragraph format mapped to glossterm in [DITAParaTags] :

[DITAParaTags]
ParaFmt = glossterm

See §24.4.3 Mapping paragraph formats to DITA block elements on page 460.

Glossary mixed
with other topics

If the glossary for your document is in a file that includes other topic types, you must
make the starting paragraph format for the glossary topic different from the starting
formats for all other topic types in the file; and you must assign topic type glossary to
that format in [DITATopics] . For example:

[DITATopics]
; Every GlossaryTerm paragraph begins a glossary to pic:
GlossaryTerm = glossary

[DITAParaTags]
; Every glossary topic begins with a <glossterm> el ement:
GlossaryTerm = glossterm
Definition = glossdef

24.8.1.3 Preventing the first paragraph format fro m starting a topic

To prevent DITA2Go from forcing the first paragraph format in a file to become a topic
start:

[DITAOptions]
; ForceStartTopic = Yes (default, make the format o f the first para a
; topic start with tag "title" at level 1 and parent "topic"), or No.
ForceStartTopic = No

If the first paragraph format in a file is not assigned DITA level 1, or is not implicitly or
explicitly mapped to the <title> element:

 • When ForceStartTopic=Yes , DITA2Go forces these settings, overriding any
other mapping or level assignment; as a consequence, all subsequent paragraphs with
the same format in the same file also start topics.

 • When ForceStartTopic=No , DITA2Go allows the paragraph to produce invalid
DITA.

Best practice is to use the default setting (ForceStartTopic=Yes), and make sure the
first paragraph format in each file is mapped to title and assigned level 1.

CONFIGURING DITA TOPICS DITA2GO USER’S GUIDE

486 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

24.8.2 Specifying the DITA topic type

DITA2Go provides three ways to indicate the type of a topic: specify a default type,
assign a type to a paragraph format, or insert a marker in the topic with the name of the
type.

In this section:
§24.8.2.1 Understanding DITA topic type assignment precedence on page 486
§24.8.2.2 Specifying a default DITA topic type on page 486
§24.8.2.3 Specifying the DITA topic type with a paragraph format on page 486
§24.8.2.4 Specifying the DITA topic type with a marker on page 487

24.8.2.1 Understanding DITA topic type assignment precedence

The default type for every topic DITA2Go generates from your document is type
concept . You can specify a different default, assign a topic type to a paragraph format, or
use a marker to specify the type of an individual topic. Table 24-1 shows the precedence of
topic type assignment methods.

If you specify a custom specialized topic type (a type other than topic , concept , task ,
reference , glossary , or map), you must provide a separate content-model
configuration file for the specialized type, named DITAtopictype.ini ; see §41
Working with content models on page 753.

24.8.2.2 Specifying a default DITA topic type

By default, every topic generated is of type concept . However, you can specify a
different topic type as the default: topic , task , reference , glossary , or a custom
type.

To specify a different default topic type:
[DITAOptions]
; DefTopic = name of topic type to use, default "co ncept"
DefTopic = topic

You can override the default topic type with a DITATopic marker in the topic, or by
assigning a different topic type to a paragraph format used in the topic.

To specify a different default topic type for a given chapter, include the DefTopic setting
in a chapter configuration file named for the file; see §42.1.1 Providing configuration files
for individual ditamaps on page 765.

24.8.2.3 Specifying the DITA topic type with a par agraph format

To assign a DITA topic type to a paragraph format (for example):
[DITATopics]
; Frame para format = suggested topic type to use, if no DITATopic
; marker found.
Step = task

Table 24-1 Precedence of DITA topic type assignment methods

Precedence Method Reference

Highest DITAtopic marker 24.8.2.4

Intermediate paragraph format 24.8.2.3

Lowest Default topic type 24.8.2.2

24 CONVERTING TO DITA XML CONFIGURING DITA TOPICS

ALL RIGHTS RESERVED. MAY 19, 2013 487

Syntax = reference
GlossItem = glossary

Assign a topic type to any paragraph format for which at least one of the following is true:

 • The format is specific to a topic type other than the default topic type; see §24.8.2.2
Specifying a default DITA topic type on page 486.

 • The format marks a transition from one topic type to another, even if the new topic is
the default topic type.

 • The format starts a topic for which the starting element is not <title> ; for example,
topics of type glossary (see §24.8.1.2 Identifying the starting element for glossary
topics on page 485). If necessary, modify your document to use a dedicated format for
such topic starts.

You can override the assigned topic type with a DITATopic marker placed in the topic.

If DITA2Go encounters multiple paragraph formats in the same topic with different topic
type assignments in [DITATopics] , only the topic type assigned to the last paragraph
format encountered before the end of the topic is considered.

If DITA2Go encounters a paragraph format that has a topic type assignment in
[DITATopics] and a conflicting element mapping in [DITAParaTags] , the topic type
takes precedence, and the tag instance is flagged as an error.

24.8.2.4 Specifying the DITA topic type with a mar ker

You can use a DITATopic marker to override the default topic type for a given topic, and
also any topic type assigned via paragraph format. The content of a DITATopic marker is
the name of the topic type. Insert the DITATopic marker anywhere in the content of the
topic.

24.8.3 Specifying the ID for a DITA topic

To give a topic an ID, do one of the following:

 • Place a DITATopicID PI marker in the topic; the content of the DITATopicID marker is
the topic ID.

 • Place a FileName PI marker in the topic; the marker content specifies both the topic ID
and the base file name of the file that contains the topic (see §43.3.2 Using PI markers
to name output files on page 782).

In the absence of either marker, the default topic ID is the base file name, adjusted as for
CSS class names; see §24.8.4 Adjusting DITA topic IDs generated from file names on
page 488.

If you do not insert markers for topic IDs, DITA2Go makes up an ID for each embedded
topic after the first (which uses the base file name). These generated IDs are of the form
topic2 , topic3 , and so forth. This is not recommended practice.

To specify a default ID other than the base file name (but only for the first topic in a file),
include the following option in your project configuration file:

[DITAOptions]
; TopicID = id for topic, default is base file name
TopicID = someid

You can override the default ID with a DITATopicID PI marker, or with a FileName PI
marker.

CONFIGURING DITA TOPICS DITA2GO USER’S GUIDE

488 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

24.8.4 Adjusting DITA topic IDs generated from fil e names

By default, DITA2Go uses the base name of the output file that contains a DITA topic as
the ID for that topic. Because topic IDs may not contain spaces, by default DITA2Go
removes any spaces in the ID, and makes the ID all lowercase. You can specify other
treatments: a character to replace each space, remove underscores, keep original case.

To adjust topic IDs generated from file names:
[DITAOptions]
; These are used only when generating a TopicID fro m the file name:
; DITATopicIDSpaceChar = char to replace spaces, de fault none
; (remove space)
DITATopicIDSpaceChar=_
; DITATopicIDUnderscore = Yes (default, keep unders cores)
; or No (remove)
DITATopicIDUnderscore=Yes
; DITATopicIDLowerCase = Yes (default, make all low er)
; or No (retain original)
DITATopicIDLowerCase=Yes

If you have FrameScript installed on your system, you can use a script to create more
“human readable” topic names for DITA output. See:

http://frameautomation.com/2010/03/24/renaming-dita-map-topics/

24.8.5 Specifying alternate titles for a DITA topi c

To include an alternate title for a topic, you can use either of the following:
Dedicated paragraph format
PI marker

The text of an alternate title, whether provided via paragraph format or marker, appears as
follows:

In addition, both appear as elements in the topic itself, in a <titlealts> block
immediately following the <title> element. DITA2Go provides the <titlealts>
wrapper for alternate titles.

Dedicated
paragraph format

To use a dedicated paragraph format for an alternate title, place a paragraph in that format
after the main title paragraph, and map the format to the alternate-title element. For
example:

[DITAParaTags]
; Frame para format (wildcards OK) = DITA element
NavHead = navtitle
Search = searchtitle

See §24.4.3 Mapping paragraph formats to DITA block elements on page 460.

PI marker To use a PI marker for an alternate title, insert a DITANavTitle PI marker, a
DITASearchTitle PI marker, or both, in the <title> paragraph. Make the content of the
marker the text of the alternate title, which becomes the content of the navtitle attribute
or <searchtitle> element.

Navigation title: navtitle attribute in the map <topicref>

Search title: <searchtitle> element in the <topicmeta> of the map’s
<topicref>

http://frameautomation.com/2010/03/24/renaming-dita-map-topics/

24 CONVERTING TO DITA XML CONFIGURING CROSS REFERENCES AND LINKS FOR DITA

ALL RIGHTS RESERVED. MAY 19, 2013 489

24.8.6 Omitting a DITA topic from the TOC

To omit any reference in the TOC to a topic whose title would otherwise appear there,
insert a PI marker of type DITANoTOC in <title> paragraph of the topic. The
DITANoTOC marker will have the following effects on the map <topicref> to the topic:

 • The <topicref> will include toc="no"

 • The navtitle for the <topicref> will be suppressed.

No content is required in the DITANoTOC marker.

24.9 Configuring cross references and links for DI TA
In this section:

§24.9.1 Understanding how DITA2Go converts cross references on page 489
§24.9.2 Specifying an outputclass for cross-reference wrappers on page 489
§24.9.3 Linking to elements below topic level on page 490
§24.9.4 Omitting <xref> elements from footnotes on page 490
§24.9.5 Overriding <xref> attribute values on page 490

24.9.1 Understanding how DITA2Go converts cross re ferences

DITA allows cross references to <topic> (including each basic type), <section>
(including <example> and <refsyn>), <table> , <fig> , <fn> , and . No other
elements. DITA2Go provides an ID for each instance of each of these elements, if a
suitable ID is not already present.

When a <xref> tag appears in a context where it is not valid, such as in a title, DITA2Go
automatically wraps the <xref> in a <ph> element, and assigns an outputclass
attribute to the wrapper; see §24.9.2 Specifying an outputclass for cross-reference
wrappers on page 489.

To provide a link destination for target elements that do not already contain a DITAElemID
PI marker (see §24.4.6.1 Specifying a value for the id attribute on page 468), DITA2Go
makes the ID of the target element the content of the first HyperJump PI marker in the
element; or, in the absence of HyperJump PI markers, the numeric ID of the cross-
reference marker.

24.9.2 Specifying an outputclass for cross-referen ce wrappers

When DITA2Go encounters a cross reference, index term, or footnote reference in a
context where an <xref> tag would be invalid, the <xref> gets wrapped in a <ph>
element. These DITA2Go -generated <ph> wrapper elements need an outputclass
attribute. The default outputclass attribute names for cross-reference, index-term, and
footnote wrappers are as follows:

[DITAOptions]
; XrefWrapClass = outputclass to use for generated ph elements that
; wrap xrefs where they would otherwise be invalid
XrefWrapClass = phxref
; IndexWrapClass = outputclass to use for generated ph elements that
; wrap indexterms where they would otherwise be inv alid
IndexWrapClass = phindex
; FootnoteWrapClass = outputclass to use for genera ted ph elements
; that wrap footnotes where they would otherwise be invalid
FootnoteWrapClass = phfoot

CONFIGURING CROSS REFERENCES AND LINKS FOR DITA DITA2GO USER’S GUIDE

490 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

You can specify other outputclass attribute names.

24.9.3 Linking to elements below topic level

Normally, DITA2Go can use a HyperJump PI marker to create a link for an element ID.
However, to provide a destination for a link to a target element that is below topic level, in
some cases you might have to insert a DITALinkElemID PI marker in text just before the
link, and a DITAElemID PI marker (or DITAParentID PI marker) in the target text.

The content of the DITALinkElemID PI marker must match the content of the DITAElemID
PI marker or DITAParentID PI marker (see §24.4.6.1 Specifying a value for the id attribute
on page 468). This is to ensure the correct link target in cases where the built-in rules to
determine the target element ID provide the wrong choice or none at all. DITA2Go places
the DITALinkElemID PI marker content after the target topic ID in the href attribute of the
<xref> element.

24.9.4 Omitting <xref> elements from footnotes

The way DITA handles footnotes results in footnotes with IDs not getting callouts unless
an <xref> element is added to provide the callout. However, the DITA Open Toolkit is
inconsistent on this point. The HTML transform wants the <xref> element, but the PDF2
transform does not.

To exclude <xref> elements from footnotes:
[DITAOptions]
; FootnoteXref = Yes (default, comply with spec) or No (indulge bug in
; DITA-OT for pdf2 output using Idiom/RenderX by om itting footnote
; xref)
FootnoteXref = No

24.9.5 Overriding <xref> attribute values

You can insert PI markers in your document to change values of the scope , format , and
type attributes of individual <xref> elements generated from cross-reference and
hypertext links.

In this section:
§24.9.5.1 Specifying the <xref> scope attribute on page 490
§24.9.5.2 Specifying the <xref> format attribute on page 491
§24.9.5.3 Specifying the <xref> type attribute on page 491

24.9.5.1 Specifying the <xref> scope attribute

By default, for most links DITA2Go omits the scope attribute of the generated DITA
<xref> element, so that the value of the scope attribute defaults to local . However, for
links that use a HyperLink PI marker, DITA2Go sets the <xref> scope to external .

Some applications, such as XMetaL, do not support the #IMPLIED default of <xref
scope="local"> . If you plan further DITA processing using such an application, you
can instruct DITA2Go to always make this attribute value explicit:

[DITAOptions]
; UseLocalScope = No (default, omit scope attr from xref if not
; specified and href is not to a URL) or Yes (set s cope="local" in
; those cases to satisfy applications (XMetaL) that do not respect
; #IMPLIED in the DTD).
UseLocalScope = Yes

24 CONVERTING TO DITA XML INCLUDING CSH TARGETS IN DITA XML

ALL RIGHTS RESERVED. MAY 19, 2013 491

To specify the scope attribute of an individual cross reference or hypertext link, insert a
DITALinkScope PI marker in text just before the link. The content of the marker is the
value of the scope attribute (usually peer) of the generated <xref> element.

24.9.5.2 Specifying the <xref> format attribute

DITA2Go bases the value of the <xref> format attribute on the apparent destination of
a link. To override this value, insert a DITALinkFormat PI marker in text just before the
link; the content of the marker is the value of the format attribute of the generated
<xref> element. DITALinkFormat PI markers are needed only where DITA2Go built-in
rules do not produce the correct value.

24.9.5.3 Specifying the <xref> type attribute

DITA2Go sets the type attribute of most generated <xref> elements to the DITA type
(root element) of the destination topic. However, for links that use a HyperLink PI marker,
DITA2Go omits the type attribute.

To specify the type attribute of the next cross reference or hypertext link, insert a
DITALinkType PI marker in text just before the link. The content of the marker is the value
of the type attribute of the generated <xref> element. Valid type attributes include li ,
fn , fig , table , and section .

See also:
§24.4.6.1 Specifying a value for the id attribute on page 468

24.10 Including CSH targets in DITA XML
If your source document includes context-sensitive help targets that you want to include in
DITA output for use in further transformations, make sure those targets are in the form of
TopicAlias PI markers. DITA2Go includes the content of TopicAlias PI markers in DITA
output by default. To exclude that content from DITA output:

[DITAOptions]
; UseTopicAlias = Yes (default, include in DITA out put) or No
UseTopicAlias = No

When UseTopicAlias=Yes , DITA2Go processes the content of each TopicAlias PI
marker into the following:

<data name="topicalias" value="IDH_ about" />

Each such <data /> element is on a line of its own in the output, placed at the beginning
of the next paragraph text (typically the <title>).

This format is similar to the DITA-FMx format, but omits the FrameMaker-specific
@datatype . For example, in DITA-FMx the same CSH target looks like this:

<data datatype="fm:marker" name="TopicAlias" value= "IDH_ about" />

See §16.10.2 Specifying CSH mappings on page 278.

24.11 Overriding DITA settings with markers
You might need to insert markers to override configuration settings for particular DITA
topics and elements. DITA2Go provides numerous predefined marker types for this
purpose, listed in Table 24-2. Most of these marker types are intended to provide ways to
cope with unusual situations.

OVERRIDING DITA SETTINGS WITH MARKERS DITA2GO USER’S GUIDE

492 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Table 24-2 Predefined marker types for DITA XML

Marker type Content Reference

DITACloseAfter Ancestor elements to be closed just after current block element ends 24.5.9.2

DITACloseBefore Ancestor elements to be closed just before current block element starts 24.5.9.1

DITACode XML code to be inserted at the marker location

DITAFirst Ancestor elements under which the current block element must be first 24.5.6

DITALevel Level where the current block element should appear in the DITA file 24.5.12

DITALinkElemID ID of the link target for the next <xref> element 24.9.3

DITALinkFormat Format attribute of the next <xref> element 24.9.5.2

DITALinkScope Scope attribute of the next <xref> element 24.9.5.1

DITALinkType Type attribute of the next <xref> element 24.9.5.3

DITANavTitle Alternate title for navigation use 24.8.5

DITANoToc Adds toc="no" to the topicref to the current topic, suppresses navtitle 24.8.6

DITAOpenAfter Elements to be opened just after current block element ends 24.5.10.2

DITAOpenBefore Enclosing elements to be opened just before current block element starts 24.5.10.1

DITAParent Required parents for the current block element 24.5.2

DITASearchTitle Alternate title for search-result use 24.8.5

DITATopic DTD type for the current topic 24.8.2

DITATopicID ID attribute for the current topic 24.8.3

ALL RIGHTS RESERVED. MAY 19, 2013 493

25 Configuring DITA maps

This section shows how to configure DITA maps. Topics include:
§25.1 Configuring ditamaps on page 493
§25.2 Overriding map settings with PI markers on page 498

See also:
§24 Converting to DITA XML on page 455
§41 Working with content models on page 753

25.1 Configuring ditamaps
In this section:

§25.1.1 Specifying options for ditamaps on page 493
§25.1.2 Specifying topic levels in ditamaps on page 495
§25.1.3 Specifying roles for topics in ditamaps on page 496
§25.1.4 Adding relationship tables to ditamaps on page 496
§25.1.5 Providing navigation aids in ditamaps on page 498

See also:
§41.7.4 Overriding declarations in a DITA map content model on page 763

25.1.1 Specifying options for ditamaps

In this section:
§25.1.1.1 Choosing whether to overwrite ditamaps on page 493
§25.1.1.2 Choosing whether a ditamap references maps or topics on page 494
§25.1.1.3 Specifying the base file name for a ditamap on page 494
§25.1.1.4 Specifying a title for a chapter or book ditamap on page 494
§25.1.1.5 Specifying a navigation title for a ditamap on page 495

25.1.1.1 Choosing whether to overwrite ditamaps

By default, DITA2Go rewrites .ditamap files each time you run a DITA conversion.
Unless the changes you make between conversion runs (changes either to your document
or to configuration files) have no effect at all on DITA structure, most likely something
will be different in one or more generated maps. On the other hand, if you have edited
book or chapter maps by hand, you would not want to lose your edits.

To prevent DITA2Go from overwriting existing DITA maps:
[DITAOptions]
; WriteDitamaps = Yes (default) overwrite existing maps,
; or No (when using hand-edited chapter and book-lev el maps)
WriteDitamaps=No

When WriteDitamaps=Yes (the default), existing maps are overwritten

If you change the setting of WriteDitamaps from Yes to No for subsequent conversions
of the same project, and you make any changes that affect DITA structure, maps can get
out of synchronization with topics.

CONFIGURING DITAMAPS DITA2GO USER’S GUIDE

494 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

If you set WriteDitamaps=No the first time you run a DITA conversion, DITA2Go will
not produce any DITA maps.

25.1.1.2 Choosing whether a ditamap references map s or topics

Ideally, a chapter map references topics, and a book map references chapter maps.
However, not all DITA tools allow nested maps. Therefore the default DITA2Go option is
to have the book map reference topics directly rather than reference the chapter maps.

To include in the book .ditamap references to chapter maps instead of direct references
to each topic:

[DITAOptions]
; MapBookTopics = Yes (default, include <topicref> for each topic in
; book .ditamap), or No reference the chapter maps i nstead)
MapBookTopics = No

Referencing chapter maps is better practice, if your downstream tools support this
approach.

25.1.1.3 Specifying the base file name for a ditam ap

By default, the file name for each DITA map file is the base name of the file from which
the map was generated, with extension .ditamap . This is true for both book files and
chapter files.

To specify a different base name for a chapter map file, include the following setting in a
chapter configuration file filename.ini named for the DITA file (see §42.1.1 Providing
configuration files for individual ditamaps on page 765):

[DITAOptions]
; MapName = name to use (without extension) for the chapter ditamap.
MapName = othername

Alternatively, you can insert a DITAMapName PI marker in the DITA file. The content of
the DITAMapName PI marker becomes the base name for the map file, overriding any
value specified for MapName.

To specify a different base name for a book map file, in your project configuration file:
[DITAOptions]
; BookMapName = name to use (without extension) for the book ditamap.
BookMapName = bookname

You cannot use a PI marker to override the base name for a book map file.

25.1.1.4 Specifying a title for a chapter or book ditamap

Arbitrary chapter
map title

To specify a title for a chapter map, include the following setting in a chapter-specific
configuration file named for the DITA file (see §42.1.1 Providing configuration files for
individual ditamaps on page 765):

[DITAOptions]
; MapTitle = content of <title> element for chapter map
MapTitle = This is the title of the current chapter map

When you provide a value for MapTitle , DITA2Go sets a <title> element at the start
of the chapter map (effectively at map level 0); the value assigned to MapTitle becomes
the content of the element.

Alternatively, you can insert a DITAMapTitle PI marker in the chapter file. The content of
the marker becomes the content of the <title> element for the map generated from that
file, overriding any value specified for MapTitle .

25 CONFIGURING DITA MAPS CONFIGURING DITAMAPS

ALL RIGHTS RESERVED. MAY 19, 2013 495

First topic title as
chapter map title

To use the title of the first topic as the chapter map title:
[DITAOptions]
; UseAltMapTitle = No (default) or Yes (if no title specified for map,
; use the navtitle of the first topic in the file a s the map title)
UseAltMapTitle = Yes

When UseAltMapTitle=Yes , the alternate title overrides the value of MapTitle .

Book map title To specify a title for the book map that is generated from a book file, in your project
configuration file:

[DITAOptions]
; BookMapTitle = content of <title> element for boo k map.
BookMapTitle = This is the title of the book map

You cannot use a PI marker to override the title for a book map file.

25.1.1.5 Specifying a navigation title for a ditam ap

To specify a navigation title for a DITA map, include the following setting in a chapter
configuration file filename.ini named for the DITA file (see §42.1.1 Providing
configuration files for individual ditamaps on page 765):

[DITAOptions]
; MapHead = navigation title for chapter map
MapHead = Title for use by navigation links

Alternatively, you can insert a DITAMapHead PI marker in the file. The content of the
marker becomes the navtitle attribute for the map generated from the file, overriding
any value specified for MapHead.

When you provide a value for MapHead or insert a DITAMapHead PI marker, DITA2Go
creates a <topichd> element at the start of the chapter map (effectively at map level 0)
that contains the rest of the map entries.

25.1.2 Specifying topic levels in ditamaps

To specify map levels for topics, assign a level number to each format that you map to a
<title> element at the topic level in [DITAParaTags] ; see §24.4.3 Mapping paragraph
formats to DITA block elements on page 460. For example:

[DITAMapLevels]
; para format = level of topics it starts in ditama p, default 1.
Heading1 = 1
Heading2 = 2

Each instance of a paragraph format assigned a level number generates a <topicref>
that nests the lower <topicref> elements. For paragraph formats that are not listed here,
but that are mapped to <title> elements at the topic level in [DITAParaTags] ,
DITA2Go uses any level assignments you have provided for those formats in
[HelpContentsLevels] . See §16.4.3 Setting contents levels for HTML-based Help on
page 251.

If you direct DITA2Go to nest topics, DITA2Go adjusts map levels as follows:

 • If a topic is nested in a glossary topic (which is invalid), the map level of the nested
topic is decreased to make it a sibling of the glossary topic.

 • If a topic is set to a level more than one deeper than the previous topic, its level is
decreased so that no levels are skipped.

Any adjustments to map levels also affect the chapter ditamap.

CONFIGURING DITAMAPS DITA2GO USER’S GUIDE

496 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

See also:
§24.5.12 Specifying DITA element levels on page 479

25.1.3 Specifying roles for topics in ditamaps

To specify the kind of entry (if any) each topic type should have in its chapter map:
[DITAMapUsage]
; para format that starts topic = Topic (default), Head, or None
Parafmt=Topic

You can assign one of the values Topic , Head, or None to each paragraph format that you
map to a <title> element at the topic level in [DITAParaTags] ; see §24.4.3 Mapping
paragraph formats to DITA block elements on page 460. These values have the following
effects:

Because the default value is Topic , you need list only those paragraph formats that
identify topics that should not be linked from the map, or that should be excluded from the
map.

25.1.4 Adding relationship tables to ditamaps

DITA2Go creates a relationship table for each chapter map generated from a DITA file.

In this section:
§25.1.4.1 Understanding how DITA2Go creates relationship tables on page 496
§25.1.4.2 Excluding the ALink column from relationship tables on page 496
§25.1.4.3 Adding ALink rows to relationship tables on page 497
§25.1.4.4 Specifying one-way linking for a topic in a relationship table on page 497
§25.1.4.5 Specifying a collection-type attribute for each topic type on page 497

25.1.4.1 Understanding how DITA2Go creates relatio nship tables

By default, DITA2Go creates relationship tables with four columns: the first column
contains ALink subject names that apply to cells in the same row in the other columns.
The ALink column is followed by the usual three columns for topic types concept , task ,
and reference .

Each ALink subject name in the first column is expressed in a <data> element:
 <data name="subject" value=" ALink term"/>

Each row in a default relationship table has <topicref> elements for all topics that
include the ALink term named in the first column, sorted into cells by topic type.

25.1.4.2 Excluding the ALink column from relations hip tables

If the DITA tools you use cannot accommodate relationship tables that include the extra
ALink column, you can instruct DITA2Go to omit that column.

To prevent DITA2Go from including an ALink column in relationship tables:
[DITAOptions]
; UseRelNameColumn = Yes (default, first col of rel table has ALink
; name in <data> element) or No (use only usual type columns).
UseRelNameColumn = No

Topic (Default) Include a <topicref> element in the map for this topic
Head Include a <topichead> element only, with a title but no link
None Exclude the topic from the map

25 CONFIGURING DITA MAPS CONFIGURING DITAMAPS

ALL RIGHTS RESERVED. MAY 19, 2013 497

If your document does not include ALink references, and you do not insert any
DITARelRow PI marker (see §25.1.4.3 Adding ALink rows to relationship tables on
page 497), DITA2Go does not produce a relationship table for the map.

25.1.4.3 Adding ALink rows to relationship tables

To add a subject row to a relationship table, insert a DITARelRow PI marker in the topic.
The content of a DITARelRow PI marker is a subject name, which becomes the name of a
row in the table. Each row in the table corresponds to one subject name, so topics with the
same subject name all appear in the same row.

The same topic can appear in multiple rows, sharing each row with all other topics marked
with the same subject name. Each subject name generates its own row, even if that row is
otherwise identical to other generated rows.

DITARelRow PI markers are equivalent to ALink PI markers in Help systems.

25.1.4.4 Specifying one-way linking for a topic in a relationship table

To specify a value for the linking attribute of a <topicref> in a relationship table,
insert a DITARelLinking PI marker in the topic. The content of a DITARelLinking PI marker
can be one of the following:

targetonly
sourceonly

25.1.4.5 Specifying a collection-type attribute fo r each topic type

To specify a collection-type attribute for a topic type in a DITA2Go -generated
relationship table for a chapter map:

[DITARelGroups]
; DITA type name = collection-type attribute to use in the <colspec>
; for the chapter map <reltable> column for that DIT A type.
topictype = colltype

To specify a collection-type attribute for a topic type in a relationship table for a
book map:

[DITARelBookGroups]
; DITA type name = collection-type attribute to use in the <colspec>
; for the book map <reltable> column for that DITA t ype.
topictype = colltype

If you do not include a setting for a topic type in [DITARelBookGroups] , DITA2Go
uses the setting for that topic type (if any) in [DITARelGroups] for the relationship table
for the book map.

We suggest the following collection-type attributes; however, you can specify
others:

The default is no collection-type , so that topics in that column do not link to each
other, but only to topics in other columns in the same row.

For example:
concept = family
task = sequence

These settings would yield the following results:

family (equivalent to the usual ALink behavior)
sequence (links are in order of appearance in the chapter)
choice (processor dependent)

OVERRIDING MAP SETTINGS WITH PI MARKERS DITA2GO USER’S GUIDE

498 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • Concept topics would link to other concepts, and to task and reference topics in the
same row (same DITARelRow value; see §25.1.4.3 Adding ALink rows to relationship
tables on page 497).

 • Task topics would link to each other as an ordered set, and to concept and reference
topics normally.

 • Reference topics would link to tasks and concepts in the same row, but not to each
other.

25.1.5 Providing navigation aids in ditamaps

To add navigation elements to the map entry for a topic, insert PI markers in the <title>
paragraph of the topic. Table 25-1 shows the content and placement of the navigation
element for each PI marker type.

The content of a DITAMapref PI marker should be a map file name. DITA2Go sets the
format attribute of the resulting <topicref> element to "ditamap" .

25.2 Overriding map settings with PI markers
You might need to insert PI markers to override configuration settings for particular DITA
maps or for a bookmap. DITA2Go provides predefined PI marker types for this purpose,
listed in Table 25-2. Most of these PI marker types are intended to provide ways to cope
with unusual situations.

(No illustrations)

Table 25-1 DITA map navigation elements from PI markers

PI marker type Marker content Map element Map placemen t

DITAAnchor id attribute <anchor> After the <topicref> of the topic

DITANavref mapref attribute <navref> After the <topicref> of the topic

DITAMapref href attribute <topicref> After the <topicref> of the topic

DITALinkText text for the link <linktext> In the map <topicmeta>

Table 25-2 Predefined PI marker types for DITA maps and bookmaps

Marker type Content Ref.

DITAAnchor ID attribute of a map <anchor> element 25.1.5

DITALinkText Text of a map <linktext> element 25.1.5

DITAMapHead Navigation title for the current chapter map 25.1.1.5

DITAMapName Base name (without extension) of map file for current chapter 25.1.1.3

DITAMapref href attribute of a map <topicref> element 25.1.5

DITAMapTitle Text of <title> element inserted at map level 0 25.1.1.4

DITANavref mapref attribute of a map <navref> element 25.1.5

DITARelLinking Linking attribute for a topic in a relationship table 25.1.4.4

DITARelRow ALink subject name for a row in a relationship table 25.1.4.3

ALL RIGHTS RESERVED. MAY 19, 2013 499

26 Converting to DocBook XML

DITA2Go generates DocBook XML output. This section shows how to configure
DocBook-specific options. Topics include:

§26.1 Generating DocBook XML with DITA2Go on page 499
§26.2 Setting up a DocBook XML project on page 500
§26.3 Specifying general options for DocBook on page 502
§26.4 Configuring DocBook elements on page 504
§26.5 Nesting DocBook block elements on page 511
§26.6 Designating ancestors for table elements on page 519
§26.7 Specifying options for figure elements on page 520
§26.8 Overriding DocBook settings with PI markers on page 521

See also:
§41 Working with content models on page 753

26.1 Generating DocBook XML with DITA2Go
Before you set up a DITA2Go DocBook project, be clear about what level of familiarity
with DocBook you need, what you intend to do with the output, and what role you want
DITA2Go to play in producing DocBook output.

In this section:
§26.1.1 Understanding what you need to know about DocBook on page 499
§26.1.2 Understanding what information you must supply on page 499

26.1.1 Understanding what you need to know about D ocBook

To use DITA2Go effectively to produce DocBook output, you need a basic knowledge of
DocBook, from study of other materials. Teaching our customers DocBook is beyond the
scope of the DITA2Go User’s Guide. You have to know what you want; then perhaps we
can tell you how to make it happen with DITA2Go .

If you are not familiar with DocBook, here is a good starting point:
http://www.docbook.org/tdg/en/html/docbook.html

If you intend to produce output from the DocBook XML files DITA2Go produces, you
will also need DocBook XSL: The Complete Guide by Bob Stayton:

http://sagehill.net/docbookxsl/index.html

For a reference to DocBook style sheets, see:
http://docbook.sourceforge.net/release/xsl/current/doc/index.html

26.1.2 Understanding what information you must sup ply

DITA2Go does not try to validate the output; you must use a validating parser to check
output validity. However, DITA2Go does ensure valid parental relationships and first-
child restrictions. Valid sequence of items within those constraints has to come from the
implied or explicit structure of the DITA document.

DITA2Go support for DocBook requires you to supply the following kinds of information
in addition to your DITA document:

http://www.docbook.org/tdg/en/html/docbook.html
http://sagehill.net/docbookxsl/index.html
http://docbook.sourceforge.net/release/xsl/current/doc/index.html

SETTING UP A DOCBOOK XML PROJECT DITA2GO USER’S GUIDE

500 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

DTD properties
DITA mappings

DTD properties DITA2Go provides two built-in configurations for content models for DocBook version
4.5: one for articles, and one for books.

If you need to modify one of these content models, you can download a copy from Omni
Systems; see §41.2.1 Obtaining a copy of a built-in content-model on page 754. However,
the only valid purpose for modifying a built-in content model would be to correct settings
for element types. See §41.6 Inspecting and correcting element types on page 760.

To replace a content model, use free command-line utility dtd2ini to generate a content
model from another DTD, and produce a content-model configuration file for your
DocBook project. See §41.2.2 Generating a content model from a DTD on page 754.

DITA mappings You must map formats to DocBook elements. This information goes into configuration
file d2docbook.ini , and possibly into chapter-specific configuration files. You might
have to use PI marker in your DITA document to provide information such as topic IDs,
element names, and attributes, in cases where these items cannot be derived from the
document.

26.2 Setting up a DocBook XML project
To add or change any of the options described in this section, edit configuration file
_d2docbook.ini , located in the project directory. Or, to apply the changes to all of your
DocBook XML projects, edit the configuration template referenced by
_d2docbook.ini :

%omsyshome%\d2g\local\config\local_d2docbook_config .ini .

See §39.4 Deciding which configuration file to edit on page 734.

In this section:
§26.2.1 Creating a DocBook project on page 500
§26.2.2 Specifying DocBook output options on page 501

26.2.1 Creating a DocBook project

Easier: use the DITA2Go Project Manager to start a new project; see §2.1 Creating a
DITA2Go conversion project on page 39.

To create a DocBook XML project without using the DITA2Go Project Manager:

1. Create a directory for DocBook output, separate from the directory where your DITA
document is located.

2. Copy configuration file d2docbook.ini from your DITA2Go config directory
(see §1.3.1 Set up a framework for Omni Systems applications on page 29), or from
an existing DITA2Go project, to your newly created output directory:

DITA2Go copies a new project configuration file, _d2docbook.ini , to your project
directory. This file contains a series of empty configuration sections. It is up to you to fill
these sections with the rest of the settings required to convert your document. Use a text
editor to edit _d2docbook.ini ; see §3.1 Working with DITA2Go configuration files on
page 49.

26 CONVERTING TO DOCBOOK XML SETTING UP A DOCBOOK XML PROJECT

ALL RIGHTS RESERVED. MAY 19, 2013 501

26.2.2 Specifying DocBook output options

When you set up a DocBook project, DITA2Go includes settings for several output
options. You can specify values for these options and a few more in configuration file
_d2docbook.ini .

In this section:
§26.2.2.1 Changing the DocBook output file extension on page 501
§26.2.2.2 Specifying content model and root element on page 501
§26.2.2.3 Specifying book file options on page 501

26.2.2.1 Changing the DocBook output file extensio n

To change the file extension for DocBook chapter files:
[Setup]
FileSuffix = . ext

The default extension is .ent .

26.2.2.2 Specifying content model and root element

By default, DITA2Go uses the built-in DocBook version 4.5 content model. To specify a
different DocBook content model:

[DocBookOptions]
; ContentModel = name of content-model .ini, withou t extension,
; with which to replace the built-in DocBook 4.5 c ontent model.
ContentModel = docbook45

If you specify a different content model, you must generate a configuration file for that
model from the DTD. See §41 Working with content models on page 753.

To specify the root element:
[DocBookOptions]
; DocBookRoot = element to use at the XMLRoot.
DocBookRoot = book

Content models for both <article> and <book> are built in. You can use others, such as
<set> , by replacing the content model and specifying the root name here. See §41.2.2
Generating a content model from a DTD on page 754.

26.2.2.3 Specifying book file options

By default, DITA2Go writes a DocBook book file with the DocBook chapter files
included as entity references.

To omit the book file:
[DocBookOptions]
; WriteBookFile = Yes (default, write one file) or No
; Sets UseDOCTYPE and UseXMLRoot to No for the chapt er entity files.
WriteBookFile = No

See §26.3.1 Configuring entity information for DocBook XML on page 502.

To specify the name of the DocBook book file and title of the book:
[DocBookOptions]
; BookFileName = name to use for book file, with ex t, default is
; extension .xml
BookFileName = YourBookFileName.xml
; BookFileTitle = text of title for book, default i s literally

SPECIFYING GENERAL OPTIONS FOR DOCBOOK DITA2GO USER’S GUIDE

502 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; Your Book Title
BookFileTitle = Your Book Title

26.3 Specifying general options for DocBook
This section lists DocBook-specific default values and recommended options for XHTML
and XML configuration settings.

In this section:
§26.3.1 Configuring entity information for DocBook XML on page 502
§26.3.2 Configuring links for DocBook XML on page 502
§26.3.3 Configuring tables for DocBook XML on page 503
§26.3.5 Configuring footnotes for DocBook XML on page 503

26.3.1 Configuring entity information for DocBook XML

Set the following options to values appropriate for DocBook:
[HTMLOptions]
; UseDOCTYPE = Yes (default) or No (when writing Do cBook entity files)
UseDOCTYPE = No
; UseXMLRoot = Yes (default) or No (when writing Do cBook entity files)
UseXMLRoot = No
; XHLangAttr = xml:lang (default, set as needed)
XHLangAttr = xml:lang

When [DocBookOptions]WriteBookFile=Yes , DITA2Go sets UseDOCTYPE and
UseXMLRoot to No for chapter entity files; see §26.2.2 Specifying DocBook output
options on page 501.

26.3.2 Configuring links for DocBook XML

DocBook requires linking mark-up that is slightly different from mark-up for generic
XML. The following settings require other than the default value:

[HTMLOptions]
; HrefAttribute = name to use for link source attr, default href; use
; linkend for DocBook
HrefAttribute = linkend
; UseHash = Yes (default, start local hrefs with #)
; or No; the # is not valid in DocBook
UseHash = No
; UseUlink = No (default, use ATagName for URLs) or Yes (use
; ulink for URLs, and url as the HrefAttribute wit hin them)
UseUlink = Yes
; RemoveXrefHotspots = No (default) or Yes (remove hotspot text for
; xrefs and hyperlinks, retain it for external URL s)
RemoveXrefHotspots = Yes
; UseListedXrefFilesOnly = No (default) or Yes (con sider any xref
; target files not listed in [XrefFiles] to refer to the current
; file.) This suppresses filenames for DocBook where files are in the
; same DocBook book; files not in the book must be l isted in
; [XrefFiles].
UseListedXrefFilesOnly = Yes

See also:
§23.4 Configuring links for generic XML on page 454

26 CONVERTING TO DOCBOOK XML SPECIFYING GENERAL OPTIONS FOR DOCBOOK

ALL RIGHTS RESERVED. MAY 19, 2013 503

26.3.3 Configuring tables for DocBook XML

DocBook supports both the CALS table model and the HTML table model:
[Tables]
; UseCALSModel = No (HTML default) or Yes (XML defa ult)
UseCALSModel = Yes
; UseInformaltableTag = No (default) or Yes (use wh en there is no
; table caption)
UseInformaltableTag = Yes
; InternalTableCaption = Yes (default) or No (put o utside table)
InternalTableCaption = No
; TableCaptionTag = tag for internal table captions , default "caption"
TableCaptionTag = caption

26.3.4 Retaining empty paragraph tags in DocBook t able cells

By default, for DocBook output DITA2Go omits paragraph tags from otherwise empty
non-preformatted paragraphs in table cells. However, you can choose to keep the tags:

[Tables]
; RemoveEmptyTableParagraphs = No (default)
; or Yes (DITA/DocBook default)
RemoveEmptyTableParagraphs = No

When RemoveEmptyTableParagraphs=No , paragraph tags (such as <para></para>)
for empty paragraphs are retained in table cells in DocBook XML.

When RemoveEmptyTableParagraphs=Yes , paragraph tags for empty paragraphs in
table cells are omitted (except for preformatted text, where tags are always preserved). A
table cell that is blank (contains only empty paragraphs) would become just <entry></
entry> in DocBook XML output.

See also:
§33.4.10 Deciding what to do with empty paragraphs in table cells on page 640

26.3.5 Configuring footnotes for DocBook XML

Footnotes in DocBook require other than the default settings for some features:
[HTMLOptions]
; Footnotes = Jump (HTML default, at end), Embed (b etween []),
; Inline (XML default), or None
Footnotes = Inline
; FootInlineParaTag = tag for beginning and ending inline footnote
; paras
FootInlineParaTag = para
; FootInlineIDPrefix = start of ID attr for inline footnotes; rest
; is sequential number starting with 1 at start of f ile.
FootInlineIDPrefix = foot
; UseFootXrefTag = No (HTML default) or Yes (XML de fault)
UseFootXrefTag = Yes
; FootInlineRefTag = tag for xrefs to inline footno tes, uses linkend
; for href attribute, for DocBook
FootInlineXrefTag = footnoteref

See also:
§30.10 Converting footnotes to HTML or XML on page 581

CONFIGURING DOCBOOK ELEMENTS DITA2GO USER’S GUIDE

504 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

26.4 Configuring DocBook elements
In this section:

§26.4.1 Treating format names as element names on page 504
§26.4.2 Mapping paragraph formats to DocBook elements on page 504
§26.4.3 Mapping character formats to DocBook elements on page 507
§26.4.4 Assigning ID attributes to DocBook block elements on page 508
§26.4.5 Assigning attributes other than ID to DocBook elements on page 510

26.4.1 Treating format names as element names

To map format names to DocBook elements of the same name, where possible:
[DocBookOptions]
; UseFormatAsTag = No (default, if tag unmapped use default elem),
; or Yes (if unmapped, use format name if valid in content
; model).
UseFormatAsTag = Yes

When UseFormatAsTag=Yes , any format with a name that is the same as a DocBook
element name in the current content model is mapped to that element.

Unmapped format names that do not correspond to such element names are mapped to the
default element; see:

§26.4.2.2 Specifying a default element for unmapped paragraph formats on page 505
§26.4.3.2 Specifying a default element for unmapped character formats on page 508.

26.4.2 Mapping paragraph formats to DocBook elemen ts

When you map paragraph formats to DocBook elements, you must ensure that the element
mapped to is allowed to contain text.

In this section:
§26.4.2.1 Assigning DocBook elements to paragraph formats on page 504
§26.4.2.2 Specifying a default element for unmapped paragraph formats on page 505
§26.4.2.3 Omitting invalid tags for default DocBook block elements on page 505
§26.4.2.4 Overriding element mapping for paragraph formats on page 506
§26.4.2.5 Providing aliases for paragraph formats on page 506

26.4.2.1 Assigning DocBook elements to paragraph f ormats

To map paragraph formats in your document to DocBook elements, assign the element
name to the format name:

[DocBookParaTags]
; paragraph format (wildcards OK) = DocBook element , can be
; overridden by a DocBookTag marker; or format = No.
ParaFmtName = elementname

Default element The default element for a paragraph format that is not mapped in [DocBookParaTags] is
one of the following:

 • If UseFormatAsTag=Yes and the name of the format matches the name of a
DocBook element, the format is mapped to that element.

 • If UseFormatAsTag=No or the format name does not match an element name, the
format is mapped to the element designated by DefParaElem ; see §26.4.2.2
Specifying a default element for unmapped paragraph formats on page 505.

26 CONVERTING TO DOCBOOK XML CONFIGURING DOCBOOK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 505

Specify ancestry
for list formats

For list formats, if mapping the format to an element is not sufficient to identify the list
type, you must also specify the parent of the element; see §26.5.2 Designating DocBook
ancestor elements on page 512. Definition lists can be derived from paragraph pairs,
possibly with run-in headings for the term.

Omit element
mapping

To specify that a particular paragraph format should not be mapped to any element:
[DocBookParaTags]
ParaFmtName = No

The value No means that the tags for the format should be omitted, leaving the text inside
the enclosing element. Use this mapping for code examples (which can run on for pages),
to avoid having each line of code mapped to a separate <codeblock> element. For
example:

[DocBookParaTags]
PgmCode* = No

[DocBookParents]
PgmCode* = codeblock

Specifying ancestry guarantees that DITA2Go will retain the original line breaks, instead
of normalizing them as for HTML or XML.

See §26.5.2 Designating DocBook ancestor elements on page 512.

26.4.2.2 Specifying a default element for unmapped paragraph formats

To specify a default element to use for unmapped paragraph formats:
[DocBookOptions]
; DefParaElem = element to use for para formats tha t are neither
; named for DocBook elements nor mapped in [DocBook ParaTags].
DefParaElem = para

If your configuration file does not include a value for DefParaElem , DITA2Go uses one
of the following as the element for an unmapped format: if UseFormatAsTag=Yes and
the format name (adjusted as for CSS class names) matches the name of a valid element in
the current content model, the format is mapped to that element; otherwise, the format is
mapped to para , the default value of DefParaElem . See §26.4.1 Treating format names
as element names on page 504.

26.4.2.3 Omitting invalid tags for default DocBook block elements

Some DocBook block elements allow only #PCDATA, not paragraph tags. When a
“normal” paragraph must be placed inside one of these blocks, the paragraph tag should be
omitted.

If some paragraph formats in your document are left unmapped, or are explicitly mapped
to the default block element (usually <para>), the presence of such paragraphs in
contexts where the default block element would not be valid could trigger unwanted
interpolation of an arbitrary parent element. For enclosing block elements that allow
mixed content, you can avoid this problem by directing DITA2Go to omit the default
paragraph tags.

To omit invalid default paragraph tags where mixed content is allowed:
[DocBookOptions]
; DropInvalidParaTag = No (default) or Yes (if the para tag is the
; default DefParaElem <para> and is invalid, but #PC DATA is valid,
; drop the tag)
DropInvalidParaTag = Yes

CONFIGURING DOCBOOK ELEMENTS DITA2GO USER’S GUIDE

506 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

See also:
§26.5.3 Fixing up interpolated ancestries on page 513

26.4.2.4 Overriding element mapping for paragraph formats

To override the element-name mapping for a given paragraph, insert a DocBookTag PI
marker in the paragraph, with content the desired element name.

If mapping (or overriding mapping) does not suffice, and you do not need to specify a
required ancestry for the element, use the following instead:

 • [HTMLParaStyles] CodeBefore and CodeAfter properties for the format
 • [ParaStyleCodeBefore] and [ParaStyleCodeAfter] sections to specify the

element tags to surround the text.

See §37.9.3 Surrounding or replacing text with code or macros on page 711.

Another alternative would be to bracket the text with Config PI markers, with content such
as [ParaStyleCodeBefore]=< element> and [ParaStyleCodeAfter]=</
element>; see §42.2.2 Overriding settings with configuration PI markers on page 767.

Note: Mappings provided via [ParaStyleCode*] settings or markers do not
participate in any ancestry you specify for the element in question; see §26.5
Nesting DocBook block elements on page 511.

26.4.2.5 Providing aliases for paragraph formats

To specify an alternate name, or alias, for a paragraph format:
[DocBookAlias]
; paragraph format = format name to use in place of that
; paragraph format for DocBook purposes
ParaFmtName = AlternateName

An alias works in any [DocBook*] configuration section that uses format names. The
alias can be the name of another paragraph format in your document, provided the two
formats map to exactly the same element with all the same DocBook settings; or, the alias
can be a name you invent.

For additional aliases for the same format, insert a DocBookAlias PI marker in each
instance of the format that requires a different alias, with content the name of another
alias. You can also use a DocBookAlias PI marker to override an alias assigned in section
[DocBookAlias] .

You can use as many different aliases for the same paragraph format as your document
requires.

You might need to create aliases in the following situations:
One-to-many mappings of the same format to different DocBook elements
Many-to-one mappings of two or more formats to the same DocBook element.

One-to-many
mappings

Suppose your document includes a paragraph format named Body2, used in the following
situations:

 • most often as a continuation of a Numbered1 or Numbered paragraph
 • less often as a continuation of a Bulleted paragraph
 • occasionally as a quotation, not part of any list.

This means that in different places in your document Body2 would have to be mapped to
different elements, or participate in different DocBook hierarchies.

26 CONVERTING TO DOCBOOK XML CONFIGURING DOCBOOK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 507

To resolve this conflict, you would assign aliases to the alternate uses of Body2. You could
keep the original format name for the most frequent use; however, the name Body2 does
not convey anything about the differing semantics. Therefore you might want to use
aliases for every use; for example, Body2OList, Body2IList, and Body2Quote.

To create an alias for the most prevalent use of Body2:
[DocBookAlias]
Body2 = Body2OList

For the other two uses of Body2, you would have to insert a DocBookAlias PI marker in
each instance, with content one of the other aliases: Body2IList or Body2Quote. Then you
could specify the following in your project configuration file:

[DocBookTags]
Body2?list = para
Body2Quote = blockquote

Many-to-one
mappings

Suppose your document includes three different paragraph formats for quotations:
Quote in body text
FtnQ in footnotes
CellQ in table cells.

All three map to DocBook element <blockquote> . You can make this semantic
equivalence explicit in section [DocBookAlias] , and use the collective alias in other
configuration sections:

[DocBookTags]
Quote = blockquote

[DocBookAlias]
FtnQ = Quote
CellQ = Quote

26.4.3 Mapping character formats to DocBook elemen ts

When you map character formats to DocBook elements, make sure that the element
mapped to is allowed to contain text.

In this section:
§26.4.3.1 Assigning DocBook elements to character formats on page 507
§26.4.3.2 Specifying a default element for unmapped character formats on page 508
§26.4.3.3 Overriding element mapping for character formats on page 508

26.4.3.1 Assigning DocBook elements to character f ormats

To map character formats in your document to DocBook elements, assign an element
name to each character format name:

[DocBookCharTags]
; character format (wildcards OK) = DocBook element , cannot be
; overridden by a DocBookTag marker; or format = No.
CharFmtName = elementname

To specify that a particular character format should not be mapped to an element:
[DocBookCharTags]
CharFmtName = No

The value No means that tags for the format should be omitted, leaving the text inside the
enclosing element. For example, map the character formats you use for links and cross
references to No. DITA2Go automatically generates <xref> tags from the cross

CONFIGURING DOCBOOK ELEMENTS DITA2GO USER’S GUIDE

508 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

references in DITA, based on the format, but you do not need to map the format itself to
any element.

The default element for a character format that is not mapped in [DocBookCharTags] is
the element designated by DefCharElem ; see §26.4.3.2 Specifying a default element for
unmapped character formats on page 508. It is best to map each character format to the
most specific element possible, which is not often the default element.

26.4.3.2 Specifying a default element for unmapped character formats

To specify a default element to use for unmapped character formats:
[DocBookOptions]
; DefCharElem = element for char formats that are n either
; named for DocBook elements nor mapped in [DocBook CharTags]
DefCharElem = phrase

If your configuration file does not include a value for DefCharElem , DITA2Go uses one
of the following as the element for an unmapped format: if UseFormatAsTag=Yes and
the format name (adjusted as for CSS class names) matches the name of a valid element in
the current content model, the format is mapped to that element; otherwise, the format is
mapped to phrase , the default value of DefCharElem . See §26.4.1 Treating format
names as element names on page 504.

26.4.3.3 Overriding element mapping for character formats

If mapping a character format does not suffice for an inline element, you can use
DocBookStartElem and DocBookEndElem PI markers placed at the start and end,
respectively, of the character span to be delimited as an element. The content of each
marker is the tag name for the inline element; DITA2Go provides the < > and </ > . You
cannot use a DocBookTag PI marker to override the element-name mapping for an inline
element.

26.4.4 Assigning ID attributes to DocBook block el ements

Every block element in DocBook that is the target of a cross reference or hypertext link
must have an ID attribute. You can have DITA2Go automatically assign an ID to each
block element derived from a paragraph (or to an interpolated parent of such a block
element). You can also use PI markers to assign IDs to specific block elements, or to
override a DITA2Go -assigned ID.

In this section:
§26.4.4.1 Understanding how DITA2Go creates ID attribute values on page 508
§26.4.4.2 Providing IDs for block elements on page 509
§26.4.4.3 Providing IDs for interpolated parents of block elements on page 509
§26.4.4.4 Specifying an ID for an individual block element or parent on page 510

26.4.4.1 Understanding how DITA2Go creates ID attr ibute values

When DITA2Go assigns an ID to a block element in DocBook, the value of the ID
attribute is a combination of the DITA2Go FileID of the file being processed and the
ObjectID of the paragraph from which the element was generated.

If a particular block element requires an ID value, DITA2Go looks for a DocBookElemID
PI marker in the paragraph from which the element was generated. If that paragraph does
not contain a DocBookElemID PI marker, DITA2Go uses the content of the first
HyperAnchor PI marker in the paragraph as the ID for the element. If there is no

26 CONVERTING TO DOCBOOK XML CONFIGURING DOCBOOK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 509

HyperAnchor PI marker, and you have requested automatic ID assignment for that
element, DITA2Go assigns an ID.

You can override an automatically assigned ID for a particular block element by inserting
either a HyperAnchor PI marker or a DocBookElemID PI marker in the paragraph from
which the element is generated; see §26.4.4.4 Specifying an ID for an individual block
element or parent on page 510.

26.4.4.2 Providing IDs for block elements

To direct DITA2Go to automatically include an ID attribute in each instance of a block
element mapped from a particular paragraph format:

[DocBookParaIDs]
; para format = No (default, no ID set automaticall y) or Yes
ParaFmt = Yes

When ParaFmt=Yes , DITA2Go includes an ID attribute in the element generated from
each paragraph in that format. The default is not to include an ID attribute.

When ParaFmt=No (or when no [DocBookParentIDs] setting is present for
ParaFmt), DITA2Go does not include an ID attribute in the elements generated. For an
individual element that is the target of a link or cross reference, unless a HyperAnchor PI
marker is already present in the paragraph from which the element was generated, you
must insert a DocBookElemID PI marker to provide an ID for the element; see §26.4.4.4
Specifying an ID for an individual block element or parent on page 510.

Note: If you list the same paragraph format in [DocBookParentIDs] , DITA2Go
changes the value in [DocBookParaIDs] to No; see §26.4.4.3 Providing IDs for
interpolated parents of block elements on page 509.

You can override the value of an automatically assigned ID attribute with a HyperAnchor
PI marker or a DocBookElemID PI marker inserted in the paragraph; see §26.4.4.4
Specifying an ID for an individual block element or parent on page 510.

26.4.4.3 Providing IDs for interpolated parents of block elements

To direct DITA2Go to include an ID attribute in each instance of an interpolated parent of
an element mapped from a particular paragraph format:

[DocBookParentIDs]
; para format = single parent element for which the ID
; of the para should be used.
ParaFmt = ParentElement

When you assign a parent element in [DocBookParentIDs] , DITA2Go includes in the
specified interpolated parent of each element mapped from ParaFmt the ID attribute
assigned (or that would have been assigned) to that element in [DocBookParaIDs] . The
ID attribute is added only if the parent is interpolated by DITA2Go as a required ancestor
of the current element. Because IDs must be unique, an automatically assigned parent ID
disables any Yes setting for the same format in [DocBookParaIDs] ; see §26.4.4.2
Providing IDs for block elements on page 509. And it also eliminates any ID assigned to
the child via DocBookElemID PI marker; see §26.4.4.4 Specifying an ID for an individual
block element or parent on page 510.

You can override the value of an automatically assigned parent ID attribute with a
DocBookParentID PI marker inserted in the child paragraph; see §26.4.4.4 Specifying an
ID for an individual block element or parent on page 510.

CONFIGURING DOCBOOK ELEMENTS DITA2GO USER’S GUIDE

510 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

26.4.4.4 Specifying an ID for an individual block element or parent

To specify an ID for a single instance of a block element, place a DocBookElemID PI
marker in the paragraph. The content of the marker is the value of the id attribute. You
can also override any DITA2Go -assigned ID with a DocBookElemID PI marker.

To specify an ID for the interpolated parent of the block element derived from a particular
paragraph, place a DocBookParentID PI marker in the paragraph, with content as follows:

parentname=parentid

Do not include spaces around the equals sign.

See also:
§26.4.4.2 Providing IDs for block elements on page 509

26.4.5 Assigning attributes other than ID to DocBo ok elements

You can include non-ID attributes in a DocBook block or inline element by assigning
attribute=" value" pairs to the format mapped to the element. The attributes you
assign with configuration settings apply to all instances of the element in question. Only
those attributes assigned to elements mapped from paragraph formats can be overridden
with PI markers; attributes of elements mapped from character formats cannot be
overridden with PI markers.

In this section:
§26.4.5.1 Specifying attribute values for a block element or ancestor on page 510
§26.4.5.2 Specifying attribute values for an inline element on page 511

26.4.5.1 Specifying attribute values for a block e lement or ancestor

You can do any of the following for block elements:
Assign block element attributes
Override block element attributes
Assign interpolated parent attributes
Override interpolated parent attributes

When you want to override default or assigned attributes, keep in mind:
Where to use DocBook Attribute PI markers

Assign block
element attributes

To apply attributes (other than id) to a block element (other than <xref>), assign
attribute=" value" pairs, separated by spaces, to the paragraph format(s) mapped to
the element:

[DocBookParaAttributes]
; para format (wildcards OK) = attributes
ParaFmt = attribute1=" value1" attribute2=" value2" ...

You can use DITA2Go macros for any part of the assignment, or even for the entire
assignment. For example:

[DocBookParaAttributes]
ParaFmt = <$ WriteAttrMacro>

Override block
element attributes

To override a setting in [DocBookParaAttributes] or to override default attributes for
a particular instance of a block element, place a DocBookAttribute PI marker in a
paragraph mapped to the element, with content as follows:

elementname: attribute1=" value1" attribute2=" value2" ...

For example:

26 CONVERTING TO DOCBOOK XML NESTING DOCBOOK BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 511

step: performance="optional"

The name of the element must be followed by a colon. Separate attribute=" value"
pairs with a space. Each value must be enclosed in double quotes. You can use DITA2Go
macros for everything after the colon.

Assign
interpolated

parent attributes

To assign attributes to an interpolated parent of a block element:
[DocBookParentAttributes]
; para format (wildcards OK) = parentname: attribut es
ParaFmt = parentname: attribute1=" value1" attribute2=" value2" ...

You can use DITA2Go macros for the assignment.

Override
interpolated

parent attributes

To override a setting in [DocBookParentAttributes] or to override default attributes
for an interpolated parent of a block element, place a DocBookAttribute PI marker in a
paragraph mapped to the element, with content as follows:

parentname: attribute1=" value1" attribute2=" value2" ...

To apply attributes to more than one interpolated parent, use a separate marker for each
parent.

Where to use
DocBook

Attribute PI
markers

Use DocBookAttribute PI markers only to supply attribute values other than the DTD
default values for an element, or to override attribute values specified in a configuration
file. Do not use DocBookAttribute PI markers for either of the following:

 • The id attribute of the current element; use a DocBookElemID PI marker instead. See
§26.4.4.4 Specifying an ID for an individual block element or parent on page 510.

 • The id attribute of an interpolated parent of the current element; use a
DocBookParentID PI marker instead. See §26.4.4.4 Specifying an ID for an individual
block element or parent on page 510.

A DocBookAttribute PI marker overrides settings in [DocBookParaAttributes] and
[DocBookParentAttributes] , but does not override settings in
[DocBookCharAttributes] (see §26.4.5.2 Specifying attribute values for an inline
element on page 511).

26.4.5.2 Specifying attribute values for an inline element

To apply attributes (other than id) to an inline element, assign attribute=" value"
pairs, separated by spaces, to the character format(s) mapped to the element:

[DocBookCharAttributes]
; char format (wildcards OK) = attributes
CharFmt = attribute1=" value1" attribute2=" value2" ...

You cannot use markers to override settings in [DocBookCharAttributes] .

26.5 Nesting DocBook block elements
In this section:

§26.5.1 Understanding how DITA2Go determines element nesting on page 512
§26.5.2 Designating DocBook ancestor elements on page 512
§26.5.3 Fixing up interpolated ancestries on page 513
§26.5.4 Deciding when to fully specify ancestry on page 513
§26.5.5 Specifying alternate ancestries for the same element on page 514
§26.5.6 Specifying first-child status for nested elements on page 514
§26.5.7 Specifying full ancestry for nested sections on page 515
§26.5.8 Closing DocBook ancestor elements on page 516

NESTING DOCBOOK BLOCK ELEMENTS DITA2GO USER’S GUIDE

512 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§26.5.9 Opening DocBook ancestor elements on page 517
§26.5.10 Configuring multi-paragraph list items on page 517
§26.5.11 Specifying DocBook element levels on page 518

See also:
§26.6 Designating ancestors for table elements on page 519
§26.7 Specifying options for figure elements on page 520

26.5.1 Understanding how DITA2Go determines elemen t nesting

For each element, DITA2Go considers whether that element can go inside the current
parent element. If not, DITA2Go uses heuristic methods based on the possible parents,
level limitations, and current context.

For example, suppose your document uses a sequential structure for steps in a procedure:
paragraph format Step1 for the first step, followed by several StepNext paragraphs. To
convert this structure to a hierarchical DocBook structure, with paragraphs in both formats
becoming <step> children of a <procedure> element, you would specify just one
setting (see §26.4.2 Mapping paragraph formats to DocBook elements on page 504):

[DocBookParaTags]
Step* = step

As soon as DITA2Go encounters a paragraph format that is not valid in <procedure> ,
the parent tag is closed.

For problem cases, you can use a DocBookLevel PI marker to explicitly set the level for an
element; see §26.5.11 Specifying DocBook element levels on page 518. However, for
nested lists, use a different approach; see §26.5.5 Specifying alternate ancestries for the
same element on page 514.

Leaving any paragraph or character format unmapped to a parent is risky; DITA2Go
might interpolate the name of a DocBook element that does not do what you want.

26.5.2 Designating DocBook ancestor elements

For block elements such as <listitem> that can have more than one possible ancestry,
map any paragraph formats to the intended (required) parent element, and if necessary,
grandparent element, even great-grandparent element. List ancestors in hierarchical order.
For example:

[DocBookParents]
; para format (wildcards OK) = required parents
Heading* = section
Numbered1 = orderedlist listitem
Numbered = orderedlist listitem
Bulleted = itemizedlist listitem
TableTitle = table
Figure Title = mediaobject
Example = example

These settings specify, for example, that a Numbered1 paragraph (which is mapped to
<para> in [DocBookParaTags]) has these ancestors:

<orderedlist>...<listitem>...</listitem>...</ordere dlist>

Therefore, each Numbered1 paragraph starts a new <orderedlist> if and only if an
<orderedlist> is not already open; and starts a new <listitem> if and only if an
<listitem> under the <orderedlist> is not already open. To force a new
<orderedlist><listitem> for Numbered1 paragraphs, you must also give the

26 CONVERTING TO DOCBOOK XML NESTING DOCBOOK BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 513

Numbered1 paragraph format first-child status under both parent and grandparent
elements; see §26.5.6 Specifying first-child status for nested elements on page 514.

Note: For list items that can include more than one paragraph, map the paragraph format
to <para> , then designate its including list element as a parent.

Use this mapping for formats such as lists, in which <listitem> elements are needed
under <itemizedlist> or <orderedlist> in addition to the <para> elements
mapped in [DocBookParaTags] .

List ancestors in
hierarchical order

If a parent element has more than one possible parent, and only one of those parents can be
a grandparent of the paragraph format in question, list both the grandparent and parent, in
hierarchical order.

Override
individual

ancestries

To override the [DocBookParents] assignment for a given instance of a paragraph
format, place a DocBookParent PI marker in the paragraph. Make the content of the
marker the name(s) of the ancestor element(s), in hierarchical order. A DocBookParent
marker specifies the required ancestry for the current block element, overriding whatever
is specified in [DocBookParents] .

26.5.3 Fixing up interpolated ancestries

Creating DocBook structure from formats necessarily involves some trial and error. When
you see unexpected interpolation of inappropriate parent elements in your output, it is
usually because you have not specified parents for a particular format-to-element
mapping. For example, suppose you map paragraph format Ref to <para> , and use a Ref
paragraph at the top level of each reference section, where <para> is not valid. On
encountering a Ref paragraph in this situation, with no parents specified for the Ref format,
DITA2Go would go through the list of valid parents for <para> in a reference section,
and interpolate the first set that works.

The remedy is to figure out what would be a more appropriate lineage for the element in
question. You could specify that lineage for the format in [DocBookParents] if it
applies generally, or insert a DocBookParent PI marker in the paragraph for an isolated
instance. In this example, the following mapping would produce better results:

[DocBookParents]
Ref = refentry refsect1

The DITA2Go search algorithm finds the shortest path, but that is not always the only
shortest path, or the best path.

See also:
§26.4.2.3 Omitting invalid tags for default DocBook block elements on page 505

26.5.4 Deciding when to fully specify ancestry

You do not need to map paragraphs in [DocBookParents] for elements that can have
only one possible ancestry, or for cases where DITA2Go can determine heuristically
which of the possible ancestors fits the context best. Specify ancestry in
[DocBookParents] when more than one lineage is possible in the context of use. This is
especially important if your document includes nested section elements; see §26.5.7
Specifying full ancestry for nested sections on page 515.

Include as many ancestors as necessary to fully specify ancestry for the element to which a
paragraph format is mapped in [DocBookParaTags] . If your document includes actual
instances of different ancestries for the same element, use sets of ancestors to specify the
alternatives; see §26.5.5 Specifying alternate ancestries for the same element on page 514.

NESTING DOCBOOK BLOCK ELEMENTS DITA2GO USER’S GUIDE

514 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

In some cases you might have to include all ancestors up to the topic level, and you might
have to determine this necessity by trial and error; that is, list them all whenever not
including all ancestors causes unwanted nesting.

When DITA2Go encounters a set of ancestors specified either in [DocBookParents] or
in a DocBookParent PI marker, DITA2Go tries to nest the ancestor hierarchy in the
current element. If the entire hierarchy is valid in that position, that is where it stays. This
means that if your document uses paragraph format Body (for example) for all text that is
not nested in a list, and you map Body to DocBook element <para> , you must also specify
non-list parents for Body, because <para> can nest in <listitem> ; in fact, in almost any
block element. Unless you can make sure every block element that could precede a Body
paragraph gets closed (see §26.5.8 Closing DocBook ancestor elements on page 516), the
Body <para> is likely to be nested in the preceding element.

26.5.5 Specifying alternate ancestries for the sam e element

If your document uses the same paragraph format in several lineages, you can create a set
of alternate ancestors for DITA2Go to choose from, depending on the context. The
following predefined element sets are included in your project configuration file when you
first set up a DocBook project. You can alter or delete these sets, and you can define
additional sets.

To define sets of elements to be considered as alternate ancestors:
[DocBookElementSets]
; $setname = DocBook elements in the set.
; These element sets are predefined in the starting .ini for DocBook:
$top = chapter appendix preface article
$sections = sect1 sect2 sect3 sect4 sect5 section s implesect
$text = sect1 sect2 sect3 sect4 sect5 section simpl esect chapter
appendix preface article entry
$list = itemizedlist orderedlist

Each set name must start with a dollar sign ($). You must define each set as a collection of
elements; you may not define one element set in terms of other element sets. The list of
elements in the set must be all on the same line, even if it does not appear that way here.

Note: Element set $list does not include element simplelist , because simplelist
is more restricted as to content than the other list types.

You can use an element set name in place of an element name in [DocBookParents] , in
[DocBookFirst] , or in the corresponding DocBookParent and DocBookFirst PI
markers. For example:

[DocBookParents]
Body = $text
Body2 = $text $list listitem

Any element in the set is acceptable at the point where it appears in the hierarchical
sequence. There is no equivalent PI marker.

26.5.6 Specifying first-child status for nested el ements

To specify parent elements in which the paragraph format mapped to a given block
element must appear as the first child:

[DocBookFirst]
; para format = parents under which the current blo ck element
; (or one of its parents) must be the first child.
Numbered1 = orderedlist listitem

26 CONVERTING TO DOCBOOK XML NESTING DOCBOOK BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 515

Numbered = listitem
Bulleted = listitem

If the parent element you assign to a paragraph format has more than one possible parent,
and the paragraph format in question needs to be first only for one of its possible
grandparents, list both the grandparent and parent, separated by spaces. You can list as
many ancestors as necessary to fully specify first-child status for the paragraph format.
List the ancestors in hierarchical order. The list must match the ancestor list in
[DocBookParents] ; see §26.5.2 Designating DocBook ancestor elements on page 512.

Use these settings mainly for lists, to ensure that a paragraph format starts a new list item
or a new list. For example, these settings specify the following for the list paragraph
formats mapped to <para> in [DocBookParaTags] :

 • A Numbered1 <para> element must be the first child of its parent <listitem>
element, which <listitem> element must be the first child of its <orderedlist>
parent; this setting forces first-child status for the entire lineage of the elements listed,
not just the last.

 • A Numbered <para> element or a Bulleted <para> element must be the first child of
its parent <listitem> element.

To override the [DocBookFirst] assignment for a given instance of a paragraph, place a
DocBookFirst PI marker in the paragraph. Make the content of the marker the name(s) of
the desired ancestor element(s), in hierarchical order. A DocBookFirst marker specifies
that the current block element must be the first child of its listed ancestor elements,
overriding whatever is specified in [DocBookFirst] .

26.5.7 Specifying full ancestry for nested section s

When you have nested DocBook section s you must specify parentage starting with
$top for every section title. For example:

[DocBookParents]
Heading1 = $top section
Heading2 = $top section section
Heading3 = $top section section section
Heading4 = $top section section section section

Otherwise, the higher levels would also match the rule for the lower levels; so, for
example, the following settings:

[DocBookParents]
Heading1 = section
Heading2 = section section

would allow another Heading1 section to follow a Heading2 section without closing the
lower-level Heading2 section . The starting $top prevents this.

In addition, you would need to specify:
[DocBookFirst]
Heading* = section

so that each heading starts a new section when it occurs at the same level as the
preceding section . Otherwise a second Heading2 section would be valid inside the
first Heading2 section , and would not close that section and start a new section of
its own at the same level.

See also:
§26.5.5 Specifying alternate ancestries for the same element on page 514
§26.5.6 Specifying first-child status for nested elements on page 514

NESTING DOCBOOK BLOCK ELEMENTS DITA2GO USER’S GUIDE

516 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

26.5.8 Closing DocBook ancestor elements

To get a block element under the correct parent, you might have to specify that an ancestor
element (and all its descendants) must end when the current block element ends; or that
the prior block must end before the current block element begins.

In this section:
§26.5.8.1 Ending ancestor elements before the current block on page 516
§26.5.8.2 Ending ancestor elements after the current block on page 516

26.5.8.1 Ending ancestor elements before the curre nt block

In some cases, it is not clear whether a paragraph is supposed to be a child of the preceding
element (or nest of elements). For example, by default a <para> element following a list
item becomes part of the <listitem> , and that is not necessarily what you want.

To close an element (or a hierarchy of elements) before starting the current block (for
example):

[DocBookCloseBefore]
; para format = elements to be closed, with any oth er elements
; nested under them, before the current block eleme nt starts.
Recap = listitem
Body = itemizedlist orderedlist

Use this setting to force closure of elements that were opened based on settings in
[DocBookParents] ; see §26.5.2 Designating DocBook ancestor elements on page 512.
You can list as many possible ancestors as necessary; order is not important.

For individual cases, you can insert a DocBookCloseBefore PI marker in the paragraph
for the current block element instead, with content the name(s) of the element(s) to close.
You can also use a DocBookCloseBefore PI marker to override a
[DocBookCloseBefore] setting when you want to close a higher (or lower) ancestor
than the setting specifies.

26.5.8.2 Ending ancestor elements after the curren t block

In some cases, it is not clear whether the end of a block element should also end the
enclosing parent element. To close a parent element at the end of the current block element
(for example):

[DocBookCloseAfter]
; para format = parent to be closed, with any other elements
; nested under it, at the end of the current block e lement.
FigAnchor = figure

Use this setting to force closure of elements that were opened based on settings in
[DocBookParents] ; see §26.5.2 Designating DocBook ancestor elements on page 512.
You can list as many possible ancestors as necessary; order is not important.

For individual cases, you can insert a DocBookCloseAfter PI marker in the paragraph for
the current block element instead, with content the name(s) of the ancestor element(s) to
close. You can also use a DocBookCloseAfter PI marker to override a
[DocBookCloseAfter] setting when you want to close a higher (or lower) ancestor than
the setting specifies.

26 CONVERTING TO DOCBOOK XML NESTING DOCBOOK BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 517

26.5.9 Opening DocBook ancestor elements

To get a block element in the correct position in a hierarchy, you might have to force the
opening of interpolated ancestor elements first; or, in some cases, specify elements that
must be opened after the current element ends.

In this section:
§26.5.9.1 Starting ancestor elements before the current block on page 517
§26.5.9.2 Starting a new hierarchy after the current block on page 517

26.5.9.1 Starting ancestor elements before the cur rent block

To open interpolated ancestor elements before starting the current block:
[DocBookOpenBefore]
; para format = elements to be opened, with any oth er elements
; nested under them, before the current block eleme nt starts.
somefmt=someancestor

Use this setting to force opening of elements when [DocBookParents] does not suffice.

For individual cases, you can insert a DocBookOpenBefore PI marker in the paragraph for
the current block element instead, with content the name(s) of the element(s) to open. You
can also use a DocBookOpenBefore PI marker to override a [DocBookOpenBefore]
setting when you want to open a higher (or lower) ancestor than the setting specifies.

26.5.9.2 Starting a new hierarchy after the curren t block

To open a new element or hierarchy of elements after the current block ends:
[DocBookOpenAfter]
; para format = elements to be opened, with any oth er elements
; nested under them, before the current block eleme nt starts.
somefmt=someancestor

Use this setting to force opening of elements when [DocBookParents] does not suffice.

For individual cases, you can insert a DocBookOpenAfter PI marker in the paragraph for
the current block element instead, with content the name(s) of the element(s) to open. You
can also use a DocBookOpenAfter PI marker to override a [DocBookOpenAfter] setting
when you want to open an element or hierarchy other than what the setting specifies.

26.5.10 Configuring multi-paragraph list items

By default, at the end of each paragraph DITA2Go closes the block element to which the
paragraph format is mapped (see §26.4.2 Mapping paragraph formats to DocBook
elements on page 504). If any list items in your document include multiple paragraphs or
sublists, you must make sure that each <listitem> can include more than one block
element, but also that the last item in each list or sublist does not slurp up any following
paragraphs.

To configure list elements:
Map formats to <para> instead of to <listitem> .
Specify ancestry for each format.
Make each format first in <listitem> .
Make sure each list ends where it should.

Map formats to
<para> instead of

to <listitem>

Map list-item paragraph formats to <para> rather than to <listitem> :
[DocBookParaTags]
Numbered1 = para

NESTING DOCBOOK BLOCK ELEMENTS DITA2GO USER’S GUIDE

518 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Numbered = para
Bulleted = para
BulletedLast = para

Specify ancestry
for each format

Designate the appropriate ancestors for each type of list element:
[DocBookParents]
Numbered1 = orderedlist listitem
Numbered = orderedlist listitem
Bulleted = itemizedlist listitem
BulletedLast = itemizedlist listitem

Make each format
first in

<listitem>

Make sure each list-item paragraph is first in its <listitem> element:
[DocBookFirst]
Numbered1 = orderedlist listitem
Numbered = listitem
Bulleted = listitem
BulletedLast = listitem

Make sure each
list ends where it

should

If the last paragraph in a multi-paragraph list item is followed by a paragraph whose
format is mapped to an element that is valid in <listitem> , that paragraph will be
included in the list item. To prevent including the following paragraph, you can explicitly
close the list:

[DocBookCloseAfter]
BulletedLast = itemizedlist listitem

Or insert a DocBookCloseAfter PI marker in the last list-item paragraph, with content
itemizedlist orderedlist .

As an alternative, you can make sure the list closes before the following paragraph:
[DocBookCloseBefore]
Body = itemizedlist orderedlist

Or insert a DocBookCloseBefore PI marker in the following paragraph, with content:
itemizedlist orderedlist

26.5.11 Specifying DocBook element levels

Generally speaking, you should not specify element levels unless there really is no other
way to properly nest an element; hard-coded levels can cause obscure damage to the
output.

To specify the level at which a block element should appear in DocBook output, you can
assign a level number to any paragraph formats that are mapped to the element (see
§26.4.2 Mapping paragraph formats to DocBook elements on page 504). However, for
most nesting issues, you should use settings that specify ancestry rather than level; see
§26.5.2 Designating DocBook ancestor elements on page 512. Assign levels only for the
following purposes:

 • to identify paragraph formats mapped to <title> that should start new topics; assign
level 1 to each such format

 • to handle unusual situations that cannot be addressed any other way.

To specify the level of a DocBook block element:
[DocBookLevels]
; para format (wildcards OK) = level in DocBook fil e
; required for the DocBookParaTag specified for this element.
FmtName = N

26 CONVERTING TO DOCBOOK XML DESIGNATING ANCESTORS FOR TABLE ELEMENTS

ALL RIGHTS RESERVED. MAY 19, 2013 519

The lower the level number, the higher the level; <set> is level 0, the root. You cannot
put anything else at level 0. The set title is at level 1. The first book title in the set is at
level 2 (a title below <set> and <book>).

For example:
[DocBookLevels]
Title=1
GlossItem=1
Heading1=3
DefTerm=5
ParamTerm=5

In this example the element levels would be <body> = 1, <section> = 2, the title under
<topic> (mapped implicitly from paragraph format Title) = 1, and any title under
<section> (mapped explicitly from a Heading1 format) = 3. GlossItem is assigned level 1
because this format is mapped to <glossterm> , which is the first element in a glossary
topic (equivalent to <title> in other topic types).

To override the assigned level of a particular paragraph, place a DocBookLevel PI marker
in the paragraph. A DocBookLevel PI marker specifies the level at which the current block
element should appear in the DocBook file, overriding whatever is specified for the format
in [DocBookLevels] . The content of a DocBookLevel PI marker is a single integer.

26.6 Designating ancestors for table elements
To specify the ancestor elements DITA2Go must use for <table> elements:

[DocBookOptions]
; TableParents = parents for table tags, default no ne (use content
; model), may include sets from [DocBookElementSets].
TableParents =

List ancestors in hierarchical order; see §26.5.2 Designating DocBook ancestor elements
on page 512. You can include element sets, as well as single elements; see §26.5.5
Specifying alternate ancestries for the same element on page 514. If you do not specify
any ancestor elements, DITA2Go picks the first valid element listed in the content model,
which might not be what you had in mind.

To specify ancestry for a single <table> element or a discrete group of <table>
elements, assign the list to the table ID (see §33.2 Defining sets of tables on page 626). For
example:

[TableGroup]
FormatA = chart
aa654321 = chart
FormatC = textframe
Unruled = textframe

[DocBookTableParents]
; table ID (not type) = parents to be used for root table element
chart = section
aa654321 = example
textframe = conbody

You can make a single [DocBookTableParents] setting in an HTMConfig PI marker,
also; see §42.2.2 Overriding settings with configuration PI markers on page 767.

SPECIFYING OPTIONS FOR FIGURE ELEMENTS DITA2GO USER’S GUIDE

520 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

26.7 Specifying options for figure elements
In this section:

§26.7.1 Deciding what to include in a figure element on page 520
§26.7.2 Specifying ancestry for figure elements on page 520
§26.7.3 Omitting size attributes from images for DocBook on page 521

26.7.1 Deciding what to include in a figure elemen t

When DITA2Go wraps image and title in a <figure> element, by default DITA2Go
closes the <figure> element before moving on to the following content. To direct
DITA2Go to include in <figure> any following elements that are valid:

[DocBookOptions]
; CloseFigAfterImage = Yes (default)
; or No (leave figure open for more)
CloseFigAfterImage = No

By default, DITA2Go wraps all contiguous images and their titles in a single <figure>
element. To make sure each of a series of images is wrapped in its own <figure>
element:

[DocBookOptions]
; MultiImageFigures = Yes (default)
; or No (allow only one image in a figure)
MultiImageFigures = No

To specify that figure titles precede their images:
[DocBookOptions]
; FigureTitleStartsFigure = No (default, title is b elow image),
; or Yes (title is above image)
FigureTitleStartsFigure = Yes

26.7.2 Specifying ancestry for figure elements

To specify the ancestor elements DITA2Go must use to wrap <figure> elements:
[DocBookOptions]
; ImageParents = parents for image tags, default no ne (use content
; model), may include sets from [DocBookElementSets].
ImageParents = list of parent elements

List ancestors in hierarchical order; see §26.5.2 Designating DocBook ancestor elements
on page 512. You can include element sets, as well as single elements; see §26.5.5
Specifying alternate ancestries for the same element on page 514. If you do not specify
any ancestor elements, DITA2Go picks the first valid element listed in the content model,
which might not be what you had in mind.

For example, suppose you want most of your images wrapped in <section> , except for
those that occur in paragraphs that are mapped to <example> :

[DocBookOptions]
ImageParents = $iparents

[DocBookElementSets]
$iparents = section example

To specify ancestry for a single image element or a discrete group of image elements,
assign the parent name or parent set name to the graphic ID of the image (see §4.3
Identifying files and elements on page 76), or to the graphic group ID (see §32.4.1.4

26 CONVERTING TO DOCBOOK XML OVERRIDING DOCBOOK SETTINGS WITH PI MARKERS

ALL RIGHTS RESERVED. MAY 19, 2013 521

Creating named groups of graphics on page 615). For example, to make sure icons in table
cells have <entry> as a parent:

[GraphGroup]
ab01f853 = alerts
ab012c13 = alerts
ab00b5d3 = alerts

[DocBookImageParents]
; image ID (may be group) = parents to be used for image element.
alerts = entry

You can make a single [DocBookImageParents] setting in an HTMLConfig marker,
also; see §42.2.2 Overriding settings with configuration PI markers on page 767.

Sequence matters
in element sets

Although DITA2Go knows which elements are valid within other elements, DITA2Go
has no idea at all about required sequences of elements. For example, if you set:

[DocBookElementSets]
$iparents = section entry example graphic

DITA2Go will always choose example over graphic . Where the image is valid in both
<graphic> and <example> , DITA2Go lacks any real criterion for choosing one over the
other. Instead, DITA2Go selects, from the list of candidates, the first element that is valid
as a parent of the image element.

In this example, if more of your images belong in <graphic> , you could set:
[DocBookElementSets]
$iparents = section entry graphic example

and then use [DocBookImageParents] for the lesser number of images that should be
in <example> .

26.7.3 Omitting size attributes from images for Do cBook

To eliminate width and height attributes from images for DocBook:
[Graphics]
; GraphScale = Yes (default) to put out width and h eight attributes,
; or No to eliminate them all
GraphScale = No

If you do not specify any setting for GraphScale , width and height attributes are
included.

26.8 Overriding DocBook settings with PI markers
You might need to insert PI markers in your document to override configuration settings
for particular DocBook elements. DITA2Go provides predefined PI marker types for this
purpose, listed in Table 26-1. Most of these PI marker types are intended to provide ways
to cope with unusual situations.

Table 26-1 Predefined PI marker types for DocBook

PI marker type Content Ref.

DocBookAlias Alternate name for format for the current block 26.4.2.5

DocBookAttribute Attributes other than ID of a non-<xref> block element or parent 26.4.5.1

DocBookCloseAfter Ancestor elements to be closed just after current block element
ends

26.5.8.2

DocBookCloseBefore Ancestor elements to be closed just before current block element
starts

26.5.8.1

OVERRIDING DOCBOOK SETTINGS WITH PI MARKERS DITA2GO USER’S GUIDE

522 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

DocBookCode XML code to be inserted at the marker location

DocBookElemID ID attribute for the current block element 26.4.4.4

DocBookEndElem Tag name for an inline element, to place at the end of the span 26.4.3.3

DocBookFirst Ancestor elements under which the current block element must be
first

26.5.6

DocBookLevel Level where the current block element should appear in the
DocBook file

26.5.11

DocBookOpenAfter Elements to be opened just after current block element ends 26.5.9.2

DocBookOpenBefore Enclosing elements to be opened just before current block element
starts

26.5.9.1

DocBookParent Required ancestors for the current block element 26.5.2

DocBookParentID ID of the interpolated parent of the current block element 26.4.4.4

DocBookStartElem Tag name for an inline element, to place at the start of the span 26.4.3.3

DocBookTag Element name mapping for the current block (not inline) element 26.4.2.4

Table 26-1 Predefined PI marker types for DocBook (continued)

PI marker type Content Ref.

ALL RIGHTS RESERVED. MAY 19, 2013 523

27 Splitting and extracting files

This section shows how DITA2Go can divide a DITA file or map, based on criteria you
provide, to convert to HTML; and how DITA2Go can extract sections out of the middle of
a file, to create excerpts in their own files. Topics include:

§27.1 Splitting and extracting vs. chunking on page 523
§27.2 Chunking DITA maps on page 523
§27.3 Splitting files on page 526
§27.4 Extracting files on page 528
§27.5 Identifying split and extract files on page 530
§27.6 Inserting HTML code in split and extract files on page 534
§27.7 Referencing split and extract files on page 536
§27.8 Customizing and replacing extracts on page 537

27.1 Splitting and extracting vs. chunking
Basically, you have two ways to chop up the entire set of DITA map topics into pages for
HTML: use DITA chunking, or use the DITA2Go split mechanism.

DITA chunking uses the same methods as DITA2Go file splitting. However, in effect,
chunking inserts Split PI markers for you, and sets file names per any copy-to attributes;
see §27.2 Chunking DITA maps on page 523. You can use splitting and extracting in
addition to chunking.

When you split a DITA file, each piece of the file becomes a file in its own right, typically
addressing a single topic; see §27.3 Splitting files on page 526.

When you extract part of a DITA file, the parent file is converted minus the extracted
portion, and the extracted portion becomes a file in its own right. The extracted part is
usually replaced in the parent file by a link to the extract file; see §27.4 Extracting files on
page 528.

27.2 Chunking DITA maps
Chunking takes place in DITA map files, not in topic files. Unless you specify chunking
either in map files or in configuration settings, an entire map results in a single output file.

In this section:
§27.2.1 Choosing between splitting and chunking on page 523
§27.2.2 Specifying a chunking policy on page 524
§27.2.3 Providing a page break between title and TOC on page 525
§27.2.4 Producing a single HTML file that includes generated lists on page 525

27.2.1 Choosing between splitting and chunking

By default, DITA2Go splits documents at DITA topic boundaries to produce an output file
for every topic. To use DITA chunking to assort topics into output files instead:

[Chunking]
; SplitTopicFiles = Yes (default, produce an output file for every
; topic, override any chunkby attributes), or No (u se DITA chunking

CHUNKING DITA MAPS DITA2GO USER’S GUIDE

524 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; if any, otherwise produce one output file)
SplitTopicFiles = No

When SplitTopicFiles=Yes , DITA2Go overrides chunking attributes and produces a
separate output file for each topic. SplitTopicFiles=Yes has the same effect as setting
ChunkBy=Topic ; see §27.2.2 Specifying a chunking policy on page 524.

When SplitTopicFiles=No , DITA2Go uses DITA chunking, if any is specified. In the
absence of chunking, DITA2Go produces one large file. At that point, you can use the
DITA2Go split mechanism instead; see §27.3 Splitting files on page 526.

To disable chunking entirely:
[Chunking]
; DisableChunking = No (default, process chunking a ttribute normally),
; or Yes (ignore chunking attribute)
DisableChunking = Yes

When DisableChunking=Yes , DITA2Go ignores the chunking attribute, and instead
goes by the setting for SplitTopicFiles , or by the Split settings in
[HTMLParaStyles] ; see §27.3 Splitting files on page 526.

Note: For generated files (see §14.1 Understanding how DITA2Go produces lists on
page 197) you do not have to disable chunking in order for SplitTopicFiles to
be effective.

27.2.2 Specifying a chunking policy

These settings establish a default chunking policy, to determine how topics are assorted
into output files for each referenced document. The settings take effect for the entire map,
unless chunking attributes are already present on the map element, and except where
chunking attributes are present on individual topicref elements.

Note: There is no default policy if you do not set a chunking policy. However, in the
absence of any settings to the contrary, DITA2Go uses chunk by topic for HTML
output and chunk by document for RTF output.

Default output file names are overridden by copy-to attributes.

You can specify default policies for:
Aggregation of topics
Selection of topics.

Aggregation of
topics

To specify chunking by topic or by document:
[Chunking]
; ChunkBy = Document (put all topics in one output file,
; or Topic (put each topic into its own file).
ChunkBy = Topic

DITA2Go distributes topics according to the value of ChunkBy :

There is no default value for ChunkBy.

Selection of
topics

To specify selection of all topics, of just the referenced topic, or of the referenced topic
and all its descendants:

Document All referenced topics go into one output file, named for the top-level
map or document.

Topic Each referenced topic goes into its own output file, named for the
topic ID.

27 SPLITTING AND EXTRACTING FILES CHUNKING DITA MAPS

ALL RIGHTS RESERVED. MAY 19, 2013 525

[Chunking]
; ChunkSel = Document (include all topics in the do cument,
; Topic (include only the topic id'd in the <topicr ef>, or
; Branch (include the id'd (or first) topic and all of its children).
ChunkSel = Topic

DITA2Go includes topics according to the value of ChunkSel :

ChunkSel has no meaning for files that contain just one topic, only for those that contain
nested topics, or topics wrapped in <dita> .

There is no default value for ChunkSel .

27.2.3 Providing a page break between title and TO C

If your HTML output includes material that precedes the TOC (a cover page, splash
screen, or title), by default DITA2Go suppresses the page break between that material and
the TOC. This is because if you use the default values for both of the following settings:

[Chunking]
SplitTopicFiles = Yes
DisableChunking = No

you might be left with output that provides no way to navigate from the preceding material
to the TOC.

To keep the page break between the preceding material and the TOC:
[Contents]
; KeepTOCWithTitlePage = Yes (default, suppress pag e break between
; title page and TOC) or No (keep page break)
KeepTOCWithTitlePage = No

Specify KeepTOCWithTitlePage=No if the title content already includes a link to the
TOC.

27.2.4 Producing a single HTML file that includes generated lists

To produce a monolithic HTML file that includes the TOC and any other generated lists
(LOF, LOT, generated index), turn off both chunking and splitting for HTML output:

[Chunking]
SplitTopicFiles = No
DisableChunking = Yes

When SplitTopicFiles=No and DisableChunking=Yes , DITA2Go ignores any
chunking set on the maps themselves, and does not split any files. DITA2Go also
suppresses the automatic split between the TOC and the first topic.

If you have also specified a generated index, DITA2Go puts the CSS for the index in the
single <head> , puts the JavaScript for it (if any) at the top of the <body> , and adds the
index content at the end of the file.

If you do not split files, you might want some space or a separator in HTML output
between the end of one topic and the start of the next.

To insert code before topic-start titles (for example):

Document All topics in the referenced document are included in a single file.

Topic A separate file is produced for each referenced topic.

Branch The file for each referenced topic includes all topics logically nested
in (descended from) that topic.

SPLITTING FILES DITA2GO USER’S GUIDE

526 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[Inserts]
TopicBreak = <p class="Body">

</p>

See §27.6.2 Assigning code to [Inserts] keywords for splits and extracts on page 535.

27.3 Splitting files
In this section:

§27.3.1 Designating split points on page 526
§27.3.2 Managing split points on page 527

27.3.1 Designating split points

You can designate places to split a DITA file based on the occurrence of any of the
following:

Paragraph or character formats in text on page 526
HeadingPara = Split Title Paragraph formats in tables on page 526
DITA PI markers on page 526
Hypertext alert markers on page 527

Although you can use all these methods in the same DITA document, usually the
paragraph-format method alone is adequate. (Do not use any of these methods if you are
producing DITA XML output; files are split another way for DITA.)

Paragraph or
character formats

in text

You can assign the Split property to a paragraph or character format, so a new HTML
page begins wherever an instance of the element mapped to that format appears in your
DITA document:

[HTMLParaStyles]
; Paragraph format = Split starts a new HTML page a t the start of the
; paragraph.
HeadingPara = Split

If you use this method to designate split points you will almost certainly want to add the
Title property too, maybe others:

[HTMLParaStyles]

HeadingPara =
Split Title

Paragraph
formats in tables

Normally DITA2Go does not allow a file split when a paragraph for which you have
specified the Split property occurs within a table. However, you can override this
prohibition with the following setting:

[Tables]
; AllowTbSplit = No (default)
; or Yes (allow file split for head in table)
AllowTbSplit=Yes

When AllowTbSplit=Yes , the actual split is made at the paragraph containing the table
element, not at the paragraph in the table.

DITA PI markers You can add DITA PI marker type Split to your DITA document, and insert a Split marker
wherever you want a split point. However, f you insert a Split PI marker in a paragraph
whose format is also assigned the Split property, the Split PI marker is ignored.

A Split PI marker must be placed to the left of any Title , FileName , or Cross-Ref marker
that occurs in the same paragraph.

See §38 Working with processing instructions on page 717 for more information.

27 SPLITTING AND EXTRACTING FILES SPLITTING FILES

ALL RIGHTS RESERVED. MAY 19, 2013 527

Hypertext alert
markers

You can mark a split point in your document by inserting a HyperAlert PI marker that
contains only the word “split”.

27.3.2 Managing split points

You can selectively disable splitting to keep content together, such as at the start of a DITA
file, or when a single heading would be the only content.

In this section:
§27.3.2.1 Preventing splits that leave dangling headings on page 527
§27.3.2.2 Keeping headings together when other content intervenes on page 528

27.3.2.1 Preventing splits that leave dangling hea dings

Suppose you have designated the following criterion for split points:
[HTMLParaStyles]
Heading2 = Split

Now suppose your DITA document has content organized as follows:
Heading1

Heading2
Body text

Heading2
Body text

Heading1
. . .

And you want split points as follows:
Heading1

Heading2
Body text

------------------- split here
Heading2

Body text
------------------- split here
Heading1

. . .

That is, to avoid a title-only topic, you want to suppress a split between the first Heading1
and the first Heading2.

Instead of the first Heading2 you could use a different paragraph format that is not
assigned the Split property, such as Heading2First, and add that format to the paragraph
catalog. Or, you could use [HelpContentsLevels] to assign level numbers to your
heading formats, and set SmartSplit=Yes :

[HelpContentsLevels]
; FM paragraph format name = TOC level (MS or Java)
Heading1 = 1
Heading2 = 2

[HTMLParaStyles]
Heading1 = Split
Heading2 = Split

[HTMLOptions]
; SmartSplit = No (default) or Yes (suppress splits in sequences of
; heads which lack text bodies, as long as the [He lpContentsLevels]
; values continue to increase)
SmartSplit = Yes

EXTRACTING FILES DITA2GO USER’S GUIDE

528 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The effect of these settings is to suppress splits as long as the heading level number
increases for each paragraph in an unbroken sequence of paragraphs. For example, these
settings would keep all of the following together:

Heading1
Heading2

Heading3
Body text

In other words, SmartSplit prevents splits when both of the following are true:

 • the later heading is subordinate to the earlier heading
 • there is no body content between headings (but see §27.3.2.2 Keeping headings

together when other content intervenes on page 528).

Note: It is not a good idea to use SmartSplit in conjunction with trails of links; see
§29.2.1 Understanding trails of links on page 555.

27.3.2.2 Keeping headings together when other cont ent intervenes

To keep sections from splitting into separate HTML files even when there is body content
between headings that are assigned the Split property, you have two choices:

Prevent the content from affecting the split
Use alternative heading formats.

Prevent the
content from

affecting the split

To prevent a paragraph format (for example, ThinLine) that occurs between headings from
interfering with keeping the headings together when SmartSplit=Yes :

[HTMLParaStyles]
; NoSplit prevents the para format from interfering with SmartSplit
; when it occurs between heads that would otherwise be kept together.
ThinLine = NoSplit

Use alternative
heading formats

For the affected headings, consider using alternate paragraph formats with the same
properties. For example, you could define a paragraph format named Heading1x and use
that format instead of Heading1 wherever you want to prevent a Heading1 split.

27.4 Extracting files
You can direct DITA2Go to extract part of a document into an extract file, optionally
replacing the extracted portion in the original document with a link to the extract file. You
can use this feature to move material such as a large figure or table into its own HTML
page.

In this section:
§27.4.1 Enabling and disabling extract processing on page 528
§27.4.2 Delimiting material to extract on page 529

27.4.1 Enabling and disabling extract processing

To enable extracts for your entire document, specify the following setting:
[HTMLOptions]
; ExtractEnable = Yes (allow extract files) or No (default, disable)
ExtractEnable=Yes

To turn extract processing on and off for some parts of your document, you can assign
extract switch properties ExtrEnable and ExtrDisable to paragraph formats. For
example, you might define paragraph formats ExEnable and ExDisable, and use them to
delineate the portions of your document where extract processing should occur:

27 SPLITTING AND EXTRACTING FILES EXTRACTING FILES

ALL RIGHTS RESERVED. MAY 19, 2013 529

[HTMLParaStyles]
; ExtrEnable and ExtrDisable turn extract processin g on or off; the
; starting state is given in [HTMLOptions]ExtractE nable=Yes or No
ExEnable=ExtrEnable Delete
ExDisable=ExtrDisable Delete

Once you have placed such paragraphs in your document, you cannot turn off all extract
processing just by setting [HTMLOptions]ExtractEnable=No ; instead you must delete
all ExtrEnable assignments in [HTMLParaStyles] .

27.4.2 Delimiting material to extract

To mark the start and end points of material to be extracted, you can assign properties to
paragraph formats, or you can use PI markers. For either of these methods to take effect,
you must also enable extract processing; see §27.4.1 Enabling and disabling extract
processing on page 528.

In this section:
§27.4.2.1 Using existing paragraph formats to delimit extracts on page 529
§27.4.2.2 Creating special paragraph formats to delimit extracts on page 529
§27.4.2.3 Using markers to delimit extracts on page 530

See also:
§27.4.1 Enabling and disabling extract processing on page 528

27.4.2.1 Using existing paragraph formats to delim it extracts

To use paragraph formats that are already in place to mark the start and end points of
material to extract, assign [HTMLParaStyles] extract properties to those paragraph
formats. For example:

[HTMLParaStyles]
; doc format (para or char) = keywords for function s and properties
; ExtrStart begins an extract.
; ExtrFinish is the last part of the extract.
; ExtrEnd ends the extract, but is not part of the extract itself
FigureTitle=ExtrStart
zFigAnchor=ExtrFinish

To extract a single paragraph, assign both ExtrStart and ExtrFinish to the paragraph
format.

ExtrFinish and ExtrEnd are alternate ways to end an extract. You do not have to use
both, but doing so is harmless. If you do not use one or the other, the extract ends
gracefully at the next split point, or at the end of the file.

Note: For any of these settings to take effect, you must enable extracts; see §27.4.1
Enabling and disabling extract processing on page 528.

For examples, see §27.8.4 Specifying extracts: an example on page 543.

27.4.2.2 Creating special paragraph formats to del imit extracts

You can create special paragraph formats to mark the boundaries of extracts, as follows:

1. Invent two new paragraph formats; for example, ExStart and ExEnd.

2. Insert an element with outputclass=ExStart just before material to be extracted.

3. Insert an element with outputclass=ExEnd just after material to be extracted.

IDENTIFYING SPLIT AND EXTRACT FILES DITA2GO USER’S GUIDE

530 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

4. Make the ExStart and ExEnd paragraphs conditional for on-line use, so they do not
appear in your regular print files.

5. Assign the following properties to these special paragraph formats:
[HTMLParaStyles]
ExStart=ExtrStart Delete
ExEnd=ExtrEnd Delete

The Delete property excludes the ExStart and ExEnd paragraphs from text in the HTML
file. In effect, these special paragraphs serve only as directives to DITA2Go . If you omit
the ExEnd paragraph, the extract ends at the next split point, or at the end of the file.

Note: For these settings to take effect, you must enable extracts; see §27.4.1 Enabling
and disabling extract processing on page 528.

27.4.2.3 Using markers to delimit extracts

You can specify the boundaries of an extract with carefully placed PI markers. DITA2Go
ignores the content of these markers, so you can use the content for comments:

For easy maintenance, the best place for these markers is at the start of a paragraph.

To extract a single paragraph, insert both ExtrStart and ExtrFinish PI markers in the
paragraph; the ExtrStart marker must precede the ExtrFinish marker.

ExtrFinish and ExtrEnd markers are alternate ways to end an extract. You do not have to
use both, but doing so is harmless. If you do not use one or the other, the extract ends
gracefully at the next split point, or at the end of the file.

Note: For any of these markers to take effect, you must enable extracts; see §27.4.1
Enabling and disabling extract processing on page 528.

27.5 Identifying split and extract files
You can specify titles and meta information for split and extract files. DITA2Go names
the files, and retains those names for internal purposes; it is best not to try to rename split
or extract files.

In this section:
§27.5.1 Understanding how split and extract files are named on page 530
§27.5.2 Specifying page titles for split or extract files on page 531
§27.5.3 Supplying <meta> text for split or extract files on page 534

27.5.1 Understanding how split and extract files a re named

When DITA2Go splits a DITA file, the result is a series of HTML files. If you direct
DITA2Go to include a map-based TOC (see §6.12 Specifying options for maps on
page 105), that TOC becomes the first output file. Otherwise, the first topic becomes the
first output file. If you specify a name for the first file, either via TOC naming or via
chunking, DITA2Go uses the name you specify; in that case an empty file with the name

ExtrStart First part of an extract; insert in the first paragraph in the extract, to the
left of any Title , FileName , or Cross-Ref marker that occurs in the
same paragraph.

ExtrFinish Last part of an extract; insert in the last paragraph of the extract.

ExtrEnd End of an extract; insert after the last paragraph of the extract, and
before the end of the next paragraph.

27 SPLITTING AND EXTRACTING FILES IDENTIFYING SPLIT AND EXTRACT FILES

ALL RIGHTS RESERVED. MAY 19, 2013 531

of the original map is left behind and can be ignored. Do not rename this file, because it is
required for subsequent conversions. DITA2Go names the rest of the split files, and all
extracted files, as follows:

 • If there is a copy-to attribute on the topicref in the map, the attribute value becomes
the name of the file.

 • If there is no copy-to attribute:
 – If chunking is specified, DITA2Go derives a name from the topic ID of the

affected topic.
 – If chunking is not specified, the file gets a name that begins with xx and ends with

a three- or four-digit internally assigned ID number.

27.5.2 Specifying page titles for split or extract files

You can specify the HTML page <title> values for HTML output files in any of the
following ways:

 • via [HTMLOptions]Title = My default title for all files

 • via [Titles] filename = My title for this file

 • via [HTMLParaStyles] first paragraph format = Title

 • via DITA PI marker Title

You can use more than one method, and you can use macros and macro variables with any
of these methods.

In this section:
§27.5.2.1 Understanding title assignment precedence on page 531
§27.5.2.2 Assigning a title with a paragraph format on page 532
§27.5.2.3 Specifying a title prefix or suffix on page 532
§27.5.2.4 Assigning a title with a file name on page 533
§27.5.2.5 Assigning a title with a marker on page 533
§27.5.2.6 Assigning a default title on page 533
§27.5.2.7 Assigning a computed title on page 534

27.5.2.1 Understanding title assignment precedence

You can specify the HTML page title for a particular output file more than one way. For
example, in general you might want to use the paragraph-format method (which applies to
all files), then override that method with a Title marker or a [Titles] assignment for
selected files. Table 27-1 shows which method takes precedence if more than one method
applies to a given output file.

Default title If you do not specify any page titles, the default title for each output file is Test File from
DITA2Go; any other title specification overrides this default. If some of your output files

Table 27-1 Precedence of HTML page titles

Precedence Method Comments

Highest [Titles] Titles assigned in this section cannot be overridden

Intermediate [HTMLParaStyles]
or
Title , Config , or
HTMConfig marker

If you use both methods for a given split or extract part,
whichever occurs first in the source file (the Title , Config , or
HTMConfig marker or an instance of the Title paragraph
format) takes precedence

Lowest [HTMLOptions] Any other method overrides an [HTMLOptions]Title
value

IDENTIFYING SPLIT AND EXTRACT FILES DITA2GO USER’S GUIDE

532 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

show Test File from DITA2Go as the title, this means you did not manage to specify titles
for those files. See §27.5.2.6 Assigning a default title on page 533.

27.5.2.2 Assigning a title with a paragraph format

For the page title of a split or extract file, you can use the content of the heading that
caused the split or extract, or the content of the first instance of any other paragraph in the
split or extracted part. Optionally, you can also specify a prefix or suffix or both; see
§27.5.2.3 Specifying a title prefix or suffix on page 532.

Heading content
as title

To use the content of a heading as a page title, assign the Title property to the heading
paragraph format; for example:

[HTMLParaStyles]
; Title uses head as HTML page title, see [Titles]; may be preceded
; by [StyleTitlePrefix] and followed by [StyleTitleS uffix]
FigCaption=ExtrStart Title
Heading2=Split Title

Headings in
tables

Normally DITA2Go does not create a page title if the heading for which
[HTMLParaStyles] has the Title property is within a table. If you need titles from
headings in tables (for example, if your chapter headings are in single-cell tables) specify
the following setting:

[Tables]
; AllowTbTitle = No (default) or Yes (allow title f rom head in table)
AllowTbTitle=Yes

Otherwise, an HTML page title will not be created from such a heading.

Macros and
macro variables

If you use macros or macro variables in the text of a paragraph to which you have assigned
the Title property, you must also assign property Raw; otherwise, the characters <, >, and
& all get turned into HTML entities; and instead of being expanded, a macro appears
literally in the output. See §30.2.4 Stripping paragraph properties on page 568.

See also:
§27.8.2 Customizing title text for extracts on page 538
§30.2.1 Assigning HTML tags and attributes to paragraph formats on page 566

27.5.2.3 Specifying a title prefix or suffix

If you assign titles with paragraph formats (see §27.5.2.2 Assigning a title with a
paragraph format on page 532), you can also specify a prefix, a suffix, or both as part of
the title. For example:

[HTMLParaStyles]
Heading2=Split Title

[StyleTitlePrefix]
; doc style = prefix to use (if any) for file title in para content
Heading2=Course IV:

[StyleTitleSuffix]
; doc style = suffix to use (if any) for file title in para content
Heading2= (draft 1)

With these settings, a Heading2 paragraph that has content Prerequisites would result in a
split file with the following <title> element:

<title>Course IV: Prerequisites (draft 1)</title>

Excluded from
trails and local

TOCs

Any title prefix or suffix you specify with these settings is excluded from the title when it
appears in a trail of links.

27 SPLITTING AND EXTRACTING FILES IDENTIFYING SPLIT AND EXTRACT FILES

ALL RIGHTS RESERVED. MAY 19, 2013 533

Trailing spaces Trailing spaces you type at the end of the title prefix setting are included in the prefix.

Leading spaces If you type one or more leading spaces after the equals sign at the beginning of the title
suffix text, DITA2Go removes exactly one of them (see §3.4 Understanding the rules for
configuration settings on page 62). If you want a single leading space for the title suffix,
supply exactly two spaces after the equals sign.

27.5.2.4 Assigning a title with a file name

You can assign title text to the name of a split or extract file, to specify a title explicitly;
this assignment takes precedence over a title for the same file specified with a format. You
must assign the title text to the internal file name assigned by DITA2Go (see §27.5.1
Understanding how split and extract files are named on page 530), not to any replacement
name you may have specified for a split or extract file. For example:

[Titles]
; html filename = title, overrides [HTMLParaStyles] Title setting
; for split or extract files, use FileID+UID, such as mr516387
af345674=HTML Help, JavaHelp, and Oracle Help for J ava
ba134256=Export dialog

Macros and
macro variables

You can use macros and macro variables in the [Titles] section. For example, suppose
you want to use as a title the name of the DITA file from which the HTML file was
generated:

[Titles]
*=<$$_basefile>

This setting would provide the base name (without extension) of the DITA source file as
the title of each HTML output file. However, a more efficient way to do the same thing
would be to assign macro variable <$$_basefile> to the Title keyword; see §27.5.2.7
Assigning a computed title on page 534.

See also:
§3.6 Using wildcards in configuration settings on page 65
§37.3.4 Using predefined macro variables on page 691

27.5.2.5 Assigning a title with a marker

You can insert a DITA PI marker of type Title in the first paragraph of a split or extract,
and supply the text of the title as the marker content. The content of the marker becomes
the page title of the split or extract file. You can use macros and macro variables in the
marker content.

As an alternative, you can add the Title property to a different marker type: for example,
custom marker type Split (see §27.3.1 Designating split points on page 526), or custom
marker type ExtrStart ; and specify the title as the content. See §38 Working with
processing instructions on page 717 for more information.

27.5.2.6 Assigning a default title

To specify a default title for any otherwise untitled HTML page:
[HTMLOptions]
;Title = default title for HTML files,
; overridden by all other settings
Title= My default page title

Titles specified any other way override the value assigned to Title .

Note: If you do not specify a value for Title , the title of any otherwise untitled HTML
page in your output is Test File from DITA2Go.

INSERTING HTML CODE IN SPLIT AND EXTRACT FILES DITA2GO USER’S GUIDE

534 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

27.5.2.7 Assigning a computed title

If titles for your HTML pages can be determined based on the value of a macro variable,
or on values obtained by expanding a macro, you can assign the macro or macro variable
to the [HTMLOptions]Title keyword.

For example, to provide a page title that consists of the DITA source file name followed by
an integer that increments for each HTML file generated:

[HTMLOptions]
Title=<$PageTitle>

[PageTitle]
<$$_basefile><$$PgNumber++ as %-0.3d>

[MacroVariables]
PgNumber=0

Any other title specification overrides a computed [HTMLOptions]Title value.

See also:
§37.1 Defining and invoking macros on page 679
§37.3.3 Incrementing and decrementing macro variables on page 690
§37.6.3 Displaying expression results in output on page 702

27.5.3 Supplying <meta> text for split or extract files

To supply text for the <meta> tag content attribute in the head section of each split or
extract file, assign the Meta property to a paragraph format. For example:

[HTMLParaStyles]
; Meta uses the contents of the para as the content attribute of
; a meta tag in the head.
Metakeys=Meta

To supply the name attribute of the meta tag, assign the name to the same format:
[StyleMetaName]
; doc style = name to use for meta tag whose conten t is the para text
Metakeys=keywords

See §22.4.6 Supplying content for the <meta> tag on page 436 for more information.

27.6 Inserting HTML code in split and extract file s
Split and extract files require the usual HTML <head> and <body> sections. DITA2Go
provides code for these sections, just as for any other HTML output file. You can specify
additional HTML code, including macros, for DITA2Go to insert at several points in these
HTML sections.

In this section:
§27.6.1 Choosing how to insert code in extracts on page 534
§27.6.2 Assigning code to [Inserts] keywords for splits and extracts on page 535
§27.6.3 Using special sections to insert code in extracts on page 536

27.6.1 Choosing how to insert code in extracts

You can specify code to be inserted in extract files by any of the methods listed in
Table 27-2. Code can be placed at any of the following locations in an extract file:

 • Within the <head> element, after the <title> element

27 SPLITTING AND EXTRACTING FILES INSERTING HTML CODE IN SPLIT AND EXTRACT FILES

ALL RIGHTS RESERVED. MAY 19, 2013 535

 • At the beginning of the <body> element
 • Just before the end of the <body> element.

The methods in Table 27-2 are listed in order of precedence. For example, if you use both
an ExtrHead PI marker containing HTML code and supply an [Inserts]ExtrHead
entry specifying HTML code, DITA2Go inserts the marker code in the <head> element
of the extract and ignores the [Inserts]ExtrHead entry. This allows you to override
code specified in the configuration file for any extracts that require different code.

27.6.2 Assigning code to [Inserts] keywords for sp lits and extracts

To specify a predetermined location for HTML code, you can assign the code to a
keyword in the [Inserts] section. For example:

[Inserts]
Top=<$TopNavTable>

Bottom=
<$BtmNavTable>

Table 27-3 lists the basic [Inserts] location keywords, and for each keyword describes
where the HTML code assigned to that keyword would be invoked in an output file.

[Inserts] file-type
prefixes

Table 27-4 lists prefixes for the basic keywords (except TopicBreak), and for each prefix
describes the type of file where HTML code assigned to a keyword with that prefix would
be invoked.

Table 27-2 Extract code insertion methods

Precedence Type Code insertion method Ref.

Highest Marker Make code the text (maximum 256 characters) of a
marker placed anywhere in the extract

27.8.1

Intermediate Configuration
section

Assign code to the paragraph format designated to
start the extract (see 27.4.2.1)

27.6.3

Lowest Configuration
keyword

Assign code to an [Inserts] keyword 27.6.2

Table 27-3 Basic macro-insertion keywords and locations

[Inserts] keyword Location of macro in HTML file

TopicBreak Before the <title> element (between topics) when files are not split

Head Within the <head> element, after the <title> element

HeadEnd At the very end of the <head> element

Frames Between <head> and <body> elements, for framesets (split files only)

Top At the beginning of the <body> element.

Bottom Just before the end of the <body> element.

End After the end of the <body> element (to close noframes ; split files only)

Table 27-4 Keyword prefixes for split or extract code insertion

[Inserts] keyword prefix Type of split or extract fi le where applicable

First First split part

Split Split parts between the first and the last

Last Last split part

Nonsplit Files that are not split (among files that are split); use only with Top or
Bottom

Extr Extract file; use only with Head, Top, or Bottom

REFERENCING SPLIT AND EXTRACT FILES DITA2GO USER’S GUIDE

536 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[Inserts]
location/file-type

variants

Table 27-5 combines prefixes and keywords to show all the keyword variants you can use
in the [Inserts] section, by type of file and by location within a file.

27.6.3 Using special sections to insert code in ex tracts

You can assign HTML code (including macros) to the [HTMLParaStyles]ExtrStart
format or ExtrStart marker (whichever you used to designate the start of the extract) to be
invoked in the following sections:

[ExtrHead]
; starting format = HTML code for the head of the e xtract file

[ExtrTop]
; starting format = HTML code for the top of the ex tract body

[ExtrBottom]
; starting format = HTML code for the bottom of the extract body

These sections correspond to [Inserts] keywords ExtrHead , ExtrTop , and
Extrbottom ; and to PI marker types ExtrHead , ExtrTop , and Extrbottom ; and are used
for the same purposes. A marker type overrides a [Extr*] section of the same name, and
an [Extr*] section overrides an [Inserts] keyword of the same name; see §27.6.1
Choosing how to insert code in extracts on page 534.

For examples, see §27.8.4 Specifying extracts: an example on page 543.

27.7 Referencing split and extract files
You can use the predefined macro variables listed in Table 27-6 to refer to file names and
titles of split and extract files. You can use these variables anywhere in a macro, including
within JavaScript sections. They are valid in all parts of a file, including within the base
part from which the other parts are split or extracted.

Table 27-5 Code insertion keywords for split and extract files

Solitary file First* split file
Intermediate
split files Last** split file

Non-split file
(among splits) Extract file

Head FirstHead SplitHead LastHead --- ExtrHead

HeadEnd FirstHeadEnd SplitHeadEnd LastHeadEnd --- ExtrHe adEnd

Frames FirstFrames SplitFrames LastFrames --- ---

Top FirstTop SplitTop LastTop NonsplitTop ExtrTop

Bottom FirstBottom SplitBottom LastBottom NonsplitBotto m ExtrBottom

End FirstEnd SplitEnd LastEnd --- ---

* If FirstBottom is not defined, SplitBottom is used. If SplitBottom is not defined, Bottom is used. If any others are not defined, the
corresponding non-First form is used.

** If any of the first three is not defined, the corresponding Split form is used; otherwise the non-Last form (as for the last two).

27 SPLITTING AND EXTRACTING FILES CUSTOMIZING AND REPLACING EXTRACTS

ALL RIGHTS RESERVED. MAY 19, 2013 537

27.8 Customizing and replacing extracts
In this section:

§27.8.1 Using PI markers for extract processing on page 537
§27.8.2 Customizing title text for extracts on page 538
§27.8.3 Replacing extracts with links in the parent file on page 539
§27.8.4 Specifying extracts: an example on page 543

27.8.1 Using PI markers for extract processing

You can use predefined PI marker types to supply most extract-file properties. Table 27-7
lists the predefined marker types for extracts.

Table 27-6 Predefined macro variables for splits and extracts

Type Variable Description

File name $$_basefile Base name only of the parent file, without extension.

$$_currbase Base name only of the current split part, without extension.

$$_currfile Current split part: file name with extension

$$_currfilepath Current split part: full path and file name with extension

$$_extrgraphid Internal file name of first graphic referenced in an extract

$$_extrfile Current extract file name

$$_extrgraph File name of first graphic in an extract, as modified by any
[Graphics]ExtrGraphSuffix ; use for thumbnails (see §27.8.3
Replacing extracts with links in the parent file on page 539)

$$_extrgraphid DITA2Go internal name of first graphic in an extract

$$_nextfile Split part that follows $$_currfile

$$_prevfile Split part that precedes $$_currfile

Title $$_currtitle Current file title, unaffected by extracts, so it can be used in an extract
to get the parent file title.

$$_basetitle Original document title, unaffected by splits.

$$_prevtitle Title of $$_prevfile split part.

$$_nexttitle Title of $$_nextfile split part.

$$_extrtitle Current extracted-part title; used in a replacement macro for the
extract, to reference the extract title.; see §27.8.3 Replacing extracts
with links in the parent file on page 539.

Boolean $$_firstfile 1 if this is the first split part, otherwise 0; intended for JavaScript use.

$$_lastfile 1 if this is the last split part; otherwise 0; intended for JavaScript use.

Table 27-7 Predefined PI marker types for extracts

Marker type Purpose Content use Placement Ref.

ExtrBottom Insert HTML code Last item in extract
<body>

Anywhere in the extract* 27.6.1

ExtrDisable Turn off extract
processing

Ignored After all or a group of extracts 27.4.1

ExtrEnable Turn on extract
processing

Ignored Before all or a group of
extracts

27.4.1

CUSTOMIZING AND REPLACING EXTRACTS DITA2GO USER’S GUIDE

538 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

DITA2Go processes every marker that has the same name as an
[HTMLParaStyles]Extr* property the same way as that property. Properties assigned
via markers take precedence over the same properties assigned via formats; see §27.6.1
Choosing how to insert code in extracts on page 534.

27.8.2 Customizing title text for extracts

In the [ExtrTitle] section you can assign text for the extract title to the ExtrStart
format or ExtrStart PI marker, whichever you used to designate the start of the extract:

[ExtrTitle]
; doc format = text for title of the extract file, which may use
; macros, including <$$_currtitle> which has the title of the parent
; file. This is ignored if the Title is set for any para in the
; extract file.
ExtractStartPara=Title for extract file

Predefined macro variable <$$_currtitle> is the <title> string of the file that
originally contained the extracted text; see §27.7 Referencing split and extract files on
page 536.

For example, suppose your DITA document contains an element mapped to a paragraph
format that always marks the start of an extract; for example ProcedureStart; and suppose
you want each such extract to have a title that includes the title of the file from which it
was extracted. You could achieve this effect with the following setting:

[ExtrTitle]
ProcedureStart=<$$_currtitle>: Procedure

If the original file’s <title> string was “Setting up a customer account”, the extract file’s
<title> section would be:

<title>Setting up a customer account: Procedure</ti tle>

Note: If you assign [HTMLParaStyles] property Title to a paragraph format in the
extract, the content of that paragraph overrides anything you specify in
[ExtrTitle] .

ExtrEnd End an extract; Ignored After end of last paragraph in
extract, and before end of
following paragraph

27.4.2

ExtrFinish Mark last part of
extract

Ignored In the last paragraph of the
extract

27.4.2

ExtrHead Insert HTML code Placed in extract
<head>

Anywhere in the extract* 27.6.1

ExtrReplace Insert HTML code Replaces extract in
parent file

Anywhere in the extract* 27.8.3

ExtrStart Begins extract Ignored In the first paragraph of the
extract; can be used in
[Extr*] sections

27.4.2,
27.6.3

ExtrTop Insert HTML code First item in extract
<body>

Anywhere in the extract* 27.6.1

* To avoid maintenance headaches, pick a consistent location, such as at the start of the first paragraph.

Table 27-7 Predefined PI marker types for extracts (continued)

Marker type Purpose Content use Placement Ref.

27 SPLITTING AND EXTRACTING FILES CUSTOMIZING AND REPLACING EXTRACTS

ALL RIGHTS RESERVED. MAY 19, 2013 539

27.8.3 Replacing extracts with links in the parent file

In this section:
§27.8.3.1 Assigning replacement code on page 539
§27.8.3.2 Using thumbnails for links to illustrations in HTML on page 540
§27.8.3.3 Supplying properties for extracted graphics on page 542

27.8.3.1 Assigning replacement code

In the [ExtrReplace] section you can assign HTML code, including macros, to the
ExtrStart format or ExtrStart PI marker, whichever you used to designate the start of
the extract. The code you assign replaces the entire extract in the parent file. For example:

[HTMLParaStyles]
Heading2=ExtrStart

[ExtrReplace]
; doc format = HTML code to use instead of extracte d para
Heading2=<$ YourMacroForTheReplacement>

If you need different replacements for different extracts, you could either use different
starting formats, or you could use an ExtrReplace PI marker to specify replacement code
for a particular extract; the marker takes precedence over anything you specify in the
[ExtrReplace] section.

You can use several predefined macro variables in replacement code to reference the
replaced extract file, the extract title, and the first graphic in the extract. Table 27-8 lists
the variables you can use in extract replacement code. Also, predefined macro
<$_extrthumb> provides a convenient way to include scaled thumbnails of graphics as
replacement links; see §27.8.3.2.3 Providing scaled thumbnails on page 541.

For example, the following code uses a thumbnail graphic to link to an extract:
[HTMLParaStyles]
FigCaption=Contents ExtrStart Title
FigAnchor=ExtrFinish

[ExtrReplace]
FigCaption=<$ThumbCode>

[ThumbCode]
<p class="thumbnail"><a href="<$$_extrfile>">

Table 27-8 Predefined macro variables for extract replacement code

Macro variable Definition Reference

<$$_extrgraph> File name, as modified by any value specified for
[Graphics]ExtrGraphSuffix , of the first graphic in an
extract; use to include a thumbnail of the graphic

27.8.3.2.2

<$$_extrgraphclass> CSS class name to use in <$_extrthumb> macro 27.8.3.2.3

<$$_extrgraphhigh> Thumbnail height in pixels, for use in <$_extrthumb>
macro

27.8.3.2.3

<$$_extrgraphtarget> target attribute for window used by <$_extrthumb> 27.8.3.2.3

<$$_extrgraphid> DITA2Go internal name of the first graphic in an extract;
use to reference properties

27.8.3.3

<$$_extrgraphwide> Thumbnail width in pixels, for use in <$_extrthumb>
macro

27.8.3.2.3

<$$_extrfile> Extract file name 27.8.3.3

<$$_extrtitle> Extract title 27.8.3.3

CUSTOMIZING AND REPLACING EXTRACTS DITA2GO USER’S GUIDE

540 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 <img src="<$$_extrgraph>" alt="<$$_extrtitle>" /> </p>

See §27.8.3.2 Using thumbnails for links to illustrations in HTML on page 540.

27.8.3.2 Using thumbnails for links to illustratio ns in HTML

In extract replacement code you can provide a thumbnail—a miniature version—of the
first graphic in the extract, and use the thumbnail as a link to the extract.

In this section:
§27.8.3.2.1 Choosing a thumbnail method on page 540
§27.8.3.2.2 Providing separate thumbnails on page 540
§27.8.3.2.3 Providing scaled thumbnails on page 541
§27.8.3.2.4 Including text with a thumbnail on page 542

27.8.3.2.1 Choosing a thumbnail method

The best way to provide thumbnails depends in part on which of the following you are
generating:

 • server-based HTML
 • compiled or local-based Help system.

The issue is the thumbnail graphic itself.

Server-based
systems

For server-based HTML or OmniHelp, you can include an additional smaller version of
each image, to replace (and provide a link to) the original image. Providing an additional
image for a thumbnail makes sense if users are downloading a page at a time; if they do
not want to view the full-size image, they can avoid the time cost of downloading it.

Local-based
systems

However, for a compiled Help system (such as HTML Help), or a local-based system
(such as JavaHelp, Oracle Help for Java, or local HTML or OmniHelp), the additional-
image method increases the file size (and download time), because of the added size of the
thumbnails themselves. For these cases it can make more sense to use the original image
file, but specify a smaller size, and let the browser do the scaling. The resulting thumbnail
might not be as pretty but it should still be identifiable, and that is really all that is required
of thumbnails.

Which method is better for a given project? It depends. The graphics count and sizes are
among the factors to consider.

27.8.3.2.2 Providing separate thumbnails

If you provide separately created thumbnails, use the following option, which is the
default:

[Graphics]
; ExtrGraphThumbnail = Named (default,
; use original name plus ExtrGraphSuffix)
ExtrGraphThumbnail=Named

When ExtrGraphThumbnail=Named , you provide a thumbnail version of the first
image in each extract. You must create the thumbnails yourself, using a third-party
graphics tool, and store them in the same directory with the output graphics. Each
thumbnail must have the same file name as the corresponding output graphic, but with a
suffix added to the base name. You specify the suffix as follows:

[Graphics]
; ExtrGraphSuffix = suffix for file name of first g raphic in an
; extract, used in the predefined <$$_extrgraph> mac ro to identify
; its thumbnail
ExtrGraphSuffix=tn

27 SPLITTING AND EXTRACTING FILES CUSTOMIZING AND REPLACING EXTRACTS

ALL RIGHTS RESERVED. MAY 19, 2013 541

Name thumbnail
after output

graphic

Except for the suffix, each thumbnail must have the same name as the corresponding
output graphic.

Place thumbnail
in project
directory

Each thumbnail you create must be placed in the same directory with the corresponding
output graphic; this might be different from the directory where your original graphics are
located.

For example, suppose your document references the following graphic:
D:\MyDoc\graphics\jaguar.jpg

You must provide the following thumbnail for jaguar.jpg :
D:\MyDoc\graphics\jaguartn.jpg

Thumbnail not
found

If DITA2Go does not find a properly named thumbnail for the first graphic in an extract,
you get either a broken link or just the alt text in the replacement code.

Graphic not
present

If there is no graphic in the extract, the value of <$$_extrgraph> for that extract is
NULL, and the literal name extrgraph appears in the replacement code wherever you
specified <$$_extrgraph> .

27.8.3.2.3 Providing scaled thumbnails

When you use scaled thumbnails, the name of each thumbnail is the same as the name of
the full-size graphic. To provide thumbnails scaled by the browser at run time from your
original graphics, specify the following option:

[Graphics]
ExtrGraphThumbnail=Scaled

When ExtrGraphThumbnail=Scaled , DITA2Go uses the original image, applying
scaling factors that you can specify:

[Graphics]
; ExtrGraphHigh = size in pixels for height of thum bnail
; display of graphic when ExtrGraphThumbnail=Scaled
; default 96 pixels (one inch)
ExtrGraphHigh=96
; ExtrGraphWide = size in pixels for width of thumb nail
; display of graphic when ExtrGraphThumbnail=Scaled
; default 96 pixels (one inch)
ExtrGraphWide=96
; ExtrGraphClass = name of CSS class to use in pred efined
; <$_extrthumb> macro
;ExtrGraphClass=thumbnail
; ExtrGraphTarget = target attribute for window use d by <$_extrthumb>
ExtrGraphTarget=_blank

For the thumbnail, ExtrGraph* settings override any [Graph*] settings for width and
height values. The ExtrGraph* settings do not conflict with (for example) a user-defined
<$ExtrGraphHigh> macro, nor with predefined macro variable <$$_extrgraphhigh>
or <$$_extrgraphwide> ; all are in different DITA2Go internal namespaces.

Preserve aspect
ratio

If you want to use a reduced size for thumbnails, but not all images have the same aspect
ratio, set only one of ExtrGraphHigh or ExtrGraphWide to the number of pixels you
want, and set the other to 0 (zero).

Predefined macro
<$_extrthumb>

For convenience you can use built-in macro <$_extrthumb> , which is defined as
follows:

<p class="<$$_extrgraphclass>"><a href="<$$_extrfil e>">
target="<$$_extrgraphtarget>"><img src="<$$_extrgra ph>" \

<$_if ($$_extrgraphhigh > 0)> height="<$$_extrgraph high>"<$_endif>\

CUSTOMIZING AND REPLACING EXTRACTS DITA2GO USER’S GUIDE

542 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

<$_if ($$_extrgraphwide > 0)> width="<$$_extrgraphw ide>"<$_endif>\
alt="<$$_extrtitle>" /></p>

Using this macro, the settings you need for scaled thumbnails can be reduced to the
following:

[Graphics]
ExtrGraphThumbnail=Scaled

[ExtrReplace]
*=<$_extrthumb>

27.8.3.2.4 Including text with a thumbnail

Suppose you want to display, next to each thumbnail, text to indicate that a full-size
version of the graphic is but a click away; for example, Click to enlarge .

If you use extraction to create the thumbnails (see §27.8.3.2.3 Providing scaled thumbnails
on page 541), you can do something like the following to put the text next to the image:

[ExtrReplace]
Thumbfmt=<$thumbnail>

[thumbnail]
<table border="0"><tr>

<td><$_extrthumb></td>
<td><p class="thumbtext">Click to enlarge</p></td>

</tr></table>

Add an entry for p.thumbtext to your CSS, perhaps in [CSSStartMacro] if you have
DITA2Go generate CSS each time. You could also give the table a class, and define its
properties in the CSS file.

27.8.3.3 Supplying properties for extracted graphi cs

You can use predefined macro variable <$$_extrgraphid> to access properties you
have assigned to individual graphics in the configuration file.

For example, suppose you are using JavaScript in extract replacement code to specify
characteristics of the secondary window in which each extracted graphic will appear. And
suppose you want each window to be the same size as the graphic. You could place code
like the following in an ExtrReplace PI marker for each individual extract, with the
dimensions for that particular graphic:

<p class="fig"><a href="javascript:location='<$$_cu rrfile>';
 window.open('<$$_extrfile>','height=387,width=550 ')">
 <$$_extrtitle></p>

Or, you could specify the dimensions of any extractable graphics in the project
configuration file: (see §32.8.2 Adjusting image size for selected graphics on page 621):

[GraphWide]
; Graphic file name = number of pixels wide, 0 to o mit width attribute
aa123456=525
ab654321=440

[GraphHigh]
; Graphic file name = number of pixels high, 0 to o mit height
; attribute
aa123456=150
ab654321=220

Then you could access the dimensions with a list variable (see §37.4 Using multiple-value
list variables on page 695) in the replacement code. For example, you could replace the

27 SPLITTING AND EXTRACTING FILES CUSTOMIZING AND REPLACING EXTRACTS

ALL RIGHTS RESERVED. MAY 19, 2013 543

JavaScript height and width clause with the following code, where $$graphhigh and
$$graphwide are list variables:

'height=<$$graphhigh[$$_extrgraphid]>,
width=<$$graphwide[$$_extrgraphid]>'

You could define macros to supply default values for graphics not listed in the
configuration sections that your list variables access. For example:

[ExtrGraphHigh]
<$$ht = ($$graphhigh[$$_extrgraphid])>
<$_if ($$ht==0)><$$ht=387><$_endif><$$ht>

27.8.4 Specifying extracts: an example

This example delimits figures, sidebars, and procedures to be extracted from the parent
file, and specifies macros to be inserted in the extracts.

Assign extract properties and macros to paragraph formats:
[HTMLParaStyles]
; Extract figures and sidebars:
ArtAnchor=ExtrStart LEnd
SideBarAnchor=ExtrStart LEnd

; Extract procedures:
ProcHead=ExtrStart Title CodeAfter CodeBefore LEnd

; Put titles on the figure and sidebar extracted pa ges:
SideBarHeading=Title CodeBefore
ArtCaption=Title CodeBefore

; End extracts:
Body=ExtrEnd LEnd
Heading3=ExtrEnd LEnd

Call macros to put a Close Window button before the topic:
[ParaStyleCodeBefore]
SideBarHeading=<$CWbutton>
ArtCaption=<$CWbutton>

In the parent file, substitute links to the extracts for the extracted material:
[ExtrReplace]
; Replace extracted sidebars with "See..." links:
SideBarAnchor=<a href="<$$_extrfile>">See...
; Replace extracted figures with "Figure..." links:
ArtAnchor=<a href="<$$_extrfile>">Figure...
; Replace extracted procedures with links to the pr ocedures:
ProcHead= <a href="<$$_extrfile>"> <$$_extrtitle>

Assign macros to specify links from and within the extract files:
[ExtrTop]
; Place a link at the top to the More Topics sectio n at the bottom:
ProcHead=<$MoreTopicsJump>
SideBarAnchor=<$MoreTopicsJump>
ArtAnchor=<$MoreTopicsJump>

[ExtrBottom]
; At the bottom add links back to the parent doc an d to other topics:
ProcHead=

<$NavListExtract><$BackToTop>
SideBarAnchor=

<$NavListExtract><$BackToTop>
ArtAnchor=

<$NavListExtract><$BackToTop>

[ExtrHead]
; Add a link to the style sheet that overrides sele cted formats:

CUSTOMIZING AND REPLACING EXTRACTS DITA2GO USER’S GUIDE

544 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ProcHead=<link rel="stylesheet" href="Ovr.css" type ="text/css">
SideBarAnchor=<link rel="stylesheet" href="Ovr.css" type="text/css">
ArtAnchor=<link rel="stylesheet" href="Ovr.css" typ e="text/css">

ALL RIGHTS RESERVED. MAY 19, 2013 545

28 Creating HTML links

This section shows how to provide basic links in HTML output. Topics include:
§28.1 Understanding sources of links on page 545
§28.2 Specifying link appearance on page 545
§28.3 Specifying link destination on page 549
§28.4 Creating jumps to particular windows for HTML on page 550
§28.5 Converting DITA cross-reference links to HTML on page 551
§28.6 Linking to other files and other DITA2Go projects on page 553
§28.7 Linking to external destinations on page 554

See also:
§29 Providing navigation in HTML on page 555

28.1 Understanding sources of links
DITA2Go creates HTML links from the following items in DITA:

28.2 Specifying link appearance
Link presentation is typically set in the browser, by the user. If you do nothing, links come
out the color the user specifies; with or without underlines, as the user chooses. It is best
not to impose your own ideas on users in this area.

In this section:
§28.2.1 Specifying link colors on page 545
§28.2.2 Specifying link class on page 546
§28.2.3 Assigning link attributes with PI markers on page 547
§28.2.4 Specifying link properties with macros on page 548
§28.2.5 Replacing problem characters in links on page 548
§28.2.6 Forcing link text to lowercase on page 549

28.2.1 Specifying link colors

If you really must specify link color for some reason, always use the attributes intended
for this purpose, either in the <body> tag or in CSS (see §31 Setting up CSS for HTML on
page 591). You must specify three color values: for unvisited links, for active (already
selected) links, and for visited links. For example:

<body link="#0000ff" alink="#ff0000" vlink="#800080 " >

Cross references: Cross references are converted to links to cross-
reference sources.

Hypertext internal links: Hypertext links are activated in HTML.

Hypertext external links: Links to external files are activated in HTML; see §28.7
Linking to external destinations on page 554.

Paragraph formats: Links connecting a hierarchy of headings can form a
“breadcrumb trail”; see §29.2 Generating trails of links
on page 555.

SPECIFYING LINK APPEARANCE DITA2GO USER’S GUIDE

546 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The defaults of blue for link and purple for vlink (the default for alink varies) are best
left alone unless you have a compelling reason to use something else. An alink is in an
“active” state only while the mouse is clicked on it with the button held down. The rest of
the time, it is either unvisited or visited.

Set via <body>
tag

You can set link appearance in the attributes for the <body> tag. For example:
[Attributes]
; link = hyperlink active color,
; alink = hyperlink color when clicked,
; vlink = visited hyperlink color, and
; #...... = your hex color for any of these
body= bgcolor="#FFFFE1" text="#000080" link="#00802 0" vlink="#804000"

Keep all attributes for a given element on one line, regardless of line length.

Set via CSS In CSS (browser-dependent at present) you could use, for example:
a:link { color: blue }
a:active { color: red }
a:visited { color: #800080 }

To override CSS-defined colors for some or all links, see §28.2.2 Specifying link class on
page 546.

28.2.2 Specifying link class

To give some of the links in your document an appearance different from that produced by
the “a: ” class properties specified in CSS or the default browser settings, you can name
and define other CSS classes, and apply them selectively to the links in your document.

For example, suppose you want certain links to be red except when the mouse hovers over
them, when they should change to green underlined. In CSS you might define link class
traffic :

a.traffic:link,a.traffic:visited,a.traffic:active { color: #ff0000;}
a.traffic:hover {color: #00ff00; text-decoration: u nderlined;}

You can apply such a class to selected links via PI marker in DITA XML, or via
paragraph-format assignment in the DITA2Go configuration file. To change just one or
two links, probably a PI marker is easier. To change many links, you might want to use a
special @outputclass for the paragraph format for the text where the links occur.

In this section:
§28.2.2.1 Assigning a link class with a PI marker on page 546
§28.2.2.2 Assigning a link class with a paragraph format on page 547

28.2.2.1 Assigning a link class with a PI marker

You can use DITA PI marker LinkClass to assign a CSS class to a single link, as follows:

1. For each link:
1.1. Place a LinkClass PI marker in your document, just before the link.
1.2. Make the content of the marker the name of the CSS class you want applied.

For example, to apply CSS class traffic to a particular link, somewhere before the link
you would insert a LinkClass PI marker with content:

traffic

CSS class traffic would be applied (only) to the next link after the PI marker:
 link text

28 CREATING HTML LINKS SPECIFYING LINK APPEARANCE

ALL RIGHTS RESERVED. MAY 19, 2013 547

See also:
§28.2.3 Assigning link attributes with PI markers on page 547
§34.3.3 Assigning WAI link attribute values with PI markers on page 652
§38.3 Adding attributes with PI markers on page 721

28.2.2.2 Assigning a link class with a paragraph f ormat

You can cause all links in your document to inherit the class properties of the paragraphs
where the links occur, or you can assign a CSS class to all the links that occur in
paragraphs of a particular format.

To make all links use the same CSS class properties as their containing paragraphs:
[CSS]
; LinkClassIsParaClass = No (default)
; or Yes (adds the same class attribute as is used f or
; the current para to all links within that para)
; Default is reversed to Yes if UseCSS=Yes.
LinkClassIsParaClass=Yes

When you use CSS, the default value of LinkClassIsParaClass is reversed to Yes;
see §31.5 Understanding how CSS affects other options on page 596.

To assign a class to the links in a particular paragraph format:
[HTMLParaStyles]
; ParaLinkClass uses the name in [StyleParaLinkClas s]
; as the class attribute of the contained links; if none is
; specified, it uses the same class as the para itse lf
ParaFmt=ParaLinkClass

[StyleParaLinkClass]
; doc style = name to use in the class attribute
; of the links in the para
ParaFmt=classname

A ParaLinkClass assignment overrides any LinkClassIsParaClass setting in
[HTMLOptions] .

For example, to assign CSS class traffic to all links that occur in text with paragraph
format Blurb, and cause all links in Intro paragraphs to look just like the rest of Intro text:

[HTMLParaStyles]
Intro=ParaLinkClass
Blurb=ParaLinkClass

[StyleParaLinkClass]
Blurb=traffic

A Blurb paragraph that contains a link would convert to HTML like this:
<p class="blurb">Text containing a link to <a class ="traffic" href=
"#">somewhere.</p>

An Intro paragraph that contains a link would convert like this:
<p class="intro">Text containing a link to <a class ="intro" href=
"#">somewhere.</p>

28.2.3 Assigning link attributes with PI markers

To assign an HTML attribute to a link, just before the link insert a PI marker with a name
that starts with Link and ends with the name of the link attribute. Make the content of the
marker the value of the named attribute. DITA2Go puts the attribute and its value in the
generated <a> tag.

SPECIFYING LINK APPEARANCE DITA2GO USER’S GUIDE

548 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

See also:
§28.2.2.1 Assigning a link class with a PI marker on page 546
§34.3.3 Assigning WAI link attribute values with PI markers on page 652
§38.3 Adding attributes with PI markers on page 721

28.2.4 Specifying link properties with macros

To include a macro in the href attribute of HTML links, assign the LinkSrc property to
any paragraph formats that contain links you wish to modify:

[HTMLParaStyles]
ParaFmt = LinkSrc

To specify the macro code:
[ParaStyleLinkSrc]
ParaFmt = code for the href attribute value

You can include macro variable <$$_linksrc> in the macro to insert the default content
of the href attribute.

For example, suppose you want to use JavaScript for all links that occur in Body
paragraphs, changing the links from the default format:

 Some text

to this format:
 Some text

To make the links look like this in HTML output:
[HTMLParaStyles]
Body = LinkSrc

[ParaStyleLinkSrc]
Body = javascript:LinkTo('<$$_linksrc>');

Macro variable <$$_linksrc> provides the original destination value for the href
attribute. DITA2Go supplies the double quotes around the entire attribute value; do not
include them in the macro definition. Any quote marks needed within the macro must be
single quotes.

Macros are also helpful when you need more than one line of href attribute information,
or when you want to use the same href attributes in many different configuration files.
See §37 Working with macros on page 679.

28.2.5 Replacing problem characters in links

Some characters that are acceptable in DITA hypertext links and cross references cause
problems for browsers; for example, HTML insists on all-lowercase IDs. DITA2Go
processes DITA hypertext links and cross references to ensure acceptable IDs, similar to
the way CSS class names are processed; see §31.7.1 Understanding CSS class name
restrictions on page 600.

Spaces are
removed or

replaced

Part of the job is to remove all spaces, possibly replacing them with another character
when that is necessary to prevent name clashes. You can specify any alphanumeric
character (or a hyphen or an underscore) to replace spaces.

To set the character used to replace spaces in links:
[HTMLOptions]
; These alphanumeric chars are used as space replac ements in IDs;
; if non-alphanumeric (other than hyphen or undersc ore), spaces are

28 CREATING HTML LINKS SPECIFYING LINK DESTINATION

ALL RIGHTS RESERVED. MAY 19, 2013 549

; stripped instead (default)
; XrefSpaceChar = alphanumeric char to use in xref markers
XrefSpaceChar=-
; HyperSpaceChar = alphanumeric char to use in hype rlinks (not URLs)
HyperSpaceChar=-

By default, DITA2Go removes spaces without replacing them. The same thing happens if
you set XrefSpaceChar or HyperSpaceChar to any non-alphanumeric character other
than a hyphen or an underscore: DITA2Go removes all spaces without replacing them.

28.2.6 Forcing link text to lowercase

To make sure all hypertext links are lowercase in HTML output:
[HTMLOptions]
; MakeFileHrefsLower = No (leave case unchanged) or Yes
MakeFileHrefsLower = Yes

MakeFileHrefsLower is set to Yes in system configuration file d2htm_config.ini .
If you want DITA2Go to leave case alone in hypertext links, you must override this
setting in a project or local configuration file.

MakeFileHrefsLower applies to hypertext links and interfile cross references. When
you use the FileName property to name the section that contains the cross-reference
destination, the setting applies also to cross references within the same file (see §43.3.3.3
Creating special paragraph formats to name output files on page 784).

28.3 Specifying link destination
In this section:

§28.3.1 Forcing links to top-of-page for selected paragraph formats on page 549
§28.3.2 Forcing all links to top-of-page on page 549
§28.3.3 Linking to an arbitrary location on page 550

See also:
§28.6 Linking to other files and other DITA2Go projects on page 553

28.3.1 Forcing links to top-of-page for selected p aragraph formats

You can specify that all interfile links in a particular paragraph format should go to the
start of the target page instead of to the cross-reference anchor or HyperAnchor PI marker
location on the page, by assigning property NoRef to the format. For example:

[HTMLParaStyles]
zNextSection=NoRef
zPrevSection=NoRef

You can assign property NoRef to cross-reference formats, also; see §28.5.2 Specifying
HTML options for cross-reference formats on page 552.

28.3.2 Forcing all links to top-of-page

You can specify that all interfile links should go to the start of the target page rather than to
the cross-reference anchor or HyperAnchor PI marker location. This is equivalent to
setting NoRef for all paragraph styles in [HTMLParaStyles] ; see §28.3.1 Forcing links
to top-of-page for selected paragraph formats on page 549:

[HTMLOptions]
; NoLocations = No (default)

CREATING JUMPS TO PARTICULAR WINDOWS FOR HTML DITA2GO USER’S GUIDE

550 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; or Yes (suppresses the part of all links after the filename)
NoLocations = Yes

To remove all named anchors also:
[HTMLOptions]
; RemoveANames = No (default)
; or Yes (DITA, eliminate tags)
RemoveANames = Yes

28.3.3 Linking to an arbitrary location

To create a link to an arbitrary location in a file, you must identify or establish a target at
that location. You can use a format macro to create and name the target. For example,
suppose one of your HTML files includes a procedure, and you want to create a link to the
procedure rather than to the beginning of the file. Suppose your procedures always start
with a paragraph format called ProcHead. You could assign the following properties and
code to ProcHead:

[HTMLParaStyles]
ProcHead=CodeBefore

[ParaStyleCodeBefore]
ProcHead=

If the procedure is in HTML file xx123456 , the link would look like this:

You must ensure the target file contains no conflicting uses of the same target name, for
example in HyperAnchor PI markers.

28.4 Creating jumps to particular windows for HTML
You can assign a particular window type as a jump destination. A window assignment can
specify jumps the following ways:

 • all jumps from a character or paragraph format
 • all jumps to a particular file or URL
 • individual jumps to a particular window.

A window assignment supplies a value for the target attribute of the
tag DITA2Go generates for the jump. If you are using framesets that value must be the
name of a frame (see §22.13 Using framesets on page 443), possibly one of several names
reserved by JavaScript, such as _top or _blank :

 • A jump to _top gets you out of a frameset; it does not open a new window.
 • A jump to _blank always opens a new window.

A jump to a window with a non-reserved name, if the window is not in the current
frameset (if any), opens a window of that name; and the next jump to the same name
reuses that same window. You can specify target windows the following ways:

Specify window by jump format
Specify window by jump destination
Specify window with a PI marker.

See also:
§16.7 Jumping to secondary windows in Help systems on page 262
§16.8 Creating pop-up topics for Help systems on page 263

28 CREATING HTML LINKS CONVERTING DITA CROSS-REFERENCE LINKS TO HTML

ALL RIGHTS RESERVED. MAY 19, 2013 551

Specify window
by jump format

You can use a character format to mark all jumps to a particular window type. For
example:

[Targets]
; doc format = name of frame to use for jumps from within this style
; For OmniHelp ALink and KLink jumps, targets make no sense
; and are ignored.
JumpNew=_blank

If you know that such jumps always occur in a particular type of paragraph, such as Step
paragraphs in procedures, you could use a paragraph format. For example:

[Targets]
Step*=procwin

Specify window
by jump

destination

If you know that all jumps to a particular HTML page (such as glossary.htm) should go
to a particular window type, you can specify the window to use for that page. For example:

[TargetFiles]
; filename (no ext) or URL destination = target fra me to be used
; a URL destination is the last element in the URL (no extension)
glossary=glosswin

Specify window
with a PI marker

If you need case-by-case handling of jumps to other windows, put a PI marker of type
LinkTarget , with marker content the name of the window, anywhere before the relevant
HyperJump PI marker.

28.5 Converting DITA cross-reference links to HTML
DITA2Go automatically converts DITA cross references to links in
HTML output. You can specify options for these links.

You can specify settings to prevent some cross references from being converted to links,
or to customize cross-reference behavior.

In this section:
§28.5.1 Specifying HTML options for all cross references on page 551
§28.5.2 Specifying HTML options for cross-reference formats on page 552

See also:
§28.6 Linking to other files and other DITA2Go projects on page 553

28.5.1 Specifying HTML options for all cross refer ences

You can specify several processing options that apply to all cross references:
[HTMLOptions]
; RemoveFilePaths = Yes (default, strip hyperlink a nd xref paths)
; or No
RemoveFilePaths=No
; ListMissingRefs = No (default)
; or Yes (identify missing xrefs to stderr)
ListMissingRefs=No
; CheckAllRefs = Yes (default, even if they seem un changed)
; or No
CheckAllRefs=Yes

See also:
§28.6.1 Retaining file paths in interfile links on page 553

CONVERTING DITA CROSS-REFERENCE LINKS TO HTML DITA2GO USER’S GUIDE

552 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

28.5.2 Specifying HTML options for cross-reference formats

You might not want every cross reference in your document to become a link in the
HTML output, or you might want to specify HTML attributes for the links generated from
some cross references. You can choose to have DITA2Go delete cross references of a
certain format, convert them to text, redirect them to top-of-page, or enhance them with
link attributes:

[XrefStyles]
; xref format name = properties (Delete, Text, NoRe f, or LinkSrc)
; if omitted, xref is treated as link

These properties have the following effects:

For example:
[XrefStyles]
zSectionLink=NoRef
Heading & Page=Text
Page=Delete

With these settings, DITA2Go would do the following:

 • Omit the #heading part of the href attribute from any link generated from a cross
reference that uses the zSectionLink format.

 • Render any cross reference that uses the Heading & Page format as plain text rather
than as a link.

 • Omit any cross reference that uses the Page format.

To use macros (see §37 Working with macros on page 679) in the href attribute of the
links generated from cross references, you assign property LinkSrc to the cross-reference
format, and you specify the macro in the following section:

[XrefStyleLinkSrc]
; xref format name = text macro to use in the href attribute
; of the xref link; <$$_linksrc> is available to use in the macro,
; with the normal href content.

To assign properties LinkSrc and NoRef to paragraph formats, see:
§28.2.4 Specifying link properties with macros on page 548

Delete Omits the cross reference entirely from HTML output. You can assign
this property to remove unwanted page references, provided you have
set up the format so that deleting the cross-reference content leaves
readable text.

Text Prevents creation of the tag, so the cross reference
does not become a link.

NoRef Creates the tag, but omits any hash part of the href
attribute; for example, file.htm# heading would become just
file.htm . The result is that the jump goes to the start of the file, not to
a point within the file. Assign this property if you want the top of the
page to show, instead of the referenced object, when a jump goes to a
split file.

LinkSrc Allows a DITA2Go macro in the href attribute of the link; you define
the macro in section [XrefStyleLinkSrc] . If you assign property
LinkSrc to a cross reference, and also to a character format applied to
the same cross reference (see §28.2.4 Specifying link properties with
macros on page 548), the cross-reference LinkSrc macro prevails. In
the macro definition you can use predefined macro variable
<$$_linksrc> , which provides the normal href content of the link.

28 CREATING HTML LINKS LINKING TO OTHER FILES AND OTHER DITA2GO PROJECTS

ALL RIGHTS RESERVED. MAY 19, 2013 553

§28.3.1 Forcing links to top-of-page for selected paragraph formats on page 549.

28.6 Linking to other files and other DITA2Go proj ects
With default configuration settings, DITA2Go successfully converts cross references and
hypertext links within and between HTML files generated in the same project. However,
you might need additional settings if your project includes any of the following:

 • links to or from files in other projects
 • links to files whose names or locations will change after conversion.

In this section:
§28.6.1 Retaining file paths in interfile links on page 553
§28.6.2 Enabling links to renamed or relocated files on page 553

See also:
§28.7 Linking to external destinations on page 554
§29 Providing navigation in HTML on page 555

28.6.1 Retaining file paths in interfile links

By default, DITA2Go removes paths from interfile links in your DITA files. If your
HTML files will be maintained in a directory structure identical to the structure used for
the DITA files from which they are generated, you must direct DITA2Go to retain the
paths in all interfile links, and then move the output files after conversion.

To retain file paths in interfile links:
[HTMLOptions]
; RemoveFilePaths = Yes (default, strip hyperlink a nd xref paths)
; or No
RemoveFilePaths = No

When RemoveFilePaths=Yes (the default), DITA2Go places all HTML files in the
project directory, regardless of where the originating DITA files are located. Links work as
created, regardless of the original directory structure. A problem arises only if both of the
following are true:

 • Your DITA files are in a non-flat directory structure (some DITA files are in different
directories).

 • You move the resulting HTML files to an identical directory structure.

Note: You might still get link errors for links between DITA files, especially if you are
using the CodeStore property (see §37.9.3 Surrounding or replacing text with
code or macros on page 711); however, the links should work.

When RemoveFilePaths=No , you must place HTML output files in a directory structure
on the target system that is identical to your DITA directory structure. This means that
after conversion, you must move HTML files from the project directory to other
directories that correspond in name and relative position to the directories where the DITA
files are located.

28.6.2 Enabling links to renamed or relocated file s

You might run into situations where the names of DITA files are not usable for HTML
files. For example, files on UNIX systems must not have spaces in their names. And for
HTML Help, the use of underscores in names seems to manifest defects.

LINKING TO EXTERNAL DESTINATIONS DITA2GO USER’S GUIDE

554 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Note: To stay out of trouble, restrict file names to letters and digits only, no spaces or
other characters. See §1.1.2 File, directory, and path names on page 26.

If you need to rename HTML files after DITA2Go produces them, you must tell
DITA2Go the names (and possibly the file paths) to use for the renamed files in links.
This step is essential if any links exist between the renamed files and other files in the
project, or other files in another directory. For example:

[XrefFiles]
; original filename (no ext) = html filename (no ex t, path OK)
Code1 = ../codes/federal/Code1
Cover = 00begin

Note: Even if you rename a file in [XrefFiles] , DITA2Go goes by the original DITA
name in all other sections of the configuration file.

Entries in [XrefFiles] replace the href link to the file named on the left of the equals
sign (base name) with the path and name on the right. Therefore you can also use this
method to provide paths to files that will be relocated to a directory different from the
main project directory.

28.7 Linking to external destinations
DITA2Go produces HTML links from HyperLink PI markers in your document.

To specify a target for a hypertext link (for example, _blank):
[HTMLOptions]
; URLTarget = name of target to use for all links u nless
; otherwise set, default none
URLTarget=_blank

To specify an email address:
[HTMLOptions]
URLTarget=mailto: name@company.com

When a hypertext link specifies an absolute path (which must start with a drive letter),
DITA2Go prefixes the path with “file:/// ”. For example:

 file:///g:/omnisys/ug/out/ugdita2go.pdf

For a relative path, DITA2Go includes just the text of the destination. For example:
 ../out/ugdita2go.pdf

(No tables)
(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 555

29 Providing navigation in HTML

To provide a navigation system for HTML output, you can use DITA2Go navigation
macros, DITA cross references or hypertext links, or a combination of these, to link
together the HTML files DITA2Go generates from your DITA document. Topics include:

§29.1 Understanding how navigation links work on page 555
§29.2 Generating trails of links on page 555
§29.3 Creating a browse sequence on page 559

See also:
§28 Creating HTML links on page 545

29.1 Understanding how navigation links work
DITA2Go navigation features are designed to work in cases where parallel or subordinate
headings are in split files of their own, not in the same file as the headings to which they
will be linked. This is not a minor point; in fact, the code for local TOCs, trails, and
browse sequences depends heavily on the code for file splitting. That is where DITA2Go
gets the titles and links to use. If you do not split DITA files into topics, those lists of titles
and links have no content. For example, a trail link would show only the last Heading1 in
the file, a local TOC would be completely empty, and browse links would go nowhere.

See §27.3 Splitting files on page 526.

29.2 Generating trails of links
You can have DITA2Go generate a trail of links to each topic level in the hierarchy above
the current HTML page, and display the trail on each page as an additional navigation aid.

In this section:
§29.2.1 Understanding trails of links on page 555
§29.2.2 Specifying whether to include trails of links on page 556
§29.2.3 Specifying what to include in trails of links on page 556
§29.2.4 Specifying heading levels for trails of links on page 557
§29.2.5 Specifying where to display trails of links on page 558

29.2.1 Understanding trails of links

A trail of links, often called a “breadcrumb trail”, typically looks something like this:
Home & Garden > Kitchen > Small appliances > Coffee makers

The trail does not necessarily consist of links someone followed to reach a given page;
instead, it represents the hierarchical position of the page in the structure of the HTML
document.

Each heading in your DITA document that has subheadings can be used as a link in a trail
leading to successively lower subheadings. For each trail of links DITA2Go inserts the
current value of predefined macro <$_trail> , which consists of the following:

 • Starting HTML code for the trail
 • Text of each item in the trail (content of the heading in question)
 • Separator code between items in the trail

GENERATING TRAILS OF LINKS DITA2GO USER’S GUIDE

556 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • Ending code for the trail.

Except for the very last item, a trail of links can include only headings at which file splits
occur; see §27.3 Splitting files on page 526.

Trails of links are not compatible with [HTMLOptions]SmartSplit (see §27.3.2.1
Preventing splits that leave dangling headings on page 527). If you set SmartSplit=Yes ,
wherever a heading level is missing the previous heading in the trail will be duplicated.
The link will be correct, but the heading text will not.

29.2.2 Specifying whether to include trails of lin ks

To have DITA2Go create trails of links, specify the following setting:
[Trails]
; MakeTrail = No (default) or Yes (enable use of <$ _trail>)
MakeTrail=Yes

The default setting, MakeTrail=No , ensures that the overhead of collecting information
to construct trails will not be imposed if you do not use this feature.

When MakeTrail=Yes , DITA2Go creates a trail for any heading (or other paragraph
format) for which both of the following are true:

 • The format is assigned the [HTMLParaStyles]Trail and Title properties
(see §29.2.3 Specifying what to include in trails of links on page 556)

 • Either of the following is true:
 – The format is assigned the [HTMLParaStyles]Split property

(see §27.3.1 Designating split points on page 526)
 – [Trails]SplitTrail=Yes

(see §29.2.5 Specifying where to display trails of links on page 558).

For both split and extracted files, and for the original file, predefined macro <$_trail>
causes insertion of a trail according to the settings in [Trails] . The trail is always to the
first paragraph in the file. DITA2Go inserts trails only if MakeTrail=Yes .

29.2.3 Specifying what to include in trails of lin ks

In the usual case, you can set MakeTrail=Yes and SplitTrail=Yes , and appropriate
trails of links will appear in the HTML output for headings assigned format properties
Split , Trail , and Title . Other settings allow you to override DITA2Go defaults for
what to include in trails and where to position trails.

Content of trail
entries

To include in the trails of links the content of a heading format (or other format, for
extracted files), assign both the Title property and the Trail property to that format.
For example:

[HTMLParaStyles]
; Trail, if [Trails]MakeTrail=Yes, causes the <$_t rail> to be put out
; as specified by [Trails] settings.
ChapTitle=Title Trail
FigCaption=ExtrStart Title Trail

Heading prefix or
suffix

To provide a prefix or suffix for heading content as it appears in trails:
[StyleTrailPrefix]
; doc style = prefix to use (if any) for file title in trails
HeadFmt=prefix

[StyleTrailSuffix]
; doc style = suffix to use (if any) for file title in trails
HeadFmt=suffix

29 PROVIDING NAVIGATION IN HTML GENERATING TRAILS OF LINKS

ALL RIGHTS RESERVED. MAY 19, 2013 557

The heading content displayed in a trail excludes any prefix or suffix values assigned to
heading formats via [StyleTitlePrefix] or [StyleTitleSuffix] (see §27.5.2.3
Specifying a title prefix or suffix on page 532).

Code to start,
end, separate

entries

You can specify the HTML starting, ending, and separator code for the trail. For example:
[Trails]
; TrailStart = starting code for <$_trail>
TrailStart=<p>
; TrailSep = code between <$_trail> elements
TrailSep= >
; TrailEnd = ending code for <$_trail>
TrailEnd=</p>
; TrailLinkClass = value for class attribute in tra il links,
; default is none
;TrailLinkClass=trlink

You can use TrailStart to put a class attribute on the <p> tag, and use CSS to style it, if
the regular italic form (from) does not suffice. And you can add a class attribute for
the links used in trails.

Stack trail entries If the text of your headings tends to be lengthy, you might want to put each item in a trail
of links on a separate line, instead of having them all on one line; and you might want to
indent each successive entry.

To stack trail entries, replace the final of the TrailSep value with
 .

To indent successive stacked entries incrementally, specify the number of spaces to indent;
the maximum is four spaces per level:

[Trails]
; TrailIndent = number of s to put after Trai lSep for each
; output line to create indentation; a value of 1 puts one space
; before the second line, two before the third, th ree before
; the fourth, etc. A value of 2 puts 2, 4, 6, etc . Zero disables.
; If a value over 4 is set, it is reduced to 4.
TrailIndent=2

Current heading By default, a trail consists of links to headings above the current page. It can also include,
as text rather than as a link, the heading (or other first paragraph) of the current page, as
the final item in the trail:

[Trails]
; TrailCurrent = Yes (default), No, or Always
TrailCurrent=Yes

TrailCurrent can have the following values:

You would specify TrailCurrent=Always if, for example, you had embedded another
link in TrailStart , perhaps to the table of contents.

29.2.4 Specifying heading levels for trails of lin ks

You can specify the range of heading levels to include in trails of links. The following
settings determine the level at which each trail starts and the lowest level where it can end.

Yes Include the current-page heading only when the trail already contains at
least one item; otherwise omit the trail. This is the default.

No Never include the current-page heading in the trail.

Always Always include the current-page heading, even if it is the only item in
the trail.

GENERATING TRAILS OF LINKS DITA2GO USER’S GUIDE

558 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

If headings at a given level are missing from a DITA file, that level is skipped when trails
are constructed.

[Trails]
; Trail*Level = heading level number
TrailFirstLevel=1
TrailLastLevel=9

Normally you would not want trails displayed for headings that do not start new HTML
pages, so you would set TrailLastLevel to the lowest heading level that actually does
start a new page.

You can use the [TrailLevels] section to assign a level in the trail to each heading
paragraph format. Absent this section, DITA2Go uses the levels specified in
[HelpContentsLevels] . For example:

[TrailLevels]
; paraformat = level, from 1 to 9, or 0 to exclude from trails
ChapTitle=1
Heading1=2
Heading1NoNum=2
Heading2=3

To exclude a heading format from the trail, you can assign level 0 to that format.

To include a non-heading format as the current (last) item at any level in the trail, you can
assign level 9 to that format. For example, if you assign the [HTMLParaStyles]Trail
property to a paragraph format such as a figure caption that is not part of the hierarchy of
headings, and can therefore appear at any level, assign level 9 to that format.

29.2.5 Specifying where to display trails of links

To display a trail of links in each split or extracted file, specify the following setting:
[Trails]
; SplitTrail = No (default) or Yes (put <$_trail> o ut for each split)
SplitTrail=Yes

You can specify where the trail of links should appear on each HTML page: before the
heading (that is, the first paragraph in the file), after the heading, or at other locations you
specify via [Inserts] .

[Trails]
; TrailPosition = Before (default), After, or Macro
TrailPosition=Before

The value of TrailPosition determines where the trail appears:

When you specify TrailPosition=Macro , automatic placement relative to the heading
is eliminated, and the trail appears wherever you have included <$_trail> in another
macro or assigned <$_trail> to a specific location.

For example, to show a trail of links at the top of each HTML file and also at the bottom of
each split file after the first, you would assign the <$_trail> macro to a location
keyword in the [Inserts] section (see §27.6 Inserting HTML code in split and extract
files on page 534):

[Inserts]
Top=<$_trail>

Before Immediately above the heading (first paragraph). This is the default.

After Immediately below the heading.

Macro Wherever you insert predefined macro <$_trail> .

29 PROVIDING NAVIGATION IN HTML CREATING A BROWSE SEQUENCE

ALL RIGHTS RESERVED. MAY 19, 2013 559

SplitBottom=<$_trail>
LastBottom=<$_trail>

When DITA2Go inserts trails specified by a <$_trail> macro assigned in the
[Inserts] section, if the first paragraph in the file does not have [HTMLParaStyles]
property Trail , the trail is not displayed. Otherwise, wherever you assign the
<$_trail> macro, DITA2Go inserts a trail according to the settings you specify in the
[Trails] section.

29.3 Creating a browse sequence
You can use DITA2Go -supplied navigation macros to create a browse-type navigation
system in HTML, with previous and next links connecting all files in a single bidirectional
series:

<$_prev> for a link to the preceding HTML file
<$_next> for a link to the following HTML file.

DITA2Go also provides predefined macro <$_top> for a jump to top-of-page.

In this section:
§29.3.1 Understanding how browse macros work on page 559
§29.3.2 Choosing buttons versus text links for a browse sequence on page 560
§29.3.3 Formatting browse-link labels on page 561
§29.3.4 Modifying macros <$_prev>, <$_next>, and <$_top> on page 561
§29.3.5 Understanding browse keyword scope and default values on page 563
§29.3.6 Specifying where to invoke a browse macro on page 564

See also:
§27 Splitting and extracting files on page 523
§28 Creating HTML links on page 545
§37 Working with macros on page 679

29.3.1 Understanding how browse macros work

The macros described in this section employ the file sequence information from your root
map file to simplify setting up navigation tables at the start and end of HTML pages.
DITA2Go browse macros use more than one level of indirection to incorporate other
macros and macro variables, so that browse links do the right thing in every situation.

In this section:
§29.3.1.1 Understanding how browse macros vary by file position on page 559
§29.3.1.2 Understanding how browse macros employ macro variables on page 560

29.3.1.1 Understanding how browse macros vary by f ile position

Default definitions of browse macros <$_prev> and <$_next> , and the meanings of the
macro variables these macros employ, vary according to:

 • whether the macros produce text links or buttons (see §29.3.2 Choosing buttons
versus text links for a browse sequence on page 560)

 • the sequential position of the HTML file in which the macros are invoked; one of:
 – a split file that is neither the first nor the last in the root map
 – the first file produced from the root map
 – the last file produced from the root map.

CREATING A BROWSE SEQUENCE DITA2GO USER’S GUIDE

560 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

You can change any of the definitions by changing the macro code assigned to appropriate
navigation keywords; see §29.3.4 Modifying macros <$_prev>, <$_next>, and <$_top>
on page 561.

29.3.1.2 Understanding how browse macros employ ma cro variables

The definition of each browse macro includes predefined macro variables for a destination
for the link and for a label. Table 29-1 shows the default values of the link destination and
link label used in <$_prev> and <$_next> for each file position.

Table 29-2 shows the meanings of the macro variables used in browse-macro definitions.

See §27.7 Referencing split and extract files on page 536 for additional macro variables
that refer to file names and titles of split and extracted files.

29.3.2 Choosing buttons versus text links for a br owse sequence

By default, DITA2Go navigation macros <$_prev> and <$_next> produce simple text
links. However, you can specify buttons instead:

[NavigationMacros]
; UseNavButtons = No (default, use links for <$_pre v> and <$_next>)
; or Yes (change the set of defaults to those for buttons instead)
UseNavButtons = Yes

When UseNavButtons=Yes , DITA2Go navigation macros produce JavaScript code
such as the following:

<button type="button"
onclick="javascript:location.href=' Destination'"> Label</button>

When UseNavButtons=No , DITA2Go navigation macros produce HTML code such as
this:

 Label

Both button and text-link navigation macros use predefined macro variables to provide
appropriate values for Destination and Label; see Table 29-1 on page 560.

Table 29-1 Default destination and label values for browse macros

Macro File position in sequence Destination value Labe l value

<$_prev> First file produced from root map None (no destination
code)

At Start

All other files <$$_prevfile> <$$_prevtitle>

<$_next> Last file produced from root map None (no destination
code)

At End

All other files <$$_nextfile> <$$_nexttitle>

Table 29-2 Component macro variables for browse macros

Macro Macro variable Description

<$_prev> <$$_prevfile> File name of preceding file

<$$_prevtitle> Title of preceding file

<$_next> <$$_nextfile> File name of following file

<$$_nexttitle> Title of following file

Either macro <$$_currfile> File name of current file

<$$_currtitle> Title of current file (the one used in HTML <title> element)

ALL RIGHTS RESERVED. MAY 19, 2013 561

29.3.3 Formatting browse-link labels

You can provide formatting for Label content wherever you invoke text-link <$_prev>
and <$_next> macros. For example:

<p class="navlabel"><$_prev></p>

Button labels are at the mercy of default browser rendering, unless you redefine
<$_prev> and <$_next> macros so they include formatting. For buttons, formatting tags
must be placed within the <button> tag, surrounding Label text. For example (must be
all on one line):

<button type="button"
onclick="javascript:location.href='somefile.htm'">
<p class="navlabel">Previous</p></button>

29.3.4 Modifying macros <$_prev>, <$_next>, and <$ _top>

With care, you can redefine any of the browse macros to include formatting, alternate link
destinations, or alternate labels. DITA2Go provides keywords to which you assign macro
code for this purpose.

In this section:
§29.3.4.1 Redefining text-link browse macros on page 561
§29.3.4.2 Redefining button browse macros on page 562

29.3.4.1 Redefining text-link browse macros

When UseNavButtons=No (the default) you can redefine browse macros for text links by
changing the code assigned to the keywords listed in this section.

Do not try to duplicate <$_prev> and <$_next> logic by using the predefined macro
variable components outside of the definitions for <$_prev> and <$_next> . The browse
sequence would fail on inter-file links, because you would be missing some critical
internal code that is required to handle such links.

Note: In your configuration file each code assignment must be all on one line, even if it
does not look that way here.

To redefine macros for text links between HTML files split from a DITA file, change the
following default definitions:

[NavigationMacros]
; PrevMacro = content to put out for <$_prev>
PrevMacro = <a href="<$$_prevfile>"><$$_prevtitle>< /a>
; NextMacro = content to put out for <$_next>
NextMacro = <a href="<$$_nextfile>"><$$_nexttitle>< /a>

For a previous text “link” in the first and a next text “link” in the last HTML file in the
entire sequence, change the following default definitions:

[NavigationMacros]
; StartingPrevFSMacro = <$_prev> to use at start of first file in book
StartingPrevFSMacro = <$$_seqstarttitle>
; EndingNextFSMacro = <$_next> to use at end of las t file in book
EndingNextFSMacro = <$$_seqendtitle>

For a text link to the top of the current page, change the following default definition:
[NavigationMacros]
; TopMacro = content to put out for <$_top>,
; link to top of current file
TopMacro = <a href="<$$_currfile>"><$$_toptitle>

CREATING A BROWSE SEQUENCE DITA2GO USER’S GUIDE

562 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To change a macro definition, modify or replace the macro code assigned to the
appropriate keyword. For example, to add a title attribute to the <$_prev> link for
WAI purposes (the definition must be all on the same line):

PrevMacro =
<a href="<$$_prevfile>" title="<$$prevtitle>"><$$_p revtitle>

For the first and last HTML files in the entire sequence, <$_prev> and <$_next> do not
use links at all, but only label content. If you want static labels for the other links, you
could redefine the text-link macros as follows:

[NavigationMacros]
PrevMacro = <a href="<$$_prevfile>">Prev
NextMacro = <a href="<$$_nextfile>">Next
PrevFSMacro = <a href="<$$_prevfile>">Prev
NextFSMacro = <a href="<$$_nextfile>">Next

To make the first and last links to reference places outside the document (for example):
[NavigationMacros]
StartingPrevFSMacro = <a href="<$$HomeURL>">Home
EndingPrevFSMacro =< a href="<$$Plan2URL>">Plan 2</ a>

[MacroVariables]
HomeURL = http://www.oursite.org/index.htm
Plan2URL = http://www.oursite.org/greatplans/plan2. htm

29.3.4.2 Redefining button browse macros

When UseNavButtons=Yes , you can redefine browse macros for buttons by changing
the code assigned to the keywords listed in this section.

Do not try to duplicate <$_prev> and <$_next> logic by using the predefined macro
variable components outside of the definitions for <$_prev> and <$_next> . The browse
sequence would fail on inter-file links, because you would be missing some critical
internal code that is required to handle such links.

Note: In your configuration file each code assignment must be all on one line, even if it
does not look that way here.

To redefine macros for buttons that activate links between the HTML files split from a
DITA file, change the following default definitions:

[NavigationMacros]
UseNavButtons = Yes
; PrevButton = content to put out for <$_prev>
PrevButton = <button type="button"

onclick="javascript:location.href='<$$_prevfile>'">
<$$_prevtitle></button>

; NextButton = content to put out for <$_next>
NextButton = <button type="button"

onclick="javascript:location.href='<$$_nextfile>'">
<$$_nexttitle></button>

For a previous button in the first and a next button in the last HTML file in the entire
sequence, change the following default definitions:

[NavigationMacros]
UseNavButtons = Yes
; StartingPrevFSButton = <$_prev> to use at start o f first file
; in book
StartingPrevFSButton = <button type="button">

<$$_seqstarttitle></button>
; EndingNextFSButton = <$_next> to use at end of la st file in book

29 PROVIDING NAVIGATION IN HTML CREATING A BROWSE SEQUENCE

ALL RIGHTS RESERVED. MAY 19, 2013 563

EndingNextFSButton = <button type="button">
<$$_seqendtitle></button>

For a button link to the top of the current page, change the following default definition:
[NavigationMacros]
UseNavButtons = Yes
; TopButton = content to put out for <$_top>,
; link to top of current file
TopButton = <button type="button"

onclick="javascript:location.href='<$$_currfile>'">
<$$_toptitle></button>

To provide label formatting (for example):
[NavigationMacros]
UseNavButtons = Yes
PrevButton = <button type="button"

onclick="javascript:location.href='<$$_prevfile>'">
<p class="navcell">Prev</p></button>

To provide different text for the (non-link) very first and very last buttons, or no text at all:
[NavigationMacros]
UseNavButtons = Yes
StartingFSButton =
EndingFSButton = Stop!

Typing nothing (or only a single space) after the equals sign results in a null value.

29.3.5 Understanding browse keyword scope and defa ult values

Table 29-3 shows the scope of each browse-macro keyword with respect to file position,
the macros each keyword defines, and the macro variables used in each default value.

Table 29-4 shows the default value DITA2Go uses for each browse-macro keyword when
the navigation macros produce text links; Table 29-5 shows the default values when
macros produce buttons (see §29.3.2 Choosing buttons versus text links for a browse
sequence on page 560).

Table 29-3 Scope of [NavigationMacros] keywords

Scope

Keyword
(* = Macro or
Button) Defines:

Default value uses:

File name Label

Very first file StartingPrevFS* None None At Start

Very last file EndingNextFS* None None At End

All other split
files

Prev* <$_prev> <$$_prevfile> <$$_prevtitle>

Next* <$_next> <$$_nextfile> <$$_nexttitle>

Table 29-4 Default values of text-link browse keywords

Keyword Default value

PrevMacro <a href="<$$_prevfile>"><$$_prevtitle>

NextMacro <a href="<$$_nextfile>"><$$_nexttitle>

StartingPrevFSMacro At Start

EndingNextFSMacro At End

CREATING A BROWSE SEQUENCE DITA2GO USER’S GUIDE

564 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

29.3.6 Specifying where to invoke a browse macro

To specify where in an HTML output file to invoke one or more browse macros, in the
[Inserts] section assign the macro(s) to one or both of the following keywords:

For example:
[Inserts]
Top = <$_prev>

<$_next>

Bottom = <$_top>

See §27.6 Inserting HTML code in split and extract files on page 534 for additional
[Inserts] keywords you can use to specify other file locations, and for keyword
prefixes you can use to restrict macro assignment by output file type.

Table 29-5 Default values of button browse keywords

Keyword Default value

PrevButton <button type="button"
onclick="javascript:location.href='<$$_prevfile>'">
<$$_prevtitle></button>

NextButton <button type="button"
onclick="javascript:location.href='<$$_nextfile>'">
<$$_nexttitle></button>

StartingPrevFSButton <button type="button">At Start</ button>

EndingNextFSButton <button type="button">At End</butt on>

Top At the beginning of the <body> element.

Bottom Just before the end of the <body> element.

ALL RIGHTS RESERVED. MAY 19, 2013 565

30 Mapping text formats to HTML/XML

This section shows how to assign HTML elements to paragraph and character formats.
Topics include:

§30.1 Choosing how to map formats on page 565
§30.2 Mapping paragraph formats on page 566
§30.3 Mapping character formats on page 569
§30.4 Assigning properties to text formats on page 570
§30.5 Mapping special characters on page 574
§30.6 Mapping fonts on page 576
§30.7 Managing typographic elements for HTML or XML on page 579
§30.8 Specifying text colors for HTML on page 580
§30.9 Configuring preformatted text for HTML/XML on page 581
§30.10 Converting footnotes to HTML or XML on page 581
§30.11 Converting list formats to HTML (deprecated) on page 584

See also:
§31 Setting up CSS for HTML on page 591

30.1 Choosing how to map formats
DITA2Go provides several ways to map formats to HTML, with considerable overlap
among methods. You might want to use some or all of the following:

Configuration settings
Cascading style sheets
Output format definitions

Configuration
settings

Insert settings in a configuration file to map paragraph and character formats individually
to HTML tags. The display attributes of HTML tags to which you map individual formats
are browser dependent. All you can be sure of is that, by default (without CSS), an h1 will
look “bigger” than an h2, and so forth. Sometimes the “biggerness” is questionable,
especially at the lower end (h4, h5, h6). However, you can use configuration settings to
achieve effects not possible with CSS, such as the macro insertion of content. See:

§30.2 Mapping paragraph formats on page 566
§30.3 Mapping character formats on page 569.

Cascading style
sheets

Use cascading style sheets (CSS). Using CSS might cause different effects in different
browsers, or even in different versions of the same browser. However, you can override
CSS with individual settings in the configuration file. See §31 Setting up CSS for HTML
on page 591.

Note: Any formatting that is directly created by an HTML tag overrides CSS. Using
HTML presentational tags and attributes cripples your ability to use CSS, and
therefore to adjust formatting easily without having to alter content.

Output format
definitions

Specify exactly how you want each text feature in your document to look in HTML, by
defining output formats in a format configuration file. Format definitions are based on
CSS, but are easier to use; see §7 Configuring output formats on page 109.

MAPPING PARAGRAPH FORMATS DITA2GO USER’S GUIDE

566 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

30.2 Mapping paragraph formats
By default, if you do not explicitly map formats to HTML tags, DITA2Go does the
following:

 • Uses <p> as the tag for all paragraph formats.
 • Treats all character formats as overrides.
 • Creates tags for all format properties, including overrides.
 • Converts all tag names to valid CSS names, without spaces or non-alphanumeric

characters, leading digits, or accented characters (the latter become unaccented).

This might be adequate, especially if you are using CSS. However, you might want your
headings to come out with <hn> styles, your emphasized text to be tagged , and your
lists to become real HTML indented lists, without requiring CSS.

In this section:
§30.2.1 Assigning HTML tags and attributes to paragraph formats on page 566
§30.2.2 Including or excluding paragraph autonumbers on page 567
§30.2.3 Designating script paragraph formats on page 568
§30.2.4 Stripping paragraph properties on page 568
§30.2.5 Providing content for empty paragraphs on page 569

See also:
§30.9 Configuring preformatted text for HTML/XML on page 581
§30.10 Converting footnotes to HTML or XML on page 581
§30.11 Converting list formats to HTML (deprecated) on page 584

30.2.1 Assigning HTML tags and attributes to parag raph formats

To specify the HTML tag to be used for headings and other special-purpose formats:
[ParaTags]
; Document para format name = HTML style name (defa ult is <p>)
; use h1-h6, pre, script, address, or blockquote fo r HTML styles

Although these (and span) are the only valid HTML tag names you can specify in this
section, DITA2Go does not require you to stick to valid tags. You can use any tags, to
allow XML within HTML. In fact, you can use any text that can go inside the <> brackets
DITA2Go supplies around the text. However, only tags valid in HTML for paragraphs
produce effects in HTML output.

If you are creating Web pages that will be available to search engines, keep in mind that
headings that are actually tagged as headings (h1 through h6) can be important for search
ranking. For example, Google search might look at the following (rather than keywords in
meta tags):

1. titles of pages

2. words displayed in links to those pages

3. words used in headings that are tagged as such

4. words used within the pages.

With paragraph tag settings in [ParaTags] you can also do the following:
Add attributes to a tag
Apply a character tag to a paragraph format
Provide a CSS class name

30 MAPPING TEXT FORMATS TO HTML/XML MAPPING PARAGRAPH FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 567

Suppress paragraph tags entirely.

Add attributes to
a tag

To add attributes to the paragraph tag, list them after the tag. For example:
[ParaTags]
CodeBold = pre type="bold"

Everything after the first space that follows the tag name is removed for the end tag. To
apply an attribute to an individual instance of a paragraph format, insert an attribute PI
marker in the paragraph; see §38.3 Adding attributes with PI markers on page 721. For
this example, you would use a PI marker of type ParaType with content bold .

Apply a character
tag to a

paragraph format

To apply an HTML character tag (for example, em) to a paragraph format, you would have
to do something like this:

[HTMLParaStyles]
ParaFmt = CodeStart CodeEnd

[ParaStyleCodeStart]
ParaFmt =

[ParaStyleCodeEnd]
ParaFmt =

(With CSS, it might be simpler to add font-style: italic; to the CSS style for the
<p. parafmt> tag.)

Provide a CSS
class name

If you are using CSS, by default the tag name becomes the CSS class name for HTML
output; for XML output, the default is reversed. See §31.5 Understanding how CSS affects
other options on page 596.

You can provide your own class names. For example:
[ParaTags]
Heading 1 = H1 class="tophead"

results in:
<h1 class="tophead">

for all Heading 1 paragraphs in HTML output.

For XML output, see §23.3.1 Deriving XML tags from format and class names on
page 452.

Suppress
paragraph tags

entirely

To eliminate style tags entirely, map the paragraph format to nothing:
[ParaTags]
ParaFmt =

Specifying an empty [ParaTags] class is equivalent to assigning format property
NoPara to the paragraph format; see §30.2.4 Stripping paragraph properties on page 568.

If you are producing DITA XML output, see also §24.4.3.2 Omitting element tags for
selected paragraph formats on page 462.

30.2.2 Including or excluding paragraph autonumber s

By default, for HTML output DITA2Go omits autonumber characters from paragraph
formats that are mapped to HTML list styles, and converts autonumbers to text for all
other paragraph formats. For XML output, the default is to omit all autonumbers.

To eliminate autonumbers from selected paragraph formats:
[HTMLParaStyles]
; NoAnum excludes autonumber in non-list items, def ault keeps it
; for formats other than DocBook and DITA.
ParaFmt = NoAnum

MAPPING PARAGRAPH FORMATS DITA2GO USER’S GUIDE

568 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

For example, to eliminate bullets:
[HTMLParaStyles]
Bulleted = NoAnum

To eliminate autonumbers from all paragraph formats:
[HTMLOptions]
; UseAnums = Yes (HTML default, use unless list typ e)
; or No (XML default)
UseAnums = No

To override UseAnums=No for selected paragraph formats:
[HTMLParaStyles]
; Anum includes autonumber in para. For lists, and for
; DocBook and DITA, the default omits it.
ParaFmt = Anum

To eliminate unwanted tabs from paragraph autonumbers:
[HTMLOptions]
; AnumTabs = Yes (default, make tab in numbering pr operties into space
; unless in [HTMLParaStyles] List format, in which c ase remove it)
; or No (remove)
AnumTabs = Yes

See also:
§30.11 Converting list formats to HTML (deprecated) on page 584
§43.2 Converting autonumbers for database systems on page 780

30.2.3 Designating script paragraph formats

A paragraph tagged as script in [ParaTags] (see §30.2.1 Assigning HTML tags and
attributes to paragraph formats on page 566) includes a type attribute that is always added
in the opening tag:

[HTMLOptions]
; ScriptType = text/javascript (default) or other M IME type
ScriptType = text/javascript

If you apply the [HTMLParaStyles]Comment attribute to such a paragraph, the script
body begins and ends with automatic comment delimiters. See §30.2.4 Stripping
paragraph properties on page 568.

30.2.4 Stripping paragraph properties

You can designate text in your DITA document that you do not want fully converted to
HTML. For example, you can include material pre-written in HTML, and direct
DITA2Go to insert the material as is in the HTML output. Create a special paragraph
format to use only for this purpose, and assign to it one of the following properties:

[HTMLParaStyles]
; para format = keywords for functions and properti es
; Comment makes the element a comment, replacing th e para tags,
; unless ParaStyle is "script", then the comment is in the tags
; NoTags suppresses any attributes for the para tag , and suppresses
; any tags within
; NoPara eliminates the para tags only, to be provi ded in a macro
; NoWrap suppresses \n line breaks and preserves le ading spaces
; Raw acts like NoTags, and also eliminates the par a tags entirely
; It is used to put macro inclusions in between d ocument elements

Comment Use Comment to cause a paragraph to appear only as a comment in the generated HTML
source code. DITA2Go substitutes <!-- and --> tags for the <p> and </p> tags, unless

30 MAPPING TEXT FORMATS TO HTML/XML MAPPING CHARACTER FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 569

you have also assigned a script tag to the paragraph format in [ParaTags] ; see §30.2.3
Designating script paragraph formats on page 568.

NoTags Use NoTags to suppress all tags between <p> and </p> (such as , , <i> , and
so forth) in the generated HTML for the paragraph. Only the <p> tags themselves and the
paragraph content are included in the output.

NoPara Use NoPara to suppress only the <p> tags in the output. You might want to do this when
either of the following is true:

 • The paragraph will be part of a DITA2Go macro that already supplies <p> ... </p> .
 • You are generating XML instead of HTML; see §23.3.2 Eliminating HTML attributes

and tags for generic XML on page 452. If you are producing DITA XML output, also
see §24.4.3.2 Omitting element tags for selected paragraph formats on page 462.

NoWrap Use NoWrap to suppress \n line breaks and preserve leading spaces in preformatted text.
This property has the same effect as [HTMLOptions]NoWrap , but applied at the
paragraph format level; see §22.6.3 Suppressing line breaks in HTML and XML output on
page 439.

Raw Use Raw to insert straight HTML code wherever you want it to appear in your document.
DITA2Go embeds the content of the paragraph in the output without generating HTML
tags, and without processing any macro invocations the content might include.

30.2.5 Providing content for empty paragraphs

To specify text content for paragraphs that are otherwise blank (empty):
[HTMLOptions]
; EmptyParaContent = string to put in otherwise-emp ty paragraphs
EmptyParaContent =

A single nonbreaking space is the default.

Note: Setting EmptyParaContent=0 (zero) inserts a literal “0”: a string, not a number.

30.2.6 Eliminating unwanted paragraphs

To prevent text from appearing in HTML output, you can do the following:

1. Use a special @outputclass for all instances of the text in your document.

2. In the configuration file, assign property Delete to the resulting paragraph format:
[HTMLParaStyles]
; Delete removes the style and all of its content
ParaFmt = Delete

The Delete format property works whether or not the paragraph actually has content. It
omits paragraph content from HTML output, and omits the format from any consideration
in mapping to DITA parent elements.

Any paragraph content is still available, and can be used in DITA2Go macros; see §37.3.5
Creating macro variables from paragraph content on page 692.

30.3 Mapping character formats
You can specify HTML tags to be used for character formats; for example:

[CharTags]
; Document character format name = HTML starting el ement name(s)
; use strong, em, code, cite, var, or blink, or spa n for HTML elements

ASSIGNING PROPERTIES TO TEXT FORMATS DITA2GO USER’S GUIDE

570 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Emphasis=strong
ProgramListing=code

Although the format properties listed here are the only valid HTML styles, DITA2Go lets
you specify any tag, to permit XML markup and CSS span class assignments. However,
only valid HTML tags have an effect in DITA2Go HTML output.

For XHTML, all format names must be lowercase.

Include attributes To add attributes to a character tag, list them after the tag. For example:
[CharTags]
Bold = strong type="bold"

Everything after the first space is removed for the end tag. To apply an attribute to an
individual instance of a character format, insert an attribute PI marker in the inline
element; see §38.3 Adding attributes with PI markers on page 721. For this example, you
would use a PI marker of type CharType with content bold (no quotation marks).

If no tags are specified in [CharTags] for a particular character format, by default that
format gets a span class; see §31.7.3 Mapping character formats to tags or span classes on
page 602.

Suppress tags To eliminate style tags entirely, map the character format to nothing:
[CharTags]
CharFmt =

See also:
§23.3.1 Deriving XML tags from format and class names on page 452
§31.7.3 Mapping character formats to tags or span classes on page 602

30.4 Assigning properties to text formats
You can override some paragraph and character format properties directly, and you can
assign additional properties to paragraph and character formats.

In this section:
§30.4.1 Understanding where to specify format property overrides on page 570
§30.4.2 Overriding paragraph alignment and size properties on page 573
§30.4.3 Overriding properties added by typographic elements on page 573
§30.4.4 Overriding properties specified in font tags on page 573

30.4.1 Understanding where to specify format prope rty overrides

In prior versions of DITA2Go , you could specify overrides to both character (inline)
formats and paragraph (block) format properties in section [HTMLStyles] . That section
is now deprecated, in favor of two new sections:

[HTMLParaStyles] for paragraph overrides
[HTMLCharStyles] for character overrides.

Some former [HTMLStyles] format properties can be assigned either to paragraph
formats or to character formats, and so can be used in either of the new sections.
Table 30-1 lists all the properties alphabetically, and shows the sections in which they are
valid: Para for [HTMLParaStyles] and Char for [HTMLCharStyles] .

30 MAPPING TEXT FORMATS TO HTML/XML ASSIGNING PROPERTIES TO TEXT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 571

Table 30-1 HTML properties for paragraph and character formats

Format property Purpose Para Char Ref.
Abbr Gets value for abbr attribute from [StyleCellAbbr] X 35.2.2.2

AbbrVal Make content into abbr for table cell X 35.2.3

ALink Uses content for ALink Name property of ALink object X 16.6.4.2

Alt Makes content into alt attribute for next X 34.2.2

Anum Includes autonumber in format X 30.2.2

Axis Gets value for axis attribute from [StyleCellAxis] X 35.2.2.2

AxisVal Makes content into axis for table cell X 35.2.3

Bold Encloses text in this format in ... X X 30.4.3

CellAttribute Applies attributes in [StyleCellAttribute] to enclosing cell X 33.4.6

Center Centers text between left and right margins X 30.4.2

CodeAfter Puts code from [ParaStyleCodeAfter] or
[CharStyleCodeAfter] after closing tag

X X 37.9.3

CodeAfterAnum Puts code from [AnumCodeAfter] after autonumber X 37.9.3

CodeBefore Puts code from [ParaStyleCodeBefore] or
[CharStyleCodeBefore] before opening tag

X X 37.9.3

CodeBeforeAnum Puts code from [AnumCodeBefore] before autonumber X 37.9.3

CodeEnd Puts code from [ParaStyleCodeEnd] or
[CharStyleCodeEnd] before closing tag

X X 37.9.3

CodeReplace Replaces content with code from [ParaStyleCodeReplace] or
[CharStyleCodeReplace]

X X 37.9.3

CodeStart Puts code from [ParaStyleCodeStart] or
[CharStyleCodeStart] after opening tag

X X 37.9.3

CodeStore Stores content in macro variable named in [StyleCodeStore] X 37.3.5.2

ColGroup Marks enclosing cell as a header cell that starts a column group X 35.2.2.2

Color N Makes text color N, where N is in the range 1 - 254 X X 30.4.4

Comment Makes paragraph a comment, replacing tags X X 30.2.4

Config Makes content act as a configuration override for all outputs X 42.3

Contents Includes content in this format in the TOC X 16.4.2

CSSReplace Gets code for CSS from [ParaStyleCSS] or [CharStyleCSS] X X 31.8.3

Delete Omits content from text output X X 30.2.6

DListDD Uses dd instead of dt for items in dl lists X 30.11.2.1

DropDown Content is a block to be expanded; bracket with macros X 16.9.3.1

DropDownBlock Content is a block to be expanded X 16.9.3.1

DropDownEnd Content is last paragraph in expandable block X 16.9.3.1

DropDownLink Content is a link to expandable text X X 16.9.3.1

DropDownStart Content is a link, next content is an expandable block X 16.9.3.1

ExtrDisable Turns off extract processing X 27.4.1

ExtrEnable Turns on extract processing X 27.4.1

ExtrEnd Paragraph ends an extract, but is not part of the extract X 27.4.2.1

ExtrFinish Paragraph is the last item in an extract X 27.4.2.1

ExtrStart Paragraph begins an extract X 27.4.2.1

Figure Uses paragraph for anchor tag to ensure wrapping image in <fig> X 24.7.2

FileName Uses content to name split files X 43.3.3.1

ASSIGNING PROPERTIES TO TEXT FORMATS DITA2GO USER’S GUIDE

572 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

GlossTerm Uses content for a glossary term in JavaHelp X 20.7.2

HTMConfig Makes content act as a configuration override for HTML output X 42.3

Ital Italics: encloses text in this format in <i>...</i> X X 30.4.3

Left Aligns text with left margin X 30.4.2

LEnd Non-list format that ends any prior lists X 30.11.2.1

LFirst Content in this format starts a list X 30.11.2.1

LinkClass Makes content into CSS class attribute value X 34.3.2

LinkSrc Puts code from [StyleLinkSrc] in href attribute X X 37.9.3

LinkTitle Makes content into title attribute value X 34.3.2

List N List1 - List12 specify different list styles X 30.11.2.1

LLevel N LLevel1 - LLevel30 specify nesting levels X 30.11.2.1

LNest Nests in an enclosing list X 30.11.2.1

Longdesc Makes content into longdesc attribute value X 34.2.2

Meta Makes content a <meta content=...> attribute value X 27.5.3

NoAnum Excludes autonumber from non-list formats X 30.2.2

NoColID Prevents assignment of id for ColID s (enabled in [Tables]) X 35.2.2.2

NoColor Omits for this format X X 30.4.4

NoContLink Suppresses linkage for the corresponding TOC item in HTML Help X 18.9.5

NoCSS Omits any CSS entry for this format X X 31.8.3

NoFig Uses paragraph for anchor tag to prevent wrapping image in <fig> X X 24.7.2

NoPara Eliminates only paragraph tags, for use in macros X X 30.2.4

NoRef Forces links to top of page by suppressing part of link after file name X X 28.3.1

NoSize Omits size attribute from tags for this format X X 30.4.4

NoSplit Prevents format from interfering with SmartSplit X 27.3.2.2

NoTags Suppresses attributes and omits any tags between <p> and </p> X X 30.2.4

NoWrap Suppresses \n line breaks and preserves leading spaces X 30.2.4

Plain Turns off Bold , Ital , Uline , and Strike format properties X X 30.4.3

ParaLinkClass Links have a class assigned in [StyleParaLinkClass] X 28.2.2.2

Raw Suppresses all tags to allow macro inclusions between document elements X X 30.2.4

Right Aligns text with right margin X 30.4.2

RowAttribute Attributes in [StyleRowAttribute] are applied to enclosing row X 33.4.5

RowGroup Marks enclosing cell as a header cell that starts a row group X 35.2.2.2

Scope Gets value for scope attribute from [StyleCellScope] X 35.2.2.2

Size N Size1 - Size7 sets font size attribute to 1 through 7, corresponding to
maximum point sizes 8, 10, 14, 20, 28, or 36

X 30.4.2

Span Causes assignment of ColSpanID or RowSpanID, as enabled in [Tables] X 35.2.2.2

Split Starts a new HTML page X 27.3.1

Strike Strikethrough: enclose text in this format in <strike>...</strike> X X 30.4.3

Summary Makes content into summary for table tag X 34.4.3.2

TableBody Forces containing cell tag to td instead of th X 35.2.2.4

TableHead Forces containing cell tag to th instead of td X 35.2.2.4

TableTitle Makes content into title attribute for table X 34.4.3.2

Table 30-1 HTML properties for paragraph and character formats (continued)

Format property Purpose Para Char Ref.

30 MAPPING TEXT FORMATS TO HTML/XML ASSIGNING PROPERTIES TO TEXT FORMATS

ALL RIGHTS RESERVED. MAY 19, 2013 573

30.4.2 Overriding paragraph alignment and size pro perties

To override paragraph alignment and size properties:
[HTMLParaStyles]
; Paragraph format = keywords for properties
; Left, Center, Right: alignment properties
; Size1 - Size7 apply those props to head

The alignment properties (Left , Center , Right) override the align attribute in the
paragraph tag. For the size properties, see §30.6.2 Mapping font sizes on page 577.

To omit align attributes from all paragraph tags:
[HTMLOptions]
; AlignAttributes = Yes (default)
; or No (no align attribute in paragraph tags)
; Default is reversed to No if UseCSS=Yes.
AlignAttributes = No

If you use CSS, the default value of AlignAttributes is reversed to No; see §31.5
Understanding how CSS affects other options on page 596.

30.4.3 Overriding properties added by typographic elements

To override properties added by typographic elements:
[HTMLParaStyles] or [HTMLCharStyles]
; Format (para or char) = keywords for functions an d properties
; Bold, Ital, ULine, and Strike apply those char pr ops to text
; Plain turns all four of those char properties off by default.

These are properties added by typographic elements, as opposed to CSS. The use case is
for browsers that have poor support for CSS, such as JavaHelp and, to some degree,
Eclipse Help. For current popular browsers, you are better off using CSS. However, if you
are stuck with a company-mandated CSS and want to tweak something, you can use these
properties as overrides.

To eliminate bold, italic, underline, and strikethrough properties (, <i> , <u>, and
<strike> tags) from selected paragraph or character formats:

[HTMLParaStyles] or [HTMLCharStyles]
Format = Plain

30.4.4 Overriding properties specified in font tag s

To override paragraph or character properties added as attributes:
[HTMLParaStyles] or [HTMLCharStyles]
; Color1 - Color254 color text as defined in [Color s]
; NoColor suppresses use of the in the style.
; NoSize eliminates the size attribute of the font tag, if used.

TextStore Stores content in macro variable named in [StyleTextStore] X 37.3.5.1

Title Content in this format becomes HTML page title X 22.4.5

Trail Includes content in breadcrumb trail of links X 29.2.3

ULine Underline: encloses text in this format in <u>...</u> X X 30.4.3

Window Opens topic in window named in [StyleWindow] for HTML Help X 18.8.3.1

Table 30-1 HTML properties for paragraph and character formats (continued)

Format property Purpose Para Char Ref.

MAPPING SPECIAL CHARACTERS DITA2GO USER’S GUIDE

574 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

These properties affect the tags used within a paragraph or character span for its
default style, provided you are including tags. Using CSS turns tags off
by default; see §30.6 Mapping fonts on page 576 and §31.5 Understanding how CSS
affects other options on page 596.

The Color nnn properties use color numbers to assign text colors to paragraph or
character formats; see §30.8 Specifying text colors for HTML on page 580.

30.5 Mapping special characters
Special-character handling is not a strong point of HTML. DITA2Go automatically maps
characters with ASCII codes 128 through 159, the “high ASCII” characters, to equivalent
HTML character entity references. You can specify other character mappings, or even
prevent DITA2Go from mapping special characters.

In this section:
§30.5.1 Converting Western European accented characters on page 574
§30.5.2 Mapping individual special characters on page 574
§30.5.3 Avoiding use of special characters in URIs on page 576
§30.5.4 Preventing character mapping on page 576

See also:
§22.4.3 Specifying character encoding for HTML on page 434
§22.14.2 Replacing high ASCII characters for W3C validation on page 445
§23.2.3 Specifying character encoding for generic XML on page 450

30.5.1 Converting Western European accented charac ters

Mit freundlichen Grüßen . DITA2Go converts Western European languages to HTML;
your text and tags should appear as usual, except that CSS class names cannot contain
accented characters. For class names, where possible DITA2Go replaces an accented
character with the corresponding non-accented character; see §31.7.1 Understanding CSS
class name restrictions on page 600.

30.5.2 Mapping individual special characters

To force a mapping different from the DITA2Go mapping of a particular character, or to
map any arbitrary Unicode character (for example):

[CharConvert]
; Unicode char num = HTML numeric value or string r eplacement
; nonbreaking hyphen is decimal 8209, becomes entit y –
8209 = 150
; em space is x2003, becomes three nonbreaking spac es
x2003 =

Character to
replace

To the left of the equals sign, specify any of the following for the character you want to
replace:

 • the decimal ASCII character code
 • the decimal Unicode character number
 • x followed by the hexadecimal code for the character
 • u+ or U+ followed by the hexadecimal code for the character
 • the character itself, if it is one of the following:

30 MAPPING TEXT FORMATS TO HTML/XML MAPPING SPECIAL CHARACTERS

ALL RIGHTS RESERVED. MAY 19, 2013 575

 – a character in the printable set other than the asterisk (*) or question mark (?),
both of which DITA2Go treats as wildcards unless you disable this feature; see
§4.1.10 Specifying how to treat cases, spaces, and wildcards on page 73

 – a high ASCII character (decimal code 128 through 159).

Table 30-2 shows the Unicode or other hexadecimal (and in some cases, decimal) value
you can specify to the left of the equals sign.

Replacement
character

To the right of the equals sign, specify any of the following:

 • the decimal ASCII character code for the replacement character
 • x followed by the hexadecimal code for the replacement character
 • a string, which can include HTML code and DITA2Go macro references.

When you supply a string rather than a character code, DITA2Go expands any macros
referenced, but includes the rest of the string in the output as is. Therefore you must
escape any literal characters such as < by providing an entity reference instead; in this
case, < .

Examples To map the bullet to a middle dot:
[CharConvert]
149 = 183

To map the bullet to a bold middle dot:
[CharConvert]
149 = ·

To map the bullet to an image:

Table 30-2 Special characters to replace for HTML/XML output

Category Character to replace Unicode/Hex
ASCII
decimal

Quote marks Low single quote x201A 130

Left single quote x2018 145

Right single quote x2019 146

Low double quote x201E 132

Left double quote x201C 147

Right double quote x201D 148

Spaces Hard space x00A0 160

En space x2002 ---

Em space x2003 ---

Numeric (figure) space x2007 ---

Thin space x2009 ---

Dashes En dash x2013 150

Em dash x2014 151

Hyphens Discretionary hyphen x00AD 173

Nonbreaking hyphen x2011 ---

Wildcards Asterisk x002A 042

Question mark x003F 063

Miscellaneous Bullet x2022 149

Fraction bar x2044 ---

Paragraph symbol x00B6 182

Section symbol x00A7 167

MAPPING FONTS DITA2GO USER’S GUIDE

576 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[CharConvert]
149 =

To map the ohm symbol from Unicode to the Symbol font for HTML Help:
[CharConvert]
U+2126 = W

and add the class to your CSS:
[CSSEndMacro]
.Symbol {font-family: Symbol; }

In code-page encoding, as for HTML Help output, the only valid solution for handling
out-of-range characters is to use a font that has the desired glyph within the code page. In
this case, the glyph for ohm is in Symbol, which will work in all single-byte code pages
(but not in Asian code pages, where an Asian symbol font is needed instead).

Use only to map
non-printable

characters

Although you can specify any decimal integer to the left of the equals sign, this mapping
option is intended only for characters that are not in the regular printable set. Using
[CharConvert] to map a character in the printable set can result in surprises. You can
try mapping other integers, but the odds are poor for values not in the range 128 through
255. There are a few exceptions. For example, DITA2Go automatically converts a solidus
to a forward slash, which is in the printable set. You can prevent this conversion by
mapping the solidus to itself, specifying the Unicode value to the left of the equals sign
and again on the right, as a numeric entity reference:

[CharConvert]
8260 = ⁄

30.5.3 Avoiding use of special characters in URIs

URI (Uniform Resource Identifier) encoding rules are different from HTML and XML
encoding rules. There is no way to URI-encode characters that have a decimal value
greater than 255; you get only eight bits for each character. DITA2Go does not know that
a particular attribute value or text string is intended to become part of a URI, and by
default converts any characters outside this range to numeric entities. Therefore, avoid
special characters such as trademarks and registration marks in any Internet or email
addresses in your document.

30.5.4 Preventing character mapping

You can prevent DITA2Go from mapping high ASCII characters to entity references:
[HTMLOptions]
Encoding = None

However, this option does not produce valid HTML; see §22.14 Passing W3C validation
tests on page 445.

See also:
§22.4.3 Specifying character encoding for HTML on page 434

30.6 Mapping fonts
Try to keep your font usage in HTML very simple, using only fonts that you are certain
your readers have on their systems. A browser’s substitution for an unavailable font can be
quite ugly.

30 MAPPING TEXT FORMATS TO HTML/XML MAPPING FONTS

ALL RIGHTS RESERVED. MAY 19, 2013 577

In this section:
§30.6.1 Specifying a default font and size on page 577
§30.6.2 Mapping font sizes on page 577
§30.6.3 Including or excluding font tags on page 578
§30.6.4 Excluding face and size attributes from font tags on page 578
§30.6.5 Accommodating browser font-rendering differences on page 579

30.6.1 Specifying a default font and size

You can specify the default font and size to use; for example:
[Base]
; Font name and size put out at start of file, defa ult none
Font=Times
Size=3

Not all browsers respect this setting. If you use CSS, the default value of Basefont is
reversed to No; see §31.5 Understanding how CSS affects other options on page 596.

You can suppress the <basefont> tag entirely, or omit the face attribute while retaining
size:

[HTMLOptions]
; Basefont = Yes (default) or No (no <basefont> tag put out)
; Default is reversed to No if UseCSS=Yes.
Basefont = No
; UseFontSize = Yes (default, allow size attrib in font tags) or No;
; reversed for Eclipse Help and JavaHelp
UseFontSize = No
; UseFontFace = Yes (default, allow face attrib in font tags) or No
UseFontFace = No

For Eclipse Help and JavaHelp, the default value of UsefontSize is reversed to No.

If you do not use CSS, and you are not using tags either, you will get whatever
fonts a browser specifies as defaults.

30.6.2 Mapping font sizes

For CSS, DITA2Go shows the font size just as it is defined for the format. For HTML
itself, DITA2Go must convert point size to an HTML size number, 2 through 7. To
modify the way DITA2Go maps the size, you can replace all or part of this table:

[FontSizes]
; HTML font size = pt size it starts with for defau lt usage
; for example, if 3=10 and 4=14, 12pt type becomes size=3
; computed size is overridden by [HTMLParaStyles] o r [HTMLCharStyles]
; SizeN setting
2 = 8
3 = 10
4 = 14
5 = 20
6 = 28
7 = 36

The number on the right side of the equals sign is the largest point size to be rendered as
the HTML size number on the left. In the example above, 8-pt and smaller is size 2, 9-pt
and 10-pt are size 3, and so on. To make 10-pt text appear as size 4, you would lower the
limit for size 3; for example, 3=9 . If the size 4 font is too large and heavy, try changing 4=
14 to 4=15 . That makes for 14-point text, by raising the start of the
size 4 range to 15-point text.

MAPPING FONTS DITA2GO USER’S GUIDE

578 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The [FontSizes] settings determine how DITA2Go converts from points to HTML size
numbers, regardless of any other settings. Also see §30.4.2 Overriding paragraph
alignment and size properties on page 573.

To change CSS entries from points to other size units, see §31.8.2 Specifying CSS size
values and units of measurement on page 607.

30.6.3 Including or excluding font tags

Older versions of Internet Explorer contain a defect in how tags are handled. If
your HTML output includes a tag, and the specified font does not include the
glyph, Internet Explorer changes the glyph to another that does occur in that font, and does
a poor job of selection. Firefox simply ignores the tag and shows the correct
character, in compliance with the W3 specification.

By default, when you use CSS, DITA2Go does not include tags in HTML output.
However, you might need additional tags in some circumstances. For example:

 • If you use an OpenType or TrueType font, some browsers require tags to
correctly display content in these fonts; see §30.6.5 Accommodating browser font-
rendering differences on page 579.

 • If you are producing JavaHelp or Oracle Help, you might need tags to get
around viewer deficiencies; see §20.3.8 Coping with JavaHelp / Oracle Help viewer
limitations on page 394.

To turn on tags in HTML output:
[HTMLOptions]
; NoFonts = Yes (default, prohibit tags except for symbol
; fonts) or No (use <font...> tags, default if UseCS S=No)
NoFonts = No

If you turn off CSS, DITA2Go turns on tags by default; see §31.5 Understanding
how CSS affects other options on page 596. If you do use CSS, you can create
tags instead, with a single setting for each character format; see §31.7.3 Mapping
character formats to tags or span classes on page 602.

If you do not use CSS, and you are not using tags either, you will get whatever
fonts a browser specifies as defaults.

30.6.4 Excluding face and size attributes from fon t tags

To suppress the face attribute in tags:
[HTMLOptions]
; UseFontFace = Yes (default, allow face attribute in) or No
UseFontFace = No

The default value of UseFontFace is Yes, except for JavaHelp and Eclipse Help; for
those output types, the default is No.

Allowing tags for size but not for face avoids interfering with CSS
specifications. For example, omitting the face attribute is required for W3C validation of
HTML 3.2 for JavaHelp; see §20.3.8 Coping with JavaHelp / Oracle Help viewer
limitations on page 394.

On the other hand, if you use non-Unicode-compliant fonts such as Webdings and
Wingdings, the only way to get certain non-Microsoft browsers to render characters in
those fonts is to use the face attribute; see §30.6.5 Accommodating browser font-
rendering differences on page 579.

30 MAPPING TEXT FORMATS TO HTML/XML MANAGING TYPOGRAPHIC ELEMENTS FOR HTML OR XML

ALL RIGHTS RESERVED. MAY 19, 2013 579

To suppress the size attribute in tags:
[HTMLOptions]
;UseFontSize = Yes (default, allow size attribute i n) or No
UseFontSize = No

30.6.5 Accommodating browser font-rendering differ ences

Some browsers (Opera and Safari, for example) do not support OpenType and TrueType
fonts. Mozilla browsers (Firefox, for example) support these fonts only when you use
 tags. For example, you cannot get Firefox to render a character in a special font
such as Webdings or Wingdings unless you enclose the character (using its standard
ASCII equivalent) in a tag with the face attribute. For example, you would need
the following code to make Firefox display a Wingdings square bullet:

n

You could direct DITA2Go to use tags:
[HTMLOptions]
NoFonts = No
UseFontFace = Yes

However, this workaround is not effective for Opera or Safari, and might not be reliable
for any non-Microsoft browser.

30.7 Managing typographic elements for HTML or XML
By default, for HTML output DITA2Go provides typographic elements for paragraph or
character formats that specify bold, italic, underline, subscript, or superscript as part of the
format. For example, for every paragraph format whose definition includes bold
formatting, by default HTML output includes elements as well as the code for the
paragraph tag.

In this section:
§30.7.1 Deciding whether to suppress typographic elements on page 579
§30.7.2 Choosing how to treat typographic elements on page 579

30.7.1 Deciding whether to suppress typographic el ements

You might want to suppress some or all typographic elements for either of the following
reasons:

 • To ensure that output is free of direct formatting, because:
 – you are producing XML output, or
 – your output uses CSS.

 • To make overrides show up in the output, so you can insert semantic tags or
subsequently provide better formatting.

For XML output, including DITA XML and DocBook XML, the default is to suppress all
typographic elements.

30.7.2 Choosing how to treat typographic elements

To specify how typographic elements should be treated:
[Typographics]
; UseTypographicElements = Yes (HTML default) or No (XML default,
; suppress b, i, u, tt, sub, and sup even when spec ified in a format)

SPECIFYING TEXT COLORS FOR HTML DITA2GO USER’S GUIDE

580 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; UseFormatTypographics = Yes (default, use b, i, u , strike, sub
; and sup when set in paragraph or character forma ts), or No
; (suppress in both para and char formats)
; UseParagraphTypographics = Yes (default, use abov e when set in
; paragraph formats), or No (suppress in para form ats)
; UseCharacterTypographics = Yes (default, use abov e when set in
; character formats), or No (suppress in char form ats)
; UseTypographicStyles = No (default) or Yes (use t ags below if set)
; typographic tag (b, i, u, strike, sub, sup) = tag to use instead,
; possibly followed by attributes.; Both "over" for overline and
"chbar" for change bar can be used
; as pseudotags here.

You can choose to:
Suppress all typographics
Replace typographics with other tags.

Suppress all
typographics

To eliminate all typographic elements:
[Typographics]
UseTypographicElements = No

When UseTypographicElements=No , all settings of character properties are
eliminated, including font size, font color, and font name in addition to bold, italic,
underline, strike, subscript, and superscript; regardless of whether those properties are
intrinsic to a character or paragraph format or were applied as an override. This setting,
UseTypographicElements=No , cannot be overridden by any other settings in section
[Typographics] . This is the appropriate value for DITA XML output; see §24.4.4
Mapping character formats to DITA inline elements on page 465.

Replace
typographics with

other tags

To specify tags to use for individual typographic elements:
[Typographics]
UseTypographicElements = Yes
UseTypographicStyles = Yes
typographic = tag

When UseTypographicStyles=Yes , you can specify other tags to use in place of
typographic elements. The typographic elements you can replace are b, i , u, strike ,
sub , and sup . You can specify attributes as well. For example:

[Typographics]
UseTypographicStyles = Yes
i = emphasis
b = emphasis role="bold"

If UseFormatTypographics=Yes , the tags you specify replace any named typographics
intrinsic to formats.

30.8 Specifying text colors for HTML
The best way to adjust colors for HTML output is to assign colors to output formats; see:

§7.6.5 Specifying inline properties for paragraph and character formats on page 123
§7.6.6 Specifying block properties for paragraph formats on page 124

Those methods use CSS. Use the method described in this section only if you cannot use
CSS.

You can specify colors for both character and paragraph formats. Text color is set in CSS;
and also in tags, if you leave them enabled; see§30.6.3 Including or excluding
font tags on page 578.

30 MAPPING TEXT FORMATS TO HTML/XML CONFIGURING PREFORMATTED TEXT FOR HTML/XML

ALL RIGHTS RESERVED. MAY 19, 2013 581

To change the color of text in a paragraph or character format:

1. Identify the color you want (or define a new color) by number (in the range 9-254),
and assign to it a hexadecimal color value:

[Colors]
nnn = ffffff

See §22.7.1 Numbering and defining text colors on page 440.

2. Assign the color, by number prefixed with the word Color , to the paragraph or
character format:

[HTMLParaStyles] or [HTMLCharStyles]
; Color1 - Color254 color text as defined in [Color s]
; NoColor suppresses use of the in the style.
Fmtname = Color nnn

For example:
[Colors]
; Major headings should be blue:
102 = 0000ff
; Cautionary notes should be red:
99 = ff0033

[HTMLParaStyles]
Heading1 = Color102
Caution = Color99
Sidetip = NoColor

30.9 Configuring preformatted text for HTML/XML
Paragraphs to which you have assigned the pre format property (for “preformatted” text)
become blocks enclosed in <pre> tags in HTML. Browsers and other HTML viewers
treat text within <pre> tags differently from other text. For example, long lines do not
wrap when you narrow the viewer window, and whitespace is preserved.

To omit all line breaks from text mapped to pre elements;
[HTMLOptions]
; UnwrapPRE = No (default) or Yes (ignore line brea ks in PRE)
UnwrapPRE = Yes

When UnwrapPRE=Yes, DITA2Go ignores all line breaks in text mapped to preformatted
elements, including those caused by paragraph breaks. UnwrapPRE is effective only
within <pre> elements in HTML and XHTML, and within preformatted elements in
XML.

To preserve leading spaces in preformatted text, also assign the following format property
to the paragraph format:

[HTMLParaStyles]
ParaFmt = NoWrap

See also:
§22.6.3 Suppressing line breaks in HTML and XML output on page 439

30.10 Converting footnotes to HTML or XML
If you are not using CSS (see §31.1 Deciding whether to use CSS on page 591),
DITA2Go sets the type attribute of the used for the footnotes. If the document has

CONVERTING FOOTNOTES TO HTML OR XML DITA2GO USER’S GUIDE

582 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

a custom footnote type, DITA2Go uses a <div> with the class instead of , and a <p>
instead of , and writes out the symbols.

In this section:
§30.10.1 Configuring and placing footnotes on page 582
§30.10.2 Eliminating links to jump footnotes on page 583
§30.10.3 Using list tags or <div> and <p> tags for jump footnotes on page 583
§30.10.4 Formatting jump footnote text with macros on page 583

See also:
§31.7.5 Assigning CSS classes to text and table footnotes on page 603

30.10.1 Configuring and placing footnotes

DITA2Go provides the following options for placement of footnotes from your DITA
document:

 • embed footnotes in text, [between brackets]
 • embed footnotes in text, enclosed in tags
 • place footnotes at the end of the output file, after a separator
 • omit footnotes entirely.

To specify placement of footnotes:
[HTMLOptions]
; Footnotes = Jump (HTML default, at end), Embed (b etween []),
; Inline (XML default), or None
Footnotes = Jump
; FootnoteSeparator is used at end of doc before Ju mp footnotes
FootnoteSeparator =

<hr />

Values for Footnotes have the following effects:

To specify configuration of footnotes and footnote links when Footnote=Inline :
[HTMLOptions]
; FootInlineTag = tag for beginning and ending inli ne footnotes
FootInlineTag=footnote
; FootInlineParaTag = tag for beginning and ending inline footnote
; paras
FootInlineParaTag=para
; FootInlineIDPrefix = start of ID attr for inline footnotes; rest
; is sequential number starting with 1 at start of file.
FootInlineIDPrefix=foot
; UseFootXrefTag = No (HTML default) or Yes (XML de fault)
UseFootXrefTag=No
; FootInlineRefTag = tag for xrefs to inline footno tes, uses linkend
; for href attribute, for DocBook
FootInlineXrefTag=footnoteref

Jump All footnotes referenced in a file appear at the end of the file. If you are
splitting files (see §27 Splitting and extracting files on page 523), the
footnotes for each split file appear at the end of that file. Footnote text
follows a separator that you can specify by providing a value for
FootnoteSeparator . The default value is

<hr /> .

Embed Each footnote appears where it is referenced in text, enclosed in square
brackets [footnote text] , replacing the reference.

Inline Each footnote appears where it is referenced in text, enclosed in tags,
replacing the reference. This is the default for XML, DITA, and DocBook.

None Footnote reference and text are both omitted from output.

30 MAPPING TEXT FORMATS TO HTML/XML CONVERTING FOOTNOTES TO HTML OR XML

ALL RIGHTS RESERVED. MAY 19, 2013 583

30.10.2 Eliminating links to jump footnotes

By default, DITA2Go creates a link for each reference to a Jump footnote (see §30.10.1
Configuring and placing footnotes on page 582).

To eliminate links to footnotes:
[HTMLOptions]
; NoFootnoteLinks = No (default) or Yes (eliminate links to footnotes)
NoFootnoteLinks = Yes

When NoFootnoteLinks=Yes and Footnotes=Jump (see §30.10.1 Configuring and
placing footnotes on page 582), footnotes appear where and how specified, but references
to them do not contain active links.

30.10.3 Using list tags or <div> and <p> tags for jump footnotes

By default, DITA2Go uses list tags for Jump footnotes in both text and tables (see
§30.10.1 Configuring and placing footnotes on page 582). For numbered footnotes,
DITA2Go supplies Arabic numerals or Roman numerals; see §8.5.4 Defining footnote
numbering on page 150. For alphabetic footnotes, if the quantity of footnotes per page
exceeds the length of the alphabet, DITA2Go repeats the sequence.

To use <div> and <p> for footnotes instead of list tags:
[HTMLOptions]
; UseFootnoteLists = Yes (default, use and for footnotes
; in text, except for those using symbols),
; or No (always use <div> and <p>).
UseFootnoteLists = No
; UseTbFootnoteLists = Yes (default, use and < li> for footnotes
; in tables, except for those using symbols),
; or No (always use <div> and <p>).
UseTbFootnoteLists = No

Using <div> and <p> is likely to give better cross-browser consistency; we advise
avoiding HTML list tags whenever possible.

See also §31.7.5 Assigning CSS classes to text and table footnotes on page 603.

30.10.4 Formatting jump footnote text with macros

By default, DITA2Go removes any paragraph start/end coding within a footnote.
However, for Jump footnotes (see §30.10.1 Configuring and placing footnotes on
page 582) you can provide HTML formatting by specifying macros to precede and follow
each footnote.

To surround footnotes with HTML code:
[HtmlOptions]
; FootnoteStartCode macro is used after
; of each Jump footnote
;FootnoteStartCode =
; FootnoteEndCode macro is used at end of each Jump footnote
;FootnoteEndCode =

For example, if some footnotes include bulleted lists, you could assign starting and ending
macro code to the paragraph formats you use for list items in footnotes. Suppose you use
formats FootBullet1 and FootBullet2 (for bullet items indented within other bullet
items). You could specify the following settings, macros, and macro variables:

[HTMLOptions]
FootnoteEndCode = <$FootEnd>

CONVERTING LIST FORMATS TO HTML (DEPRECATED) DITA2GO USER’S GUIDE

584 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[HtmlParaStyles]
FootBullet1 = CodeStart NoAnum
FootBullet2 = CodeStart NoAnum

[ParaStyleCodeStart]
FootBullet1 = <$FootBullStart1>
FootBullet2 = <$FootBullStart2>

[FootBullStart1]
<$_if ($$F2Started)>\n<$$F2Started=0><$_endif> \
<$_if not ($$F1Started)><ul type="disc">\n<$$F1Star ted=1><$_endif>\
\

[FootBullStart2]
<$_if not ($$F2Started)><ul type="circle">\n<$$F2St arted=1><$_endif>\
\

[FootEnd]
<$_if ($$F2Started)>\n<$$F2Started=0><$_endif> \
<$_if ($$F1Started)>\n<$$F1Started=0><$_endif> \

[MacroVariables]
; Put any macro definition sections before this sec tion.
F1Started = 0
F2Started = 0

This macro code provides the proper and coding for the bulleted paragraphs.

Note: In HTML the convention is not to use , because this closing tag can create
extra unwanted spacing in some browsers. However, is required in
XHTML and XML.

If you code numbered footnotes as items, they should be in an block, which
provides the numbering. Numbering restarts at 1 for each HTML page. See §30.11.2
Converting list formats to HTML list styles on page 585.

30.11 Converting list formats to HTML (deprecated)
Lists, especially nested lists, are a challenge to format correctly for HTML output. The
settings described in this section are deprecated in favor of CSS, or list formats defined in
format configuration files; see §7 Configuring output formats on page 109.

In this section:
§30.11.1 Understanding the problem with HTML lists on page 584
§30.11.2 Converting list formats to HTML list styles on page 585
§30.11.3 Indenting list items on page 589
§30.11.4 Converting list formats to HTML/XML paragraphs on page 589

See also:
§7.6.7.1 Assigning properties to list formats for HTML list styles on page 125

30.11.1 Understanding the problem with HTML lists

You might have already discovered that no matter how you map your numbered lists, they
do not render correctly in one browser or another. This problem is the result of a difference
in how browsers indent list items. The situation is described in Eric Meyer's CSS book for
O'Reilly, 3rd Ed., pp. 377-378. Basically, you can indent with either margin or padding. So
Internet Explorer and Opera use this:

ul, ol {margin-left: 40px; }

30 MAPPING TEXT FORMATS TO HTML/XML CONVERTING LIST FORMATS TO HTML (DEPRECATED)

ALL RIGHTS RESERVED. MAY 19, 2013 585

Firefox and other Gecko browsers use this:
ul, ol {padding-left: 40px; }

Both methods comply with standards, but they create a compatibility issue. The fix is to
override one or the other in your own CSS, depending on how you prefer to indent your
own list items. If you use padding, add (for example):

ul, ol { margin-left: 0; padding-left: 1em; }

If you use margins, add:
ul, ol {margin-left: 1em; padding-left: 0; }

DITA2Go sets both margin and padding:
ul.Bulleted1 {
 margin-left: 18pt;
 padding-left: 12pt;
 list-style: disc;
 }

ol.Numbered1 {
 margin-left: 18pt;
 padding-left: 12pt;
 list-style: decimal;
 }

DITA2Go uses separate rules for ol and ul because some viewers (notably the JavaHelp
viewer) do not follow CSS cascading rules correctly.

30.11.2 Converting list formats to HTML list style s

HTML list tags are far more restrictive than straight CSS. However, if either of the
following is true, you should be able to successfully convert list formats to HTML list
styles:

 • The list formats defined for your document do not have complex autonumbers
 • You can allow any list formats that have complex autonumbers to become <p> items

in the output instead.

In most cases browsers will reformat the list styles unaided, and they will come out as you
expect. However, see §30.11.3 Indenting list items on page 589 for ways you might have
to modify CSS properties to line up indents.

Note: Unless you specify XHTML as the output type, DITA2Go does not generate
 closing tags, because browsers tend to space poorly when is
present.

In this section:
§30.11.2.1 Specifying HTML list styles (deprecated) on page 585
§30.11.2.2 Converting lists with multiple paragraph formats on page 586
§30.11.2.3 Converting nested lists on page 587
§30.11.2.4 Converting dictionary lists on page 588
§30.11.2.5 Omitting CSS class attributes from list entries on page 588
§30.11.2.6 Including or excluding the type list attribute on page 588

30.11.2.1 Specifying HTML list styles (deprecated)

To specify HTML list styles explicitly:
[HTMLParaStyles]
; doc format (para or char) = keywords for function s and properties

CONVERTING LIST FORMATS TO HTML (DEPRECATED) DITA2GO USER’S GUIDE

586 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; List1 - List12 specify different list styles:
; 1-5 = OL, ordered list types 1, i, I, a, and A
; 6-8 = UL, unordered list types disc, circle, a nd square
; The rest vary from one browser to another; Ope ra shows as:
; 9 = DIR, nonindented list, no bullets or num bers
; 10 = MENU, bulleted and indented like 6
; 11 = DL, dictionary list, indented, no bullet s
; 12 = DL COMPACT, like 11 but with less spacin g
; LFirst specifies a style that starts a list
; LEnd specifies a non-list style that ends any pr ior lists
; LNest specifies a style that nests in an enclosi ng list
; LLevel specifies the nesting level to use, 1-30
; DListDD specifies use of dd instead of dt for it ems in dl lists

Note: DITA2Go overrides these settings with properties you specify in a format
configuration file for the same formats; see §5.7.4 Configuring list formats on
page 86.

For all List n styles:

 • Assign LFirst to each paragraph format that starts a list, regardless of level or
nesting, to restart numbering; see §30.11.2.2 Converting lists with multiple paragraph
formats on page 586.

 • Assign LEnd to each non-list paragraph format that immediately follows a list; see
§30.11.2.2 Converting lists with multiple paragraph formats on page 586.

 • Assign LNest and LLevel n to each paragraph format in a list that is nested inside
another list; see §30.11.2.3 Converting nested lists on page 587.

You can assign more than one list keyword to a format. For example:
[HTMLParaStyles]
Numbered1 = List1 LFirst
Numbered = List1
Bulleted = List6
Body = LEnd
Heading* = LEnd

List styles 1 through 8 generally are reliable. List styles 9 through 12 are browser
dependent; the same style in different browsers might show up with or without indents or
bullets.

Note: Any format that can end a list must be assigned LEnd; otherwise the paragraphs
that follow will be treated as part of the last list item, and will be indented.

If you are using CSS, DITA2Go applies the same class name used in the first item in
a list to the or that precedes it. This permits convenient CSS adjustment of
margins before and after lists, obviating the need to use distinct paragraph formats for the
first and last list items.

You will need additional settings for the following:

 • Lists that include more than one paragraph format; see §30.11.2.2 Converting lists
with multiple paragraph formats on page 586.

 • Nested lists; see §30.11.2.3 Converting nested lists on page 587.
 • Dictionary-style lists; see §30.11.2.4 Converting dictionary lists on page 588.

30.11.2.2 Converting lists with multiple paragraph formats

If you use a different paragraph format for the first item in a list, and perhaps also for the
last item, specify the appropriate List n style for all of the paragraph formats; and also
specify the following properties:

30 MAPPING TEXT FORMATS TO HTML/XML CONVERTING LIST FORMATS TO HTML (DEPRECATED)

ALL RIGHTS RESERVED. MAY 19, 2013 587

[HTMLParaStyles]
; LFirst specifies a style that starts a list
; LEnd specifies a non-list style that ends any pr ior lists

LFirst starts a list Assign LFirst to the format that starts a list. If you do not assign LFirst to a format that
can start a list, DITA2Go thinks an item in that format is being continued after a non-list
item; if that is not the case, DITA2Go might be using a value that was never set.

LEnd comes after
a list

Do not assign LEnd to the format that ends a list; instead, assign LEnd to each paragraph
format that can occur immediately after the end of a numbered list in your DITA
document. This means that you must assign LEnd to several non-list paragraph formats;
this is the only way to get the indents right, without using CSS. The LEnd property can be
annoying, because you must assign it to every format that could ever end a list, as opposed
to being included in a list. To avoid unwanted left indents you must assign LEnd to Body,
to all the headings, to figure titles and table anchors, and so forth.

30.11.2.3 Converting nested lists

If you used nested lists in your DITA document, you must assign the following properties
to inner list formats:

[HTMLParaStyles]
; LNest specifies a style that nests in an enclosi ng list
; LLevel specifies the nesting level to use, 1-30

Make each level a
different list type

HTML does not let you nest a list inside another of the same type. If you have a bulleted
list with a bulleted sublist, change the bulleted style for the sublist; for example, if the top-
level list is List6 , make the sublist style List7 . Also make the top-level list LLevel1 ,
and make the sublist both LNest and LLevel2 . You can nest quite deeply and still retain
the structure, if you apply these properties correctly.

Suppose your DITA document has one numbered list nested inside another. You would
assign LLevel1 to the outer list format, and LLevel2 to the inner (nested) list format.
You would also assign the LNest property to the nested format, and, if you use a different
format for the first item, assign LFirst to the first-item format in both lists. For example:

[HTMLParaStyles]
Numbered1 = List1 LLevel1 LFirst
Numbered = List1 LLevel1
AlphaSub1 = List4 LLevel2 LFirst LNest
AlphaSub = List4 LLevel2 LNest

If you are using CSS, you might want to add, in the CSS file:
ol ol {list-style-position: outside}

This is how to specify properties for nested lists in CSS.

If you are not using CSS, and your document has nested lists, you might need this setting:
[CSS]
; AlwaysNestLists = No (default, no nesting when CS S used) or Yes
AlwaysNestLists = Yes

However, if you use CSS at all for list items, you will get a mess if the lists really do nest.
DITA2Go prevents that by default (with AlwaysNestLists=No), when you use class
attributes. Setting AlwaysNestLists=Yes turns off this safety net, so you will have to
adjust the CSS for the nested items to prevent overindenting. And also wave goodbye to
cross-browser consistency.

CONVERTING LIST FORMATS TO HTML (DEPRECATED) DITA2GO USER’S GUIDE

588 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

30.11.2.4 Converting dictionary lists

For List11 or List12 (dictionary-style) lists, a <dt> tag is used for each term, normally
flush left; and a <dd> tag for the definition, normally slightly indented. By default,
DITA2Go puts out only <dt> item tags for <dl> lists. To specify <dd> tags also, assign
property DListDD to the paragraph format you use for dictionary-style terms:

[HTMLParaStyles]
; DListDD specifies use of dd instead of dt for it ems in dl lists
GlosTerm = List12 DListDD

30.11.2.5 Omitting CSS class attributes from list entries

To omit the CSS class attribute from list items:
[CSS]
; NoClassLists = Yes (default, no class in tag s), or No
; Default is reversed to No if UseCSS=Yes.
NoClassLists = Yes

If you use CSS, the default value of NoClassLists is reversed to No; see §31.5
Understanding how CSS affects other options on page 596.

30.11.2.6 Including or excluding the type list att ribute

Three attributes apply to list wrappers (ol , ul) and list items (li): type , start , and
value ; the first two apply only to list wrappers:

 • The type attribute specifies the kind of numbering, such as 1 or a.
 • The start attribute specifies the starting value for the list; DITA2Go applies this

attribute if lists are not nested, and a list is interrupted by another list. In that case,
start tells the second (resumed) part of the first list where to restart numbering.

 • The value attribute applies also to list items, and specifies the number for the current
item.

Before CSS, this was how you controlled lists.

By default, DITA2Go omits the type attribute from list wrappers ol and ul . To add the
type attribute to list wrappers:

[CSS]
; NoAttribLists = Yes (default, omit type attribute from list tags),
; or No (include type, start, and value attributes in list tags)
NoAttribLists = No
; UseListTypeAttribute = Yes (default for JavaHelp, to fix CSS bug)
; or No (default for other formats, go by NoAttrib Lists value)
UseListTypeAttribute = Yes

Note: If you use both Mif2Go and DITA2Go , be aware that the default for
NoAttribLists is No for Mif2Go .

When NoAttribLists=No , all three attributes are allowed on list tags.

When NoAttribLists=Yes , the value and start attributes are allowed, and use of the
type attribute is left up to the value of UseListTypeAttribute , which defaults to No
(meaning leave it up to NoAttribLists) except for JavaHelp and Oracle help, both of
which need the type attribute.

30 MAPPING TEXT FORMATS TO HTML/XML CONVERTING LIST FORMATS TO HTML (DEPRECATED)

ALL RIGHTS RESERVED. MAY 19, 2013 589

30.11.3 Indenting list items

To consistently indent the second and subsequent lines of a bulleted or numbered item so
the text more or less lines up with the start of the first-line text, you have two choices.
Neither method is precise:

§30.11.3.1 Adjusting the second-line list indent in CSS on page 589
§30.11.3.2 Inserting spaces between first-line list autonumber and text on page 589

30.11.3.1 Adjusting the second-line list indent in CSS

You can use CSS to adjust the second-line indent of a list format to match the first line.
Using CSS is tricky, because CSS1 provides no equivalent of the autonumber-tab-hang
construct; the tab concept is missing from CSS. Therefore, spacing between the bullet or
autonumber and the text is browser dependent.

To use CSS with or tags, you must deduct from your CSS indent the amount of
indent applied automatically by the browser, or you will see your items sliding away
to the right like elections in Florida. How much you deduct is browser dependent, so you
cannot have one CSS for all browsers. Instead you must play the JavaScript detection
game to select among multiple CSS files at run time. Although DITA2Go supports this
method and provides rudimentary JavaScript (see §31.6.1 Selecting a CSS file at run time
on page 597), this is not a standards-friendly approach.

30.11.3.2 Inserting spaces between first-line list autonumber and text

You can use macros to insert fixed spaces after the autonumber or bullet to get the first text
line to align with subsequent lines. This is not a precise method, because you can adjust
space only in nbsp -width increments.

To add fixed spaces after an autonumber or bullet:
[HTMLParaStyles]
; Paragraph format = keywords for functions and pro perties
ListFormat = CodeAfterAnum

[AnumCodeAfter]
; doc style = HTML code to use after end of autonum ber sequence
ListFormat =

You have to determine the proper number of spaces by trial and error. And sadly, it will be
different when you get to double digits in numbered lists: then you must reduce the
number of nbsp s by one. You could maintain a macro-variable counter (see §37.3 Using
macro variables on page 687), but synchronizing the count with the numbering would be
challenging.

30.11.4 Converting list formats to HTML/XML paragr aphs

DITA2Go can map list formats to <p> items. If you allow DITA2Go to create a CSS file
for your document (see §31 Setting up CSS for HTML on page 591), DITA2Go uses CSS
to supply indents.

Some things to consider about converting lists:

 • You must use this method for list formats with complex autonumbers that have no
counterpart in HTML.

 • Because autonumbers are converted to text with this method, you cannot insert new
items in a numbered list in the HTML output (something you should not be doing
anyway) without manually renumbering the rest of the list.

CONVERTING LIST FORMATS TO HTML (DEPRECATED) DITA2GO USER’S GUIDE

590 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

See §7.6.6 Specifying block properties for paragraph formats on page 124 for the
properties you can assign to list formats.

(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 591

31 Setting up CSS for HTML

Much of what used to be set by attributes in HTML is now better handled in CSS
(Cascading Style Sheets). This section shows how to use and customize CSS for HTML
output. Topics include:

§31.1 Deciding whether to use CSS on page 591
§31.2 Understanding how to use CSS on page 591
§31.3 Understanding how DITA2Go generates CSS on page 592
§31.4 Specifying CSS file and link options on page 593
§31.5 Understanding how CSS affects other options on page 596
§31.6 Linking to alternate CSS files on page 597
§31.7 Assigning CSS classes on page 599
§31.8 Customizing CSS properties on page 606

31.1 Deciding whether to use CSS
With respect to CSS style sheets for your project, you can do any of the following:

 • Specify an existing style sheet for DITA2Go to use.
 • Have DITA2Go create a new style sheet based on formats and configuration settings.
 • Select a style sheet at run time, according to the browser in use.
 • Choose not to use CSS at all.

If the HTML output you produce will be viewed with a browser that offers CSS support
(which most Web browsers do these days), CSS is the better way to manage presentation,
compared to tags and such. On the other hand, CSS is implemented somewhat
inconsistently among different browsers. You might have to provide several cascading
style sheets, to be automatically selected from at run time; and you can spend an amazing
amount of time tuning style sheets and adding JavaScript macros.

Note: Formatting that is directly created by an HTML tag overrides CSS. Using HTML
presentational tags and attributes cripples your ability to use CSS, and therefore to
adjust formatting easily without having to alter content.

If you are creating in-house HTML documents, use whatever works with local browsers.

Note: If you are creating XHTML output for the Web, Netscape Navigator 7 and
Mozilla ignore your CSS files.

The default is for DITA2Go to use CSS for standard HTML and for HTML-based Help,
and to create a style sheet for you, based on the formats in your document; see §31.4
Specifying CSS file and link options on page 593.

To look at your page in different browsers, using a Web-based method:
http://www.anybrowser.com/

See also:
§31.5 Understanding how CSS affects other options on page 596

31.2 Understanding how to use CSS
If you are not familiar with CSS, here are some good starting points, tutorials, and
reference sites:

http://www.anybrowser.com/

UNDERSTANDING HOW DITA2GO GENERATES CSS DITA2GO USER’S GUIDE

592 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

http://websitetips.com/css/index.shtml
http://www.mako4css.com/Tutorial.htm
http://www.w3schools.com/css/
http://www.thenoodleincident.com/tutorials/index.html
http://www.alistapart.com/

Also the spectacular and inspiring:
http://www.csszengarden.com/

And a few books:
Cascading Style Sheets: The Definitive Guide, by Eric A. Meyer
The basics of creating, saving, formatting, and linking to CSS: HTML for the World
Wide Web with XHTML and CSS, by Elizabeth Castro
Cascading Style Sheets: Designing for the Web, by Hakon Lie and Bert Bos
(Note: Hakon Lie is the W3C designer of CSS)

31.3 Understanding how DITA2Go generates CSS
DITA2Go generates CSS based on the formats to which you map the DITA elements in
your document. To get the precise display you want, you might find that you need to edit
the resulting style sheet in a text editor or a CSS editor. DITA2Go excludes most font tags,
and optionally excludes typographic tags, because those can override CSS. What you get
is very clean HTML, with @class attributes.

Although the default is to create a new CSS each time you run a conversion, there is a
setting you can specify to retain the CSS as is; see §31.4 Specifying CSS file and link
options on page 593. That is what we usually advise people to do if they customize the
CSS. The downside is that if you define new formats (classes, in HTML) for your
document, DITA2Go cannot add them to the CSS; you have to do that yourself.

DITA2Go gets the formatting information from the formats defined for your document
via the [Templates]Formats file chain. DITA2Go provides reasonable starting
defaults so you get good-looking results out of the box. You can change them to your taste
in numerous ways; see §7 Configuring output formats on page 109.

By default, the first time you convert a document to HTML or XML, or generate HTML-
based Help, DITA2Go creates a style sheet for the output. DITA2Go creates a new CSS
file that contains all the paragraph and character format names from your document, based
on the following:

 • whatever CSS classes you assign to those formats in [ParaClasses] or
[CharClasses] ; see:

§31.7.2 Mapping paragraph formats to CSS classes on page 601
§31.7.3 Mapping character formats to tags or span classes on page 602

 • whatever tags you set for those formats in [ParaTags] and [CharTags] ; see:
§30.2.1 Assigning HTML tags and attributes to paragraph formats on page 566
§30.3 Mapping character formats on page 569.

Absent explicit CSS settings in [ParaClasses] , [CharClasses] , [ParaTags] , or
[CharTags] , DITA2Go bases CSS class names on your format names, possibly reduced
to fit CSS naming rules for class names; see §31.7.1 Understanding CSS class name
restrictions on page 600.

See §31.7 Assigning CSS classes on page 599.

http://websitetips.com/css/index.shtml
http://www.mako4css.com/Tutorial.htm
http://www.w3schools.com/css/
http://www.thenoodleincident.com/tutorials/index.html
http://www.alistapart.com/
http://www.csszengarden.com/

31 SETTING UP CSS FOR HTML SPECIFYING CSS FILE AND LINK OPTIONS

ALL RIGHTS RESERVED. MAY 19, 2013 593

31.4 Specifying CSS file and link options
In this section:

§31.4.1 Specifying CSS options in a DITA2Go configuration file on page 593
§31.4.2 Designating and locating a CSS file on page 595
§31.4.3 Directing DITA2Go to generate a CSS file on page 595
§31.4.4 Understanding effects of the older Stylesheet setting on page 596

31.4.1 Specifying CSS options in a DITA2Go configu ration file

To specify CSS options in a DITA2Go configuration file:
[CSS]
; UseCSS = Yes (default) or No
UseCSS=Yes
; WriteClassAttributes = Yes (default)
; or No (when ClassIsTag=Yes or when not using CSS)
WriteClassAttributes=Yes
; WriteCssStylesheet = Once (default), Always, or N ever
WriteCssStylesheet=Once
; WriteCssLink = Yes (default) or No
WriteCssLink=Yes
; CssBrowserDetect= Macro reference to JavaScript c ode that determines
; browser type and writes link from HTML to approp riate CSS file
;CssBrowserDetect=<$BrowserCSS>
; CssFileName = name of style sheet to reference (f ile name, no path)
CssFileName=local.css

Use these options to do the following:
Direct DITA2Go to use CSS
Include class attributes
Designate a CSS file
Create a CSS file
Link to a CSS file
Select a CSS file at run time

See also §Table 31-2 CSS-dependent default values of options on page 597.

Note: If you have been using [HtmlOptions]Stylesheet to specify CSS file
options, see §31.4.4 Understanding effects of the older Stylesheet setting on
page 596. The Stylesheet setting is deprecated in favor of the [CSS] settings
listed in this section.

Direct DITA2Go
to use CSS

To direct DITA2Go to use CSS for your output:
[CSS]
; UseCSS = Yes (default) or No
UseCSS=Yes

When UseCSS=Yes, by default DITA2Go does the following:

 • includes class attributes in paragraph tags
 • creates the CSS file designated by CssFileName , if this file is not already present
 • includes a link from the <head> element of each output file to the CSS file designated

by CssFileName .

When UseCSS=No, paragraph tags do not include class attributes, no CSS file is
referenced in the output, and the remaining [CSS] options are ignored.

See also §31.5 Understanding how CSS affects other options on page 596.

SPECIFYING CSS FILE AND LINK OPTIONS DITA2GO USER’S GUIDE

594 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Include class
attributes

WriteClassAttributes values have the following effects:

Designate a CSS
file

CssFileName designates the CSS file DITA2Go optionally creates and references. The
default is local.css , located in the project directory. You can specify a different name
and location for this file; see §31.4.2 Designating and locating a CSS file on page 595.

Create a CSS file WriteCssStylesheet values have the following effects:

Link to a CSS file WriteCssLink values have the following effects:

Yes DITA2Go includes CSS class attributes in the paragraph tags in your output;
see §31.3 Understanding how DITA2Go generates CSS on page 592.

No Class attributes are not included in paragraph tags. Use this setting for XML
output when [CSS]ClassIsTag=Yes , the default for XML; see §23.3.1
Deriving XML tags from format and class names on page 452.

Once DITA2Go creates a new CSS file based on your formats, but only if no CSS
file of the name designated by CssFileName is already present in the project
directory. This is the default DITA2Go puts in place at set-up. Specify Once to
get a starting CSS file that you can tweak manually. See §31.4.3 Directing
DITA2Go to generate a CSS file on page 595.

Always DITA2Go creates a new CSS file based on your formats, overwriting in the
project directory any existing CSS file of the name designated by
CssFileName . Specify Always if you do not need to tweak the CSS file, or if
you can make any needed changes in macros, either in the configuration file or
in a macro library. See §31.4.3 Directing DITA2Go to generate a CSS file on
page 595. You can specify additional settings to govern what DITA2Go
includes in a CSS file; see §31.8.3 Overriding styles in DITA2Go-generated
CSS files on page 608.

Never DITA2Go does not create a new CSS file, nor overwrite an existing file. When
UseCSS=Yes, DITA2Go assumes you wish to use an existing CSS file: either
the file designated by CssFileName , or a file to be selected at run time,
depending on the values of WriteCssLink and CssBrowserDetect .
Specify Never if you want to use an existing CSS file. See §31.4.2
Designating and locating a CSS file on page 595.

Yes If CssBrowserDetect is not present, DITA2Go includes in the <head>
element a simple link to the CSS file designated by CssFileName , in the
relative directory designated by CssPath . The link is one of the following
types:

For HTML:
<link rel="stylesheet" href="local.css" type="text/ css">

For XML:
<?xml:stylesheet href="local.css" type="text/css"
charset="UTF-8"?>

If CssBrowserDetect is present, instead of the simple link DITA2Go
includes the macro assigned to CssBrowserDetect in the <head> element.
See §31.6.1 Selecting a CSS file at run time on page 597.

No DITA2Go does not create a link to a CSS file. Use this setting when you are
not using CSS, or when you provide your own macro in [Inserts]Head to
select a CSS file dynamically, independently of CssBrowserDetect . See
§31.6.1 Selecting a CSS file at run time on page 597.

31 SETTING UP CSS FOR HTML SPECIFYING CSS FILE AND LINK OPTIONS

ALL RIGHTS RESERVED. MAY 19, 2013 595

Select a CSS file
at run time

When a macro is assigned to CssBrowserDetect , if WriteCssLink=Yes , the macro is
included in the <head> element. If WriteCssLink=No , the macro is ignored. See
§31.6.1 Selecting a CSS file at run time on page 597.

31.4.2 Designating and locating a CSS file

To specify CSS file name and location in the configuration file:
[CSS]
UseCSS=Yes
; CssFileName = name of style sheet to reference in link when
; WriteCssLink=Yes and CssBrowserDetect is absent.
CssFileName= MyStyles.css
; CssPath = directory in which .css (or .xsl) files are to be placed
CssPath=./css

CssFileName designates the CSS file to be referenced when WriteCssLink=Yes . Do
not include a path; the value of CssFileName should be just a file name with extension.
The default value is local.css , and the default location is the directory designated by
CssPath .

CssPath designates the directory to be referenced in CSS links when
WriteCssLink=Yes . If you use backslashes in the path name, DITA2Go changes them
to forward slashes before writing the path to your HTML output files. The default value of
CssPath is the output directory; see §44.8 Placing CSS or XSL files for assembly on
page 800. You can have DITA2Go copy CSS files to the CssPath directory from another
location at run time.

Path to CSS file
should be relative

If you specify a value for CssPath , the path should be relative to the directory containing
your HTML files. If you specify an absolute path, the CSS file is likely to be accessible
only on your own machine.

Default CSS file
name and

location

If all of the following are true, DITA2Go creates a CSS file named local.css and
places it in the project directory:

 • You have indicated that you want DITA2Go to use CSS (that is, UseCSS=Yes).
 • The value of WriteCssStylesheet is either Once or Always .
 • The configuration file has no entries at all for either CssFileName or CssPath .
 • The project directory does not already contain a file named local.css .

31.4.3 Directing DITA2Go to generate a CSS file

The first time you convert files for a project, if you intend to use CSS, probably you will
want DITA2Go to generate a new CSS file, so you can use a style sheet that contains the
equivalents of your format settings. You should also specify a name for the CSS file (see
§31.4.2 Designating and locating a CSS file on page 595); for example:

[CSS]
UseCSS=Yes
WriteCssStylesheet=Once
CssFileName=MyStyles.css

When WriteCssStylesheet=Once , DITA2Go generates a new CSS file, but only if no
CSS file of the same name (in this example, MyStyles.css) already exists in the project
directory. This is probably the best setting to use in most circumstances; you can leave this
setting in place, and any changes you make directly to the CSS file will be preserved the
next time you run the conversion. On the other hand, changes you make to formats will not
be reflected in the CSS file.

UNDERSTANDING HOW CSS AFFECTS OTHER OPTIONS DITA2GO USER’S GUIDE

596 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Force a new
CSS, update CSS

from formats

To force DITA2Go to generate a new CSS file, overwriting any existing CSS file of the
same name in the project directory:

[CSS]
WriteCssStylesheet=Always

If you never make changes directly to the CSS file, you can let DITA2Go generate a CSS
file each time; then any changes you make to your formats are updated automatically in
the CSS file.

Update CSS
directly

If you make changes directly to the CSS file, to prevent your changes from being
overwritten, for subsequent conversion runs you must change this setting to Once or to
Never :

[CSS]
WriteCssStylesheet=Never

Styles based on
configuration

settings

You can have it both ways, by specifying CSS settings in your configuration file for
particular formats; see §31.8.3 Overriding styles in DITA2Go-generated CSS files on
page 608

31.4.4 Understanding effects of the older Styleshe et setting

Prior versions of DITA2Go used a single setting to manage CSS file options:
[HtmlOptions]
; Stylesheet = None (default if no setting),
; Init (default set by Setup, write .css if not exis ting),
; Generate (overwrite .css),
; Class (no link, no write), or
; Use (link, no write).
;Stylesheet=None

Stylesheet is
deprecated

The Stylesheet setting is deprecated, and is replaced by the [CSS] options described in
§31.4.1 Specifying CSS options in a DITA2Go configuration file on page 593. However,
Stylesheet is still supported for backward compatibility.

If a Stylesheet setting is present in your configuration file and the newer [CSS] file
options are not present, defaults for the newer options are set according to the value of
Stylesheet , as shown in Table 31-1. If both are present, the [CSS] options prevail.

31.5 Understanding how CSS affects other options
The choice to use CSS changes the behavior of certain other options. Be aware of the
following:

Using CSS changes some default values
Not using CSS changes other default values.

Table 31-1 Default CSS file options when [HtmlOptions]Stylesheet is used

[CSS] option

[HtmlOptions] Stylesheet setting

None Init Generate Class Use

UseCSS No Yes Yes Yes Yes

WriteClassAttributes No Yes Yes Yes Yes

WriteCssStylesheet Never Once Always Never Never

WriteCssLink No Yes Yes No Yes

31 SETTING UP CSS FOR HTML LINKING TO ALTERNATE CSS FILES

ALL RIGHTS RESERVED. MAY 19, 2013 597

Using CSS
changes some
default values

When UseCSS=Yes, default values are reversed for the [Graphics] and
[HtmlOptions] settings listed in Table 31-2. This removes most HTML that can
interfere with CSS settings.

Not using CSS
changes other
default values

When UseCSS=No, default values are reversed for the [CSS] settings listed in Table 31-2.

31.6 Linking to alternate CSS files
In this section:

§31.6.1 Selecting a CSS file at run time on page 597
§31.6.2 Changing CSS files in the middle of a document on page 598
§31.6.3 Customizing the CSS link tag on page 598
§31.6.4 Using an alternate CSS link tag for Netscape 4 on page 599

31.6.1 Selecting a CSS file at run time

CSS support is a mixed bag; a lot depends on exactly which browsers, and which versions
of them, you need to support. You might need to autodetect the browser and choose from
different CSS files at run time, using a macro instead of a fixed link, to reference
JavaScript code that detects the type of browser in use and selects an appropriate CSS file.
For example:

[CSS]
WriteCssLink=Yes
CssBrowserDetect=<$SelectCSS1>

As an alternative:
[CSS]
WriteCssLink=No

[Inserts]
Head=<$SelectCSS1>

Provide the referenced macro:
[SelectCSS1]
; Include here the JavaScript from m2hmacro.ini

Sample macro [$SelectCSS1] contains JavaScript to detect several popular browsers.
This macro, and an alternate, [$SelectCSS2] , are included in file m2hmacro.ini , in
your DITA2Go distribution directory. You can copy m2hmacro.ini file to the project
directory, or just copy the macro definition into the configuration file for your project; see

Table 31-2 CSS-dependent default values of options

Section Option

Default value of option when:

Ref.UseCSS=Yes UseCSS=No

[CSS] LinkClassIsParaClass Yes No 28.2.2.2

NoClassLists No Yes 30.11.2.5

WriteClassAttributes Yes No 31.4.1

WriteCssStylesheet Once Never 31.4.1

WriteCssLink Yes No 31.4.1

XrefFormatIsXrefClass Yes No 31.7.7

[HtmlOptions] AlignAttributes No Yes 30.4

Basefont No Yes

NoFonts Yes No

LINKING TO ALTERNATE CSS FILES DITA2GO USER’S GUIDE

598 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§37.1.1.2 Understanding where you can define named macros on page 680. You can
modify the macro definition as needed; consult a JavaScript reference for syntax.

31.6.2 Changing CSS files in the middle of a docum ent

To have DITA2Go reference different style sheets for output from different parts of your
DITA document, you can use a macro to provide the CSS link, then insert PI markers in
your document to signal a change of CSS file. To prevent DITA2Go from automatically
generating a CSS file reference, you must also specify:

[CSS]
WriteCssLink=No

To generate a CSS file reference from your document, assign a macro to be placed in the
<head> element of each HTML output file; for example:

[Inserts]
Head=<$CSSmacro>

Include in the macro definition a macro variable (for example, $$myAltCSS) in place of
the base name of the CSS file:

[CSSmacro]
; You must type the following all on one line:
<link rel='stylesheet' href='<$$myAltCSS>.css' char set=ISO-8859-1
type='text/css' />

Give the macro variable an initial value: the base name of the first CSS file you want
referenced:

[MacroVariables]
myAltCSS= UsualCSS

DITA2Go uses the value of macro variable $$myAltCSS to select a CSS file at the start of
each file split.

To change $$myAltCSS to a different value for a subsequent split, you must place a PI
marker in a paragraph before the split. You can use a HTML Macro PI marker, with content
as follows:

<$$myAltCSS= OtherCSS>

To assemble the macro around the CSS file value, also specify the following:
[MarkerTypes]
CSSname=Code

[MarkerTypeCodeBefore]
CSSname=<$$myAltCSS=

[MarkerTypeCodeAfter]
CSSname= >

To change the value of $$myAltCSS for a particular file in your document, place in the
project directory a file-specific configuration file that contains (only) the following
setting:

[MacroVariables]
myAltCSS= SpecialCSS

See §42.1 Using a different configuration for selected files on page 765.

31.6.3 Customizing the CSS link tag

The generic CSS link tag DITA2Go inserts in your HTML output looks like this:
<link rel="stylesheet" href=" MyStyles.css" type="text/css">

31 SETTING UP CSS FOR HTML ASSIGNING CSS CLASSES

ALL RIGHTS RESERVED. MAY 19, 2013 599

Suppose you want to specify additional properties for the CSS file, such as media type.
First, you must prevent DITA2Go from writing the generic link tag:

[CSS]
WriteCssLink=No

To specify the link yourself, assign it to the <head> element:
[Inserts]
; You must type the following all on one line:
Head=<link rel="stylesheet" href=" MyStyles.css" type="text/css"
media="screen">

As an alternative, you could reference the link as a macro (see §37.1 Defining and
invoking macros on page 679):

[Inserts]
Head=<$MyCSSLink>

[MyCSSLink]
<link rel="stylesheet" href=" MyStyles.css" type="text/css"
media="screen">

You could even go a step further, and provide a macro variable (see §37.3 Using macro
variables on page 687) for the value of the attribute, so you can change the value in just
one place:

[MyCSSLink]
<link rel="stylesheet" href=" MyStyles.css" type="text/css"
media="<$$MediaType>">

[MacroVariables]
MediaType=screen

31.6.4 Using an alternate CSS link tag for Netscap e 4

Netscape Navigator 4.x plays better with CSS if the link to the style sheet specifies
type="text/css1" instead of type="text/css" :

<link rel="stylesheet" href=" MyStyles.css" type="text/css1">

For example, tags ... are ignored if the CSS entry for the class does not specify
bold . If your HTML output will be viewed with Netscape Navigator 4.x, you can include
the alternate link with this option:

[CSS]
; CSSLinkNS4 = No (default, required for CSS valida tion)
; or Yes (NS 4.x)
CSSLinkNS4=Yes

Unfortunately, this breaks the W3C CSS Validator, which claims there is no style sheet.

31.7 Assigning CSS classes
In this section:

§31.7.1 Understanding CSS class name restrictions on page 600
§31.7.2 Mapping paragraph formats to CSS classes on page 601
§31.7.3 Mapping character formats to tags or span classes on page 602
§31.7.4 Assigning CSS classes to table formats on page 603
§31.7.5 Assigning CSS classes to text and table footnotes on page 603
§31.7.6 Assigning CSS classes based on Unicode character ranges on page 603
§31.7.7 Using link format names as CSS class names on page 604

ASSIGNING CSS CLASSES DITA2GO USER’S GUIDE

600 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§31.7.8 Using CSS class names as tags for XML on page 604
§31.7.9 Omitting tags from CSS selectors on page 605
§31.7.10 Overriding CSS class for selected paragraphs on page 605

See also:
§30.11.2.6 Including or excluding the type list attribute on page 588

31.7.1 Understanding CSS class name restrictions
Use only letters
and numbers in

class names

Class names used with CSS may contain alphanumeric characters only. You cannot use
spaces or symbols; not even underscores. Class names in HTML output must match in
case the same names in the CSS file. DITA2Go imposes an internal limit of 128
characters on CSS class names.

To create class names from format names, DITA2Go does the following:

 • removes or replaces spaces
 • removes all non-alphanumeric characters
 • replaces accented characters with their non-accented equivalents
 • for output types that require lowercase CSS, changes all characters to lowercase,

regardless of whether format names are uppercase, lowercase, or mixed case.

These transformations might lead to conflicts if your format names differ only in spacing,
in case, or by any removed characters.

Replace spaces
with a character

You can specify a letter, a number, an underscore, or a hyphen to substitute for spaces in
class names. For example:

[HtmlOptions]
; These alphanumeric chars are used as space replac ements in IDs;
; if non-alphanumeric (other than hyphen or undersc ore), spaces are
; stripped instead (default)
; ClassSpaceChar = char to use as space replacement
ClassSpaceChar = _

Remove spaces By default, DITA2Go removes spaces without replacing them. The same thing happens if
you set ClassSpaceChar to any non-alphanumeric character other than a hyphen or an
underscore: DITA2Go removes all spaces without replacing them.

Case of class
names

CSS does not distinguish between names that differ only in case; if you use both heading1
and Heading1, and they are defined differently, you are sure to see some unexpected
results. Class names in HTML files must match in case the corresponding names in the
CSS file. Class names can be mixed case for some output types, but must be lowercase for
other output types:

 • For XML, XHTML, JavaHelp, and Oracle Help, DITA2Go changes all generated
class names in output in lowercase.

 • For standard HTML, HTML Help, and OmniHelp, class names generated from
formats retain their original case.

You can force lowercase class names for any HTML output type. To make generated class
names all lowercase:

[CSS]
; LowerCaseCSS = No (default mixed case)
; or Yes (lower case only, JH, OHJ, XML, and XHTML)
LowerCaseCSS = Yes

31 SETTING UP CSS FOR HTML ASSIGNING CSS CLASSES

ALL RIGHTS RESERVED. MAY 19, 2013 601

31.7.2 Mapping paragraph formats to CSS classes

When you use CSS, by default DITA2Go maps each paragraph format name to a CSS
class of the same name, applying to the name any needed transformations (see §31.7.1
Understanding CSS class name restrictions on page 600).

For a paragraph format, by default the class name in the DITA2Go -generated CSS file is
preceded by the tag name and a dot:

tagname. classname

The tag name comes from whatever is specified for that format in [ParaTags] (see §30.2
Mapping paragraph formats on page 566), or else <p>. Unless you assign classes
explicitly, the class name is based on the paragraph format name.

For example, suppose your document includes paragraph formats Chap_Title, Heading, and
Body, with the first two assigned HTML tags in [ParaTags] . DITA2Go would treat
these formats as follows, provided ClassIsTag=No (see §31.7.8 Using CSS class names
as tags for XML on page 604):

DITA2Go includes as many of the following properties as apply, based on the format
properties in your document (as modified by any imported conversion template), for each
paragraph format (class) in the CSS file:

font: [italic | small-caps | bold]
margin: top right bottom left
text-align: [center | right]
text-indent: [for first line, negative for hang]
text-decoration: [underline | line-through]
text-transform: [uppercase | lowercase | capitaliz e]
color: # RRGGBB

To explicitly map individual paragraph format names to CSS class names:
[ParaClasses]
; Document style name = class to use (default is ba sed on name)
; For XML, the class is used as the tag name by def ault.
FormatName=classname

Or:
[ParaTags]
FormatName= class=" classname"

If you assign class names to the same format in both [ParaClasses] and [ParaTags] ,
and the class names are different, DITA2Go uses the [ParaTags] setting for backward
compatibility. See §30.2.1 Assigning HTML tags and attributes to paragraph formats on
page 566.

Anchor paragraph
class

If your document uses a special paragraph format to anchor graphics, you can specify a
class name for the anchor format:

[Graphics]
; GraphClass = class name to use for paras created to hold tags
GraphClass=graphic

XML For XML output, see §23.3.1 Deriving XML tags from format and class names on
page 452.

FM format
name [ParaTags] DITA2Go HTML output DITA2Go CSS

entry
Chap_Title Chap_Title=H1 <h1 class="chaptitle"> h1.chaptitle {.. .}

SubHead SubHead=H2 <h2 class="subhead"> h2.subhead {...}

Body (no setting) <p class="body"> p.body {...}

ASSIGNING CSS CLASSES DITA2GO USER’S GUIDE

602 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

31.7.3 Mapping character formats to tags or span c lasses

When you use CSS, DITA2Go generates any tags assigned to a character format in
[CharTags] ; see §30.3 Mapping character formats on page 569. By default, DITA2Go
maps each character format that is not assigned a tag in [CharTags] to a CSS span class
of the same name as the format, applying to the name any needed transformations (see
§31.7.1 Understanding CSS class name restrictions on page 600).

For example, suppose your document uses character format names Emphasis, Prog Term,
and Link, with the first two assigned HTML tags in [CharTags] . DITA2Go would treat
these formats as follows, provided ClassIsTag=No (see §31.7.8 Using CSS class names
as tags for XML on page 604):

If no tags are specified in [CharTags] for a particular character format, by default that
format gets a span class.

To avoid creating CSS span classes for any character formats that are neither explicitly
assigned an HTML tag nor explicitly assigned to a span class:

[CSS]
; UseSpanAsDefault = Yes (default, use span as elem ent name
; for all char formats that do not specify one in [C harTags]
; or No
UseSpanAsDefault=No

When UseSpanAsDefault=Yes , any character format name not listed in [CharTags]
is assigned to a span class of the same name as the format.

When UseSpanAsDefault=No , any character format name not listed in [CharTags] is
skipped, and becomes just an override in HTML output.

To explicitly map an individual character format to a CSS span class:
[CharTags]
CharFormat=span

[CharClasses]
CharFormat=classname

Or:
[CharTags]
CharFormat=span class=" classname"

You can use either method to assign tags, to define
character formats globally in CSS. For example, if you map character format CodeBold to
 , DITA2Go inserts corresponding generic selector
.codebold in the CSS file.

If you assign a class name to the same format in both [CharClasses] and [CharTags] ,
and the class names are different, DITA2Go uses the [CharTags] setting for backward
compatibility. See §30.3 Mapping character formats on page 569.

Generic XML For generic XML output, see §23.3.1 Deriving XML tags from format and class names on
page 452.

FM format
name [CharTags] DITA2Go HTML

output DITA2Go CSS entry

Emphasis Emphasis=em em.emphasis {...}

Prog Term Prog Term=code <code> code.progterm {...}

Link (no setting) span.link {...}

31 SETTING UP CSS FOR HTML ASSIGNING CSS CLASSES

ALL RIGHTS RESERVED. MAY 19, 2013 603

31.7.4 Assigning CSS classes to table formats

To explicitly map individual table format names to CSS class names:
[TableClasses]
; Table format name = class to use (default is base d on name)
; For XML, the class is used as the tag name by def ault.
TableFormatName = classname

When you assign a CSS class name to a table format, if you are using output formats (see
§7.7 Configuring table output formats on page 129), DITA2Go looks in the table
configuration chain for a table format named classname.

See also:
§33.4.3 Assigning a CSS class to a table on page 633

31.7.5 Assigning CSS classes to text and table foo tnotes

To assign CSS classes to text footnotes and to table footnotes:
[CSS]
; FootClass = name for CSS class for footnotes, def ault "footnote"
FootClass = footnote
; TbFootClass = name to use for CSS class for table footnotes
TbFootClass = tablefootnote

See also:
§30.10 Converting footnotes to HTML or XML on page 581

31.7.6 Assigning CSS classes based on Unicode char acter ranges

Suppose your document is translated to a non-Western language: Japanese, for example.
After translation, a certain number of words might remain in Latin characters: product
names, feature names, and acronyms, for example. The glyphs for Latin characters in
common Unicode fonts (such as Mincho) that include Japanese characters might be
unacceptably ugly. What you need is an automatic way to specify a different font to use for
those glyphs.

DITA2Go provides settings that allow you to assign a CSS class to a range of Unicode
characters. You can specify more than one class for a given element; the values are
additive, and in case of conflict the latest value in the CSS file overrides earlier values.
The order of values in the class attribute itself does not matter. The net effect is that you
can use this feature without messing up the display of elements for which you already
have other CSS rules. This is essential for the safe use of the feature.

To activate assignment of classes to Unicode character ranges:
[CSS]
; UseCharRangeClasses = No (default); or Yes (to ac tivate settings in
; [CharacterRangeClasses] for marking spans by Unic ode char range)
UseCharRangeClasses = Yes

To specify a class to use for spans of characters:
[CharacterRangeClasses]
; starting U+ code point (four or five hex digits) = class name,
; - (exclude from all classes), or * (allow in any class).
xxxx = classname optional comment here
yyyy = * allow in all classes
zzzz = - exclude from all classes

ASSIGNING CSS CLASSES DITA2GO USER’S GUIDE

604 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The named class applies to the character code specified, plus all following character codes
up to the next setting. Any text after the first term (class name or symbol) is a comment.
The initial state is * (for allow in any class); the last setting should specify - (exclude from
all classes).

For example, to flag English and European-language text remaining in a Japanese
translation:

[CharacterRangeClasses]
0021 = latin common symbols
0030 = * digits
003A = latin alpha, some symbols
00A5 = * Yen sign
00A6 = latin Latin-1, diacritics
0342 = greek Greek diacritics
0346 = latin Latin diacritics
0374 = greek Greek letters
03E2 = - Ethiopic and many more
1E00 = latin Latin extended
1F00 = greek Greek extended
2000 = * lots of punctuation
2E80 = - rest of the world

To flag Cyrillic in an English document:
[CharacterRangeClasses]
0021 = -
0400 = Russian
0514 = -
2000 = *
3000 = -

31.7.7 Using link format names as CSS class names

To automatically use cross-reference format names and hypertext-link character format
names as CSS class names in HTML:

[CSS]
; XrefFormatIsXrefClass = No (default) or Yes (for xrefs, use the
; Frame xref format name as the xref class name; fo r hyperlinks, use
; the char format name instead. Mainly for DITA @o utputclass use.)
; Default is reversed to Yes if UseCSS=Yes, and fo r DITA output.
XrefFormatIsXrefClass = Yes

When UseCSS=Yes, the default value of XrefFormatIsXrefClass is reversed to Yes;
see §31.5 Understanding how CSS affects other options on page 596.

For DITA XML, the default value of XrefFormatIsXrefClass is Yes; see §24.3
Specifying general options for DITA on page 458.

31.7.8 Using CSS class names as tags for XML

By default, CSS class names become XML tags in XML output:
[CSS]
; ClassIsTag = No (default for HTML/XHTML)
; or Yes (default for Generic XML)

When ClassIsTag=Yes , class names, including those you assign to formats in the
[ParaTags] and [CharTags] sections, become XML tags. If ClassIsTag=Yes , also
specify [CSS]WriteClassAttributes=No ; see §31.4.1 Specifying CSS options in a
DITA2Go configuration file on page 593.

31 SETTING UP CSS FOR HTML ASSIGNING CSS CLASSES

ALL RIGHTS RESERVED. MAY 19, 2013 605

When ClassIsTag=No , HTML tags and class names are assigned as described in §31.7.2
Mapping paragraph formats to CSS classes on page 601 and §31.7.3 Mapping character
formats to tags or span classes on page 602.

For example, suppose your document includes paragraph formats Chap_Title, SubHead,
Fig, and Body, with the first two assigned HTML tags and the third assigned a class in
[ParaTags] . DITA2Go would treat these formats as follows:

31.7.9 Omitting tags from CSS selectors

By default, for HTML output DITA2Go writes CSS selectors as class names prefixed with
the element tag.

To have DITA2Go write CSS selectors as just class names with no tag prefix:
[CSS]
SelectorIncludesTag = Yes (default for HTML output) or No
; (omit element tag prefix, default for DITA and Do cBook output)
SelectorIncludesTag = No

When SelectorIncludesTag=Yes , CSS selectors consist of the element tag name
followed by a period followed by the class name; for example, h1.heading1 . This is the
default for HTML and XHTML output.

When SelectorIncludesTag=No , CSS selectors do not have an element tag as a
prefix; for example, heading1 . This is the default for DITA and DocBook output.

31.7.10 Overriding CSS class for selected paragrap hs

Paragraphs that have distinct purposes in your document should have distinct format
names, even if they share the same print format. However, if your document does contain
paragraphs with the same format name that need different CSS classes, you can use Code
PI markers to flag those paragraphs, and assign a different class with a macro.

For example, suppose most of your Heading 2 paragraphs are assigned CSS class
Heading2 , but a few Heading 2 paragraphs need one of three other classes: About ,
Configuration , or Procedure . You can surround all Heading 2 paragraphs with code
to hold the HTML tags and class assignments:

[HTMLParaStyles]
Heading 2=NoPara CodeBefore CodeAfter

The starting H2 tag assigns a class whose value is computed by macro $UseH2Class :
[ParaStyleCodeBefore]
Heading 2=<H2 class="<$UseH2Class>">

The closing H2 tag follows the paragraph:
[ParaStyleCodeAfter]
Heading 2=</H2>

Macro $UseH2Class checks the value of macro variable $$h2class to determine which
class to assign:

FM
format [ParaTags] ClassIsTag = No ClassIsTag = Yes

Chap_Title Chap_Title=H1 <h1 class="chaptitle"> <chaptitle>

SubHead SubHead=H2 <h2 class="subhead"> <subhead>

Fig Fig= class="caption" <p class="caption" <caption>

Body (no setting) <p class="body"> <body>

CUSTOMIZING CSS PROPERTIES DITA2GO USER’S GUIDE

606 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[UseH2Class]
<$_if ($$h2class is "A")>About\

<$_elseif ($$h2class is "C")>Configuration\
<$_elseif ($$h2class is "P")>Procedure\
<$_else>Heading2\
<$_endif>

<$$h2class="H">\

Macro variable $$h2class is initialized (and always reset) to a value that results in
assigning the default class, Heading2 (via the $_else clause in macro $UseH2Class):

[MacroVariables]
h2class=H

To set $$h2class for a paragraph that needs a non-default class, you would insert a Code
PI marker in the paragraph that precedes each such paragraph. The content of the PI
marker would look like this:

<$$h2class="A">

To assign a non-default class to the very first paragraph in a file, you would have to create
a chapter-specific configuration file, filename.ini , for that file, with content (for
example):

[MacroVariables]
h2class=A

See §42.1.1 Providing configuration files for individual ditamaps on page 765.

See also:
§37 Working with macros on page 679
§38 Working with processing instructions on page 717
§42 Overriding configuration settings on page 765

31.8 Customizing CSS properties
In this section:

§31.8.1 Specifying CSS <body> tag properties on page 606
§31.8.2 Specifying CSS size values and units of measurement on page 607
§31.8.3 Overriding styles in DITA2Go-generated CSS files on page 608
§31.8.4 Adjusting leading (line spacing) in CSS on page 609
§31.8.5 Preventing tags from overriding CSS properties on page 609

31.8.1 Specifying CSS <body> tag properties

You can specify a size value and the unit of measurement for the font-size property of
the <body> tag in a DITA2Go -generated CSS file. Or, you can direct DITA2Go not to
include a <body> tag entry in the CSS file; then you can substitute your own entry, in the
project configuration file. Use one or the other method to specify a font size other than the
default:

Custom font size and units
Custom <body> tag entry.

Custom font size
and units

To specify font size and unit of measurement for the <body> tag:
[CSS]
; CssBodyFontSize = value for body {font-size: }, u sed as base for all
; em and ex sizes, and for font-size and line-heig ht %, default 10.
CssBodyFontSize=10

31 SETTING UP CSS FOR HTML CUSTOMIZING CSS PROPERTIES

ALL RIGHTS RESERVED. MAY 19, 2013 607

; CssBodyFontUnit = units for body {font-size: }, d efault 0:
; 0=pt, 1=pc, 2=in, 3=cm, 4=mm, 7=px (pixels).
CssBodyFontUnit=0

CssBodyFontSize determines how values of relative measures em, ex , and % are
computed for other CSS style properties. For example, 1.5em in a style property equals
1.5 times the value in pt (or in another non-relative unit) of the <body> tag font-size
property.

CssBodyFontUnit should be an absolute unit of measurement rather than a relative unit.

Custom <body>
tag entry

To prevent DITA2Go from automatically including a style entry for the <body> tag in a
DITA2Go -generated CSS file:

[CSS]
; CssBodyFontTag = Yes (default, writes body { font -size:) or No
CssBodyFontTag=No

To specify the default font size yourself, provide a custom entry in macro section
[CSSStartMacro] . For example:

[CSSStartMacro]
body { font-size: 11pt; margin: 0 0 0 0 }

See also:
§31.8.2 Specifying CSS size values and units of measurement on page 607
§31.8.3 Overriding styles in DITA2Go-generated CSS files on page 608

31.8.2 Specifying CSS size values and units of mea surement

By default, measurements for properties such as font size and line height are expressed in
pt units in DITA2Go -generated CSS entries. You can direct DITA2Go to use other units
instead. For example, if you are generating HTML Help and you want to enable the Font
button on the toolbar, font sizes are best expressed in em units. Relative units (em, ex , and
%) are based on whatever absolute unit (pt , pc , in , cm, mm, or px) is used for the font-
size property of the <body> tag entry; see §31.8.1 Specifying CSS <body> tag
properties on page 606.

You can specify how many decimal places DITA2Go should use for CSS property values;
the default is two decimal places. Trailing zeros in property values are eliminated. For
example, if a value is computed to be 1.00em , in the CSS file the value appears as 1em.
Fractional values are rounded rather than truncated.

To specify units of measurement for font size and line height in CSS entries:
[CSS]
; CssFontUnits = units for font size and line heigh t, default 0:
; 0=pt, 1=pc, 2=in, 3=cm, 4=mm, 5=em, 6=ex (0.5em), 7=px (pixels), 8=%
CssFontUnits=0
; CssFontUnitDec = count of digits to right of deci mal in CSS font
; values: 0, 1, or 2, default 2. Trailing zeros a re trimmed.
CssFontUnitDec=0

To specify units of measurement for paragraph spacing, indentation, and margins:
[CSS]
; CssIndentUnits = units for para space and indents , default 0:
; 0=pt, 1=pc, 2=in, 3=cm, 4=mm, 5=em, 6=ex (0.5em), 7=px (pixels), 8=%
CssIndentUnits=0
; CssIndentUnitDec = count of digits to right of de cimal in CSS indent
; values: 0, 1, or 2, default 2. Trailing zeros a re trimmed.
CssIndentUnitDec=0
; CssIndentBaseSize = value used for computing perc ents for margin

CUSTOMIZING CSS PROPERTIES DITA2GO USER’S GUIDE

608 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; settings (para space above and below, and indent s) in .css file
CssIndentBaseSize=6
; CssIndentBaseUnit = units for CssIndentBaseSize, default 2 (in)
; 0=pt, 1=pc, 2=in, 3=cm, 4=mm, 7=px (pixels).
CssIndentBaseUnit=2

The base unit of measurement for computing margin settings should be an absolute unit,
not a relative unit.

See also:
§31.8.1 Specifying CSS <body> tag properties on page 606
§31.8.3 Overriding styles in DITA2Go-generated CSS files on page 608

31.8.3 Overriding styles in DITA2Go-generated CSS files

When you direct DITA2Go to generate a CSS file anew each time (that is, when
[CSS]WriteCssStylesheet=Always), styles are updated from the formats in your
document, and anything you added directly to the CSS file is lost. However, you can
include settings in the configuration file to modify the generated CSS file. With these
settings you can do any or all of the following:

See also:
§31.8.1 Specifying CSS <body> tag properties on page 606
§31.8.2 Specifying CSS size values and units of measurement on page 607

Override CSS
code

To override the style specification in a DITA2Go -generated CSS file for a particular
format, assign a property to the format, and optionally provide replacement code for the
style. For example:

[HTMLParaStyles] or [HTMLCharStyles]
; CSSReplace uses [ParaStyleCSS] or [CharStyleCSS] to specify
; on a single line the code to be written to the .c ss for the
; format when [HtmlOptions]WriteCssStylesheet = Alw ays or Once
; NoCSS suppresses writing info to the .css file fo r its format.
SomeFmt = CSSReplace
OtherFmt = NoCSS

When you assign property CSSReplace to a format, you must also specify replacement
CSS code for that format in section [ParaStyleCSS] for a paragraph format or
[CharStyleCSS] for a character format. The code assignment must be all on one line.
For example:

[ParaStyleCSS]
SomeFmt = p.somefmt {font: bold 12pt/14pt sans-serif}

Omit CSS code When you assign property NoCSS to a format, DITA2Go still generates the class attributes
in the HTML, but does not include them in the CSS file.

Add CSS code To add starting and ending code to a generated CSS file:
[CSSStartMacro]
; CSS code to be inserted at the start of the .css file if generated

[CSSEndMacro]
; CSS code to be inserted at the end of the .css fi le if generated

Override CSS code Replace generated CSS code with fixed CSS code for selected
formats.

Omit CSS code Prevent CSS code from being written to the CSS file for
selected formats.

Add CSS code Add code to the beginning or the end of the generated CSS
file.

31 SETTING UP CSS FOR HTML CUSTOMIZING CSS PROPERTIES

ALL RIGHTS RESERVED. MAY 19, 2013 609

You can use these macro configuration sections to add more CSS entries, perhaps with
selectors DITA2Go does not use; or add CSS code for positioning, or to set anchor
properties, or <body> properties, or special properties for nested items.

31.8.4 Adjusting leading (line spacing) in CSS

By default, DITA2Go includes line leading (spacing) information in the CSS file. In some
cases, this is not desirable; for example, it messes up printing in Netscape 4.x. You can
turn off line leading:

[HTMLOptions]
; UseCSSLeading = Yes (default) or No (omit linespa cing in CSS files)
UseCSSLeading=No

You might have to make some changes to your paragraph formats to get CSS to yield good
results, especially if you are trying to get those CSS results out of Netscape. For example,
Netscape does a poor job with margin bottom , but renders margin top , equivalent to
Space Above, reasonably well.

31.8.5 Preventing tags from overriding CSS properties

To keep tags from overriding CSS properties, use the following settings to
eliminate the tags entirely; these are the default values when UseCSS=Yes:

[HtmlOptions]
NoFonts=Yes
Basefont=No

See §31.4.1 Specifying CSS options in a DITA2Go configuration file on page 593.

CUSTOMIZING CSS PROPERTIES DITA2GO USER’S GUIDE

610 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 611

32 Including graphics in HTML

This section shows which graphic formats to use, and which configuration options to
specify, for appropriate image and equation display in HTML, XML, and HTML-based
Help. Topics include:

§32.1 Locating graphics files for HTML on page 611
§32.2 Specifying options for HTML graphics on page 612
§32.3 Omitting graphics from HTML output on page 613
§32.4 Selecting and modifying graphics on page 613
§32.5 Positioning graphics in HTML output on page 617
§32.6 Specifying HTML image attributes on page 619
§32.7 Providing (or omitting) alternate text for images on page 620
§32.8 Scaling images for HTML on page 620
§32.9 Creating image maps for HTML on page 622
§32.10 Supplying a background image or watermark on page 624

See also:
§40 Working with graphics on page 745

32.1 Locating graphics files for HTML
For standard HTML output to be viewed with a browser, you can place graphics files in
the same directory as the HTML files, or in any other directory relative to that directory.
For other HTML output types, graphics placement is restricted:

 • For HTML Help and OmniHelp, graphics must be located either in the same directory
as the HTML files, or in a subdirectory at any level below the directory containing the
HTML files.

 • For JavaHelp and Oracle Help, graphics must be located in a subdirectory of the
helpset directory, at the same level as the directory containing the HTML files.

Graphics in
directory with

HTML files

If graphics are in the same directory as the HTML files, references to those graphics via
 tags do not need a path component, and whatever path information is already
present in DITA must be removed.

To remove path information from graphics file names:
[Graphics]
; StripGraphPath = No (default)
; or Yes (remove path from referenced graphics)
StripGraphPath = Yes

When StripGraphPath=Yes , DITA2Go omits any path information from references in
generated tags.

Graphics in a
different directory

If graphics will be in a directory different from the directory for HTML files, you must
specify the path from the HTML files to the graphics directory, so DITA2Go can include
the path in the generated tags.

To specify where a browser (or Help viewer) should look for graphics:
[Graphics]
; GraphPath = path to use (replacing any previous) for all graphics
GraphPath = path/to/graphics/files

SPECIFYING OPTIONS FOR HTML GRAPHICS DITA2GO USER’S GUIDE

612 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

GraphPath specifies the location of graphics files relative to the location of HTML files.
For Web-hosted systems, GraphPath must be the path to the graphics on the Web server,
which might be different from the file path on the conversion system. Although you can
specify an absolute path, relative is almost always what you want.

Note: Absolute paths do not work if the graphics are on a UNIX server.

Default path The default value of GraphPath is the directory designated by
[Automation]WrapPath (see §44.6 Assembling files for distribution on page 792); if
WrapPath is not specified, the default is the project directory. For JavaHelp and Oracle
Help only, the default value of GraphPath is the directory designated by
[JavaHelpOptions]GraphSubdir , prefixed with “../ ”. See §20.3.6.2 Letting
DITA2Go set up the directory structure and copy files on page 389.

If you do not specify a value for GraphPath , the value of StripGraphPath determines
whether DITA2Go includes the original path from your DITA document, or no path at all,
in generated tags.

GraphPath does
not move files!

In HTML references to images, the GraphPath setting prefixes the path specified by
GraphPath to the name of each graphics file, in place of whatever other path was there in
your DITA document. This option sets the src attribute of the tags; it does not
change the location of the graphics files themselves. You must either copy the graphics
files to their specified location, or have DITA2Go copy them for you. See §44.7.1
Copying referenced graphics to a distribution directory on page 796.

See also:
§44.7 Placing graphics files for distribution on page 796
§18.3.9 Locating graphics files for HTML Help on page 318
§19.3.8 Getting OmniHelp supporting files in the right place on page 360
§20.3.6.3 Locating graphics files for JavaHelp and Oracle Help on page 391
§40.2.1.1 Specifying graphics location for HTML on page 747

32.2 Specifying options for HTML graphics
If some referenced graphics are already in a format appropriate for Web use, such as JPEG,
GIF, or PNG (see §40.1.4 Graphics formats for HTML on page 746) you do not have to
convert them.

Copy the graphics files into the project directory with the generated .htm files, or allow
DITA2Go to copy them for you to the wrap directory; see §32.1 Locating graphics files
for HTML on page 611. Unless you explicitly remap a name in the [GraphFiles]
section, or specify a GraphSuffix in the [Graphics] section, the graphic name is
always passed through unchanged.

If the original graphics are not in the same directory as the DITA files that reference them,
but they will be in the same directory as the generated HTML files, set the following
option also (see §32.1 Locating graphics files for HTML on page 611):

[Graphics]
StripGraphPath=Yes

If you have supplied replacements for referenced graphics that are in a different format,
and if the replacements have the same base names as the originals, you can specify just the
new file extension (see §40.2.1.2 Substituting graphics files for HTML on page 747):

[Graphics]
GraphSuffix=jpg

32 INCLUDING GRAPHICS IN HTML OMITTING GRAPHICS FROM HTML OUTPUT

ALL RIGHTS RESERVED. MAY 19, 2013 613

Use this setting when you convert referenced graphics with a third-party program; see
§4.4 Processing graphics on page 77.

If you have replaced some referenced graphics with others, and your graphics are in
several formats, such as mostly GIF plus some JPEG and some PNG, you can do the
following:

1. Identify the “main” format by specifying its file extension; for example:
[Graphics]
GraphSuffix=gif

2. Specify file extensions for the other formats as exceptions:
[GraphSuffix]
; old suffix = new suffix, overrides [Graphics]Grap hSuffix
; jpg=jpg leaves all .jpgs alone even if GraphSuf fix=gif
; wmf=png .wmfs are made into .pngs using a third-p arty tool
jpg=jpg
png=png

3. Specify file names with extensions for any individual exceptions (see §40.2.1.2
Substituting graphics files for HTML on page 747):

[GraphFiles]
newlogo.jpg=newlogo.gif

32.3 Omitting graphics from HTML output
To strip all graphics from your document so no tags or references to graphics are included
in HTML or XML code, substitute for the graphics a macro that does nothing:

[GraphReplaceMacros]
* = <$$nothing = 1>

The macro must have some content; a simple variable assignment produces no output. You
might also need the following setting to eliminate any anchor paragraphs for the graphics:

[Graphics]
GraphWrapPara = No

See also:
§32.4.2 Replacing or surrounding a graphic with macro code on page 615
§32.4.3 Omitting paragraph tags around graphics on page 616

32.4 Selecting and modifying graphics
In this section:

§32.4.1 Assigning properties to sets of graphics on page 613
§32.4.2 Replacing or surrounding a graphic with macro code on page 615
§32.4.3 Omitting paragraph tags around graphics on page 616

32.4.1 Assigning properties to sets of graphics

You can assign properties to, and override default configuration settings for, both
individual graphics and selected groups of graphics. The key in all these settings is the
GraphicID, which is the base name of an image file, without path or extension.

In this section:
§32.4.1.1 Using wildcards to assign properties to graphics on page 614

SELECTING AND MODIFYING GRAPHICS DITA2GO USER’S GUIDE

614 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

§32.4.1.2 Using PI markers to assign properties to graphics on page 614
§32.4.1.3 Specifying an image class for a graphic on page 615
§32.4.1.4 Creating named groups of graphics on page 615

32.4.1.1 Using wildcards to assign properties to g raphics

To apply a setting to a subset of all the graphics in your document, you can use ? or *
wildcards in GraphicIDs. To exclude a graphic, assign nothing to its GraphicID. For
example, to selectively scale images:

[GraphScale]
; Do not scale the following images:
aa568433=
ab00b5d3=
; Scale the following image to 75% of its original size:
ab123456=75
; Scale all other images in the chapter to 50%:
ab*=50
; Scale all remaining images in the book to 25%:
*=25

See also:
§3.6 Using wildcards in configuration settings on page 65.

32.4.1.2 Using PI markers to assign properties to graphics

You can use PI markers in your DITA document to assign a property to a single graphic or
to only a few graphics, or to exclude a graphic from a general assignment. Use either of
these PI marker types:

HTMConfig for
individual
graphics

Insert the HTMConfig PI marker in text before the graphic, and provide as marker content
the property assignment. For example, to scale a certain graphic to 75%, you could place
an HTMConfig PI marker just before the <image> tag, and specify the scale factor as the
PI marker content:

HTMConfig="[GraphScale]=75"

See §42.2.9.4 Overriding graphic properties for HTML on page 774.

HTML Macro for a
series of graphics

You can use PI markers of type HTML Macro to change the value of a macro variable just
before a graphic or series of graphics, then change it back again after the graphics. For
example, you could use HTML Macro PI markers and a macro variable to scale a series of
graphics to 75%.

Include in the configuration file a scale-factor setting that references a macro variable:
[GraphScale]
*=<$$scalepct>

Initialize the value of the macro variable:
[MacroVariables]
scalepct=100

In text just before the graphics to be scaled, insert an HTML Macro PI marker with content:
<$$scalepct=75>

Just after the graphics to be scaled, insert another HTML Macro PI marker with content:
<$$scalepct=100>

HTMConfig Content is [GraphSection]= Value

HTML Macro Content is any HTML code

32 INCLUDING GRAPHICS IN HTML SELECTING AND MODIFYING GRAPHICS

ALL RIGHTS RESERVED. MAY 19, 2013 615

See §37.3 Using macro variables on page 687.

32.4.1.3 Specifying an image class for a graphic

To assign a CSS class to the tag created for a graphic insert a GraphClass PI
marker in text preceding the graphic. Make the content of the marker the name of the
image class. See §38.3 Adding attributes with PI markers on page 721.

See also:

§32.6 Specifying HTML image attributes on page 619

32.4.1.4 Creating named groups of graphics

To apply the same settings to several graphics, you can create a graphics group by
assigning a common group name to the GraphicIDs (base file names) of the graphics in
question. For example:

[GraphGroup]
; Graphic ID = graphic group name, any name you wan t
ab01f853=schematic
ab012c13=schematic
aa568433=screenshot
ab00b5d3=screenshot

Once you have assigned a group name to one or more graphics, in any of the other
[Graph*] sections you can assign properties to the group name instead of to an
individual graphic file. The values you assign affect all graphics defined as belonging to
the named group, except any graphics to which you explicitly assign a different value.

For example, to avoid scaling screenshots, but reduce schematics in size:
[GraphScale]
; Do not scale images in the screenshot group:
screenshot=
; Scale schematics to 25% of their original size:
schematic=25

Another way to assign a graphic to a group is to insert an HTMConfig PI marker in text just
before the graphic in your DITA document, with content as follows:

HTMConfig="[GraphGroup]= graphicgroupname"

32.4.2 Replacing or surrounding a graphic with mac ro code

You can specify code to be included before, after, or in place of any graphic, or group of
graphics, by assigning a macro or HTML code to one or more graphic IDs. For example:

[GraphStartMacros]
; Graphic ID = text of macro to put before graphic
ax78ec24=<hr />

[GraphEndMacros]
; Graphic ID = text of macro to put after graphic
ax78ec24=<hr />

[GraphReplaceMacros]
; Graphic ID = text of macro to put instead of grap hic
aq*=<$Thumbnail>

When you specify a macro or other HTML code to replace a graphic, DITA2Go ignores
any preceding or following code or macro you assign to that same graphic in one of the
other [Graph*Macros] sections.

SELECTING AND MODIFYING GRAPHICS DITA2GO USER’S GUIDE

616 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To avoid having graphics wrapped in paragraph tags when you use
[GraphReplaceMacros] , see §32.4.3 Omitting paragraph tags around graphics on
page 616.

List exceptions by
graphic ID

If the macro should apply to all but a few images, you can list the images to exclude by
assigning nothing to their IDs; list the exceptions first. For example:

[GraphReplaceMacros]
aa12345=
aa23456=
*=<$YourMacro>

See §32.4.1.1 Using wildcards to assign properties to graphics on page 614.

Use predefined
macro variables

The macro definition (or HTML code) can include the following predefined macro
variables, which reference the graphics to which the code or macro is assigned:

If you assign code instead of a macro name, the code must be all on the same line.

Replace graphics
with thumbnails

To show each graphic in a smaller size (a “thumbnail”), for example, you could specify
something like the following (see §3.6 Using wildcards in configuration settings on
page 65):

[GraphReplaceMacros]
*=<$Thumbnail>

[Thumbnail]
<a href="<$$_graphsrc>"><img src="<$$_graphsrc>" wi dth="25%" />

For a way to provide thumbnails in the form of links to the graphics they replace, see
§27.8.3.2 Using thumbnails for links to illustrations in HTML on page 540.

View full-size
graphics on

demand

If you scale down high-resolution bitmap images, the scaled-down images might not show
clearly in HTML. You can make these images clickable in HTML, so the graphic can be
viewed full size. For example:

[GraphReplaceMacros]
aa4de33f=<$FullView>

[FullView]
<a href="<$$_graphsrc>" target="_blank"><img src="< $$_graphsrc>"
width="<$$_graphorigwide>" height="<$$_graphorighig h>" />

32.4.3 Omitting paragraph tags around graphics

By default, DITA2Go wraps each non-inline graphic in paragraph tags. If you are
replacing graphics with macro code (see §32.4.2 Replacing or surrounding a graphic with
macro code on page 615) or repositioning graphics in HTML or XML output, you might
need to eliminate the enclosing paragraph tags.

To omit paragraph tags around graphics:
[Graphics]
; GraphWrapPara = Yes (default, wrap graphics that are not inline in

<$$_graphbase> File name for attribute, without extension

<$$_graphsrc> File name for attribute, with extension

<$$_graphorighigh> Original image height in pixels, before any
[GraphScale] , [GraphHigh] , or [GraphWide]
setting is applied

<$$_graphorigwide> Original image width in pixels, before any
[GraphScale] , [GraphHigh] , or [GraphWide]
setting is applied

32 INCLUDING GRAPHICS IN HTML POSITIONING GRAPHICS IN HTML OUTPUT

ALL RIGHTS RESERVED. MAY 19, 2013 617

; paragraph tags) or No (eliminate wrapping tags)
GraphWrapPara = No

32.5 Positioning graphics in HTML output
HTML positioning attributes are not compatible with CSS; therefore, by default,
DITA2Go omits these attributes for HTML output. Use the positioning properties
available in format configuration files instead; see §7 Configuring output formats on
page 109.

In this section:
§32.5.1 Aligning anchored graphics on page 617
§32.5.2 Indenting images (deprecated) on page 617
§32.5.3 Adding space above an image on page 619
§32.5.4 Eliminating space above or below graphics in table cells on page 619

See also:
§32.4.3 Omitting paragraph tags around graphics on page 616

32.5.1 Aligning anchored graphics

When you use CSS, you can center graphics with DITA2Go macros. For example, to
center all images:

[GraphStartMacros]
* = <div class="img">

[GraphEndMacros]
* = </div>

See §32.4.2 Replacing or surrounding a graphic with macro code on page 615.

Include in CSS:
div.img {text-align: center; }

Or, if DITA2Go maintains CSS for your project (see §31.8.3 Overriding styles in
DITA2Go-generated CSS files on page 608):

[CSSEndMacro]
div.img {text-align: center; }

You have to use <div> because CSS applies text-align only to block elements, and
 is not a block element.

32.5.2 Indenting images (deprecated)

Best practice is to use CSS to indent images in HTML. The technique described in this
section should be used only if you cannot use CSS.

Note: This technique has been superseded by format configuration properties, which use
CSS; see §7 Configuring output formats on page 109.

DITA2Go can indent all non-inline graphics in HTML output using a technique invented
by Chuck Musciano

http://www.drdobbs.com/184411862

This technique consists of placing, at the start of the line that contains the graphic, a one-
pixel transparent GIF image, 1p.gif , with a width attribute that produces the required

http://www.drdobbs.com/184411862

POSITIONING GRAPHICS IN HTML OUTPUT DITA2GO USER’S GUIDE

618 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

indent in pixels. See §37.2.2 Modifying DITA2Go-supplied macro definitions on
page 685.

To use the built-in DITA2Go spacer graphic:
[HTMLOptions]
; UseSpacers = No (default)
; or Yes, use to position tables and graphics
UseSpacers = Yes

To use your own graphic as a spacer instead of the built-in graphic:
[HTMLOptions]
; WriteSpacerFile = No (default) or Yes, write file after conversion
WriteSpacerFile = Yes

When WriteSpacerFile=Yes , the default name of the indent spacer image file is
1p.gif ; you can specify a different name, or specify a different path:

[HTMLOptions]
; PixelSpacerImage = name of 1-pixel transparent GI F for spacing
PixelSpacerImage = 1p.gif

By default, DITA2Go writes the spacer image file to the project directory, and includes
references of the following form in your HTML output:

If you supply a path for PixelSpacerImage (for example, ./graphics/1p.gif),
DITA2Go writes the spacer image file to the specified path. Then DITA2Go generates
references of the form:

This can be important if you place graphics anywhere but the project directory (see §32.1
Locating graphics files for HTML on page 611).

Spacer alt
attribute

The spacer graphic must have an alt attribute for W3C validation. The default value for
the spacer alt attribute is [spacer] ; you can change this default:

[HTMLOptions]
; SpacerAlt = text to use for alt attribute for spa cer,
; default [spacer]
SpacerAlt = [spacer]

Left indent You can specify a custom indent for a single graphic or a graphics group; for example:
[GraphIndents]
; Graphic ID = number of pixels to indent using Pix elSpacerImage
; zero prevents indent, -1 is autoindent (default ac tion)
schematic = 30

See §32.4.1 Assigning properties to sets of graphics on page 613.

Right indent A similar method creates a space to the right of the image, except that the height
attribute of the spacer is set to match the height attribute of the image. This is useful for
run-in graphics, and for other floating types. For example:

[GraphRightSpacers]
; Graphic ID = number of pixels space on right usin g PixelSpacerImage
ch00b5d3 = 45

No indent If you do not want any graphics indented, use a wildcard setting, as follows:
[GraphIndents]
* = 0

See §3.6 Using wildcards in configuration settings on page 65.

32 INCLUDING GRAPHICS IN HTML SPECIFYING HTML IMAGE ATTRIBUTES

ALL RIGHTS RESERVED. MAY 19, 2013 619

32.5.3 Adding space above an image

If all the graphics in your document need the added space, dedicate a paragraph format to
anchoring graphics, and include the extra space in its definition. If you need to add space
to only one or a few graphics, use the Graphic ID; see §32.4.1 Assigning properties to sets
of graphics on page 613.

To add space using the paragraph containing the anchor (for example, GraphAnchor):
[HTMLParaStyles]
GraphAnchor = CodeBefore

[ParaStyleCodeBefore]
GraphAnchor =

This method adds space for every graphic whose frame is anchored in a GraphAnchor
paragraph.

See also:

§32.8.1 Excluding image size attributes from HTML on page 620

32.5.4 Eliminating space above or below graphics i n table cells

When you place an image in an anchored frame inside a table cell, properties of the anchor
paragraph can cause unwanted space to appear above or below the image.

To eliminate spacing caused by the anchor paragraph, give that paragraph a special format;
for example, CellPic; and assign CellPic the following properties:

[HTMLParaStyles]
CellPic = NoPara NoTags

See §30.2.4 Stripping paragraph properties on page 568.

32.6 Specifying HTML image attributes
You can specify attributes for the tag in either of the following ways:

Configuration-file settings
PI markers.

Configuration-file
settings

To specify tag attributes in the configuration file (for example):
[GraphAttr]
; Graphic file name (with or without extension) = d esired attributes
ch01f853.gif= usemap="#schematic" border="0"

To eliminate borders from all graphics:
[GraphAttr]
*= border="0"

 PI markers You can define a PI marker that has a name beginning with Graph and ending with the
name of a valid tag attribute (see §38.3 Adding attributes with PI markers on
page 721). The content of the marker becomes the value of the attribute for the next image
in your document. The PI marker overrides any configuration-file setting for the same
attribute for that image. See §42.2 Overriding settings with PI markers or macros on
page 766.

See also:

§32.8 Scaling images for HTML on page 620
§34.2 Applying WAI markup to images on page 650

PROVIDING (OR OMITTING) ALTERNATE TEXT FOR IMAGES DITA2GO USER’S GUIDE

620 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

32.7 Providing (or omitting) alternate text for im ages
Most current browsers display the content of the alt attribute of an tag only when
the image itself is not displayed.

Note: To show a text value in a tooltip when you move the pointer over an image, use
the title attribute instead.

By default, if you do not provide alt text for an image, DITA2Go includes an empty alt
value, to satisfy validators. To omit empty alt attribute values:

[Graphics]
; AllowEmptyAlt = Yes (default) or No, omit empty a lt attributes.
AllowEmptyAlt = No

You can specify a value for the tag alt attribute in any of the following ways:
Include the text in a paragraph
Insert the text with a PI marker
Assign the text to the graphic file.

Include the text in
a paragraph

To use a dedicated paragraph format for alternate text, place a paragraph containing the
text in your DITA document, just before the <image> tag, and assign the following
properties to the paragraph format:

[HTMLParaStyles]
AltParaFmt = Alt Delete

The Delete property prevents the alternate text from appearing as part of the HTML
output. See §34.2.2 Assigning WAI image attributes with dedicated formats on page 651.

To use a character format instead of a paragraph format to provide a value for the alt
attribute, assign it in [HTMLCharStyles] instead of in [HTMLParaStyles] .

Insert the text
with a PI marker

To provide alternate text with a PI marker, insert a PI marker of type GraphAlt in your
DITA document, just before the <image> tag. The content of the GraphAlt PI marker
becomes the value of the alt attribute for the next image. See §34.2.3 Assigning WAI
image attributes with PI markers on page 651 and §38.3 Adding attributes with PI markers
on page 721.

Assign the text to
the graphic file

To assign alternate text to the graphic file (for example):
[GraphALT]
; Graphic file name (with or without extension) = d esired alt text
ch01f853.gif = Schematic of tuner

32.8 Scaling images for HTML
In this section:

§32.8.1 Excluding image size attributes from HTML on page 620
§32.8.2 Adjusting image size for selected graphics on page 621
§32.8.3 Specifying px units for graphics sized in pixels on page 621

32.8.1 Excluding image size attributes from HTML

By default, DITA2Go includes image width and height attributes in HTML, XHTML,
DITA XML, and DocBook XML output, and excludes these attributes from generic XML
output.

To exclude image width and height attributes from HTML output:

32 INCLUDING GRAPHICS IN HTML SCALING IMAGES FOR HTML

ALL RIGHTS RESERVED. MAY 19, 2013 621

[Graphics]
; GraphScale = Yes (default) to put out width and h eight attributes,
; or No to eliminate them all (mainly for Generic X ML)
GraphScale = No

If you do not include any setting at all for GraphScale , you get the default for the output
type you specify.

Note: You get faster display in browsers if you keep the image width and height
attributes, because a browser can proceed with page layout without waiting for the
graphic file to arrive.

See also:
§23.3.2 Eliminating HTML attributes and tags for generic XML on page 452
§24.7.3 Omitting size attributes from images for DITA output on page 484
§26.7.3 Omitting size attributes from images for DocBook on page 521

32.8.2 Adjusting image size for selected graphics

 If necessary you can adjust the size of an image to do any of the following:
Preserve aspect ratio
Suppress scaling
Specify width and height separately.

Preserve aspect
ratio

To override both width and height of selected graphics, preserving the aspect ratio of each
image; for example, to 75% of the original size:

[GraphScale]
; Graphic ID = percent of original size to scale (b oth dimensions)
GraphID = 75

Suppress scaling To suppress scaling for selected graphics:
[GraphScale]
GraphID = 0

Setting the percent to zero suppresses scaling because DITA2Go does not write width and
height attributes that have zero values.

Specify width and
height separately

To override width and height separately for selected graphics, whether or not you use
[GraphScale] :

[GraphWide]
; Graphic ID = number of pixels wide, 0 to omit wid th attribute

[GraphHigh]
; Graphic ID = number of pixels high, 0 to omit hei ght attribute

However, be aware of the following issue with hard-coding the sizes of the graphics you
reference in HTML files: localized graphics sometimes have a different size, and hard-
coded sizes cause distortion.

32.8.3 Specifying px units for graphics sized in p ixels

By default, for all HTML and XML outputs except JavaHelp, DITA2Go adds a px suffix
to width and height attribute values for images sized in pixels. For example:

However, a px suffix causes the JavaHelp viewer to show an image as a thumbnail; so for
JavaHelp, the default is to omit the suffix. You can direct DITA2Go to omit the px suffix
for other output types.

CREATING IMAGE MAPS FOR HTML DITA2GO USER’S GUIDE

622 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To omit the px suffix from image width and height attribute values:
[Graphics]
; UsePxSuffix = Yes (default except for JavaHelp, i nclude "px" in the
; width and height attributes), or No (JavaHelp def ault)
UsePxSuffix = No

For DITA XML output, it is usually best to include the px suffix.

32.9 Creating image maps for HTML
In this section:

§32.9.1 Providing alternate text for a hotspot in an image map on page 622
§32.9.2 Specifying jumps from image maps in framesets on page 623

32.9.1 Providing alternate text for a hotspot in a n image map

You specify alternate text for an image-map hotspot via an attribute of the hotspot <area>
tag. The alternate text relates to the hotspot link destination. Unlike alternate text for the
 tag, you cannot specify alternate text for the <area> tag with a PI marker or a
paragraph format. And you might want to use the title attribute of the <area> tag
instead of the alt attribute.

In this section:
§32.9.1.1 Assigning alternate text to an image-map hotspot on page 622
§32.9.1.2 Using the title attribute for alternate text for a hotspot on page 623

32.9.1.1 Assigning alternate text to an image-map hotspot

To provide alternate text for a hotspot in an image map, assign the text to the destination of
the hotspot link. For example:

[GraphALT]
; destination or GraphicID#dest or URL dest = desir ed alt text
; a URL destination is the last part of the URL wit hout extension
; ch01f853#RFstage = Tuner first stage
; IFstage = Intermediate Frequency stage

The text you assign becomes the content of the alt attribute of the hotspot <area> tag,
unless you tell DITA2Go to use the title attribute instead; see §32.9.1.2 Using the title
attribute for alternate text for a hotspot on page 623.

The destination ID must be one of the following, depending on the type of link:

Link via
HyperLink

Suppose you use a HyperLink PI marker for an image-map link, with the following
marker content:

<?dthtm HyperLink="http://www.chezmoi.com/mylife.ht m" ?>

You would assign alternate text for the hotspot to destination identifier mylife , which is
the target file name (without path or extension):

Type of link Form of destination ID

Link via HyperLink: Base name of the destination HTML file, if the hotspot link is a
HyperLink PI marker

Link via HyperJump: HyperAnchor PI marker content, if the hotspot link is a
HyperJump PI marker

Multiple links: GraphicID followed by # followed by destination ID (one of the other
two), to distinguish among multiple links to the same destination

32 INCLUDING GRAPHICS IN HTML CREATING IMAGE MAPS FOR HTML

ALL RIGHTS RESERVED. MAY 19, 2013 623

[GraphALT
mylife = alternate text for hotspot

However, if the HyperLink PI marker content looks like this:
<?dthtm HyperLink="http://www.chezmoi.com/mylife.ht m#siblings" ?>

You would assign alternate text as follows:
[GraphALT
mylife#siblings = alternate text for hotspot

Link via
HyperJump

Suppose your image-map link is a HyperJump PI marker, with a destination in the same
document; for example:

<?dthtm HyperJump="awards.dita:firstplace" ?>

You would assign alternate text for the hotspot to destination identifier firstplace ,
which is the target HyperAnchor PI marker content:

[GraphALT
firstplace = alternate text for hotspot

Multiple links If you have several graphics with image-map links that all point to the same destination,
and you want different alternate text for one of them, prefix the destination identifier with
the file name of the graphic (no extension) and a #. For example:

[GraphALT
ab34e651#firstplace = different alternate text for hotspot

32.9.1.2 Using the title attribute for alternate t ext for a hotspot

When you provide alternate text for a hotspot in an image map, by default DITA2Go
assigns the text to the alt attribute of the hotspot <area> tag. Some browsers, notably
Internet Explorer, show the text in a tooltip when you mouse over the hotspot, whether the
text is assigned to the alt attribute or to the title attribute of the hotspot <area> tag.
Other browsers, notably Firefox, show the tooltip on mouse-over only if the text is
assigned to the title attribute of the hotspot <area> tag.

To have DITA2Go use the title attribute of the hotspot <area> tag instead of the alt
attribute for alternate text:

[Graphics]
; UseTitleForAlt = No (default) or Yes (use title a ttribute
; instead of alt for alternate text
UseTitleForAlt=Yes

When UseTitleForAlt=Yes , DITA2Go assigns any alt text you specify for hotspots
in image maps in the [GraphALT] section to the title attribute of the hotspot <area>
tag, and includes an empty alt attribute for W3C validation.

Note: If you use the [GraphALT] section to assign alternate text to tags (see
§32.7 Providing (or omitting) alternate text for images on page 620), that text gets
transferred to the tag title attribute, and you lose the content of the
 tag alt attribute.

UseTitleForAlt affects only alt content added for tags and hotspot <area>
tags in the [GraphALT] section, not alt content added for tags via PI markers or
via the [HTMLParaStyles] Alt property.

32.9.2 Specifying jumps from image maps in framese ts

If you are using the image map in a frameset, you can target jumps from the image map to
the frames you want in either of the following ways:

SUPPLYING A BACKGROUND IMAGE OR WATERMARK DITA2GO USER’S GUIDE

624 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • Associate the format in effect at the image map’s anchor (not the formats in the
individual hotspot text frames) with a particular frame in the [Targets] section (see
§22.13 Using framesets on page 443).

 • Associate the file to which the jumps are going with a frame name in the
[TargetFiles] section.

You can specify a default target for all jumps not otherwise associated with a frame:
[HTMLOptions]
; DefaultTarget = name of target to use
; for all jumps not otherwise set
;DefaultTarget=_top

32.10 Supplying a background image or watermark
To provide a background image or a watermark, you can assign values to <body>
attributes in the configuration file; for example:

[Attributes]
body= bgcolor="white" background=" yourimage.jpg"

If you are targeting only Internet Explorer (as for HTML Help), to keep the image from
scrolling with the text you could add:

... bgproperties="fixed"

All attributes and values must be on the same line, regardless of line length.

A better alternative would be to use CSS. There you could also specify that the image is to
be centered, not tiled, which is probably what you would want for a watermark:

body { background-color: white ;
 background-image: url(yourimage.jpg) ;
 background-repeat: no-repeat ;
 background-attachment: fixed ;
 background-position: center
}

or just:
body { background: white url(yourimage.jpg) no-repeat center fixed }

(No tables)
(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 625

33 Converting tables to HTML

Before employing the configuration settings described in this section:

 • To specify output formats and other options for DITA table types, see §6.9 Specifying
formats and options for tables on page 103.

 • To map DITA table elements to output formats, see §6.3.2 Mapping table outputclass
attributes to formats on page 90.

 • To define properties for each table format, see §7.7 Configuring table output formats
on page 129.

You might find that you can achieve exactly the appearance you want for tables in HTML
without any of the settings described here.

Topics include:
§33.1 Assigning properties to tables on page 625
§33.2 Defining sets of tables on page 626
§33.3 Specifying table structure on page 627
§33.4 Specifying table attributes on page 632
§33.5 Positioning tables, table titles, and table footnotes on page 640
§33.6 Using macros to control table properties on page 642
§33.7 Converting tables to paragraphs on page 647

DITA2Go supports WAI (Web Accessibility Initiative) markup for HTML tables; see:
§34 Generating WAI markup for HTML on page 649
§35 Identifying HTML table structure for WAI on page 657
§36 Marking HTML table cells for WAI on page 667

33.1 Assigning properties to tables
Start by specifying default values for properties of all tables in your document; then, if
necessary, override these default values for selected tables. You can set most default table
properties in the [Tables] and [Attributes] sections of the configuration file, though
a few settings for tables have no document-wide defaults.

Note: Attribute settings for tables, table rows, and table cells may be browser dependent;
those settings override any values generated by DITA2Go .

In this section:
§33.1.1 Understanding precedence of assignment methods on page 625
§33.1.2 Overriding default table and cell properties and attributes on page 626

33.1.1 Understanding precedence of assignment meth ods

Many settings for selected tables (and for table rows and cells) can be specified several
ways. Table 33-1 lists the assignment methods, in order of precedence. When you specify
a value for the same property in more than one way for a given table or cell, the value
specified by the method with the highest precedence is the value that takes effect in
HTML output. In some cases, multiple assignments of the same value result in duplicate
HTML code. When this happens, the assignment with the higher precedence takes effect,
because that assignment appears first in the output.

DEFINING SETS OF TABLES DITA2GO USER’S GUIDE

626 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

33.1.2 Overriding default table and cell propertie s and attributes

To override table structure properties, use settings in the [TableAccess] section; see
§33.3.2.6 Overriding row and column group settings on page 630.

To override table display attributes, use settings in the [TableAttributes] section; see
§33.4.2 Overriding attributes for selected tables on page 633.

To fine-tune properties for selected tables or cells, use PI markers or macros; see §33.4.4
Using PI markers to assign attributes to tables, rows, or cells on page 634 and §33.6 Using
macros to control table properties on page 642.

33.2 Defining sets of tables
You can set table-specific properties, and specify overrides to table defaults, according to
TableID (not recommended) or table group; or you can use wildcards to make any table-
specific setting apply to all or a subset of tables:

33.2.1 Creating table groups

You can assign group names to tables, and then apply properties to all tables in the group
with a single setting. Each table can belong to one table group. You can create table groups
two ways:

Create table groups in the configuration file
Create table groups with configuration PI markers.

Create table
groups in the

configuration file

To create table groups and assign tables to groups in the configuration file:
[TableGroup]
; TableID = group name used in other Table sections for ID
; the filter first looks for TableID, then group
TableID = tablegroupname

Table 33-1 Precedence of table and cell property assignment methods

Precedence Type Assignment method Ref.

Highest PI marker Content of Config or HTMConfig PI marker, or PI
marker whose name starts with Table, Row, or Cell
and ends with an attribute name

33.4.4

DITA2Go macro Code in [Table*Attributes] or
[Table*Macros]

33.6

Configuration
setting

Settings in [TableAccess] or
[TableAttributes]

33.3.2.6,
33.4.1

Configuration
setting

Settings in [Attributes] 33.4.1

Lowest Configuration
setting

Settings in [Tables] 33.3.2,
33.4.8

TableID: The value of the id attribute you have specified for the table
element in DITA.

Table group: A group of tables you define, using configuration PI markers or
TableIDs to specify group membership. See §33.2.1 Creating table
groups on page 626.

Wildcard set: An informal set of tables identified with wildcards. See §33.2.2
Using wildcards to specify table sets on page 627.

33 CONVERTING TABLES TO HTML SPECIFYING TABLE STRUCTURE

ALL RIGHTS RESERVED. MAY 19, 2013 627

Create table
groups with

configuration PI
markers

Another way to To create a table group, or assign tables to existing table groups, is to
insert configuration PI markers in the tables in your DITA document, with content as
follows:

[TableGroup]= tablegroupname

33.2.2 Using wildcards to specify table sets

You can specify an informal group of tables by using wildcards with partial TableID or
table-group names; see §3.6 Using wildcards in configuration settings on page 65.
DITA2Go uses the first entry in a section that matches for each table, so put the
exceptions before the general case. For example:

[TableAfterMacros]
af123456=
ac*=

*=

These settings would result in the following:

 • no spacing after table af123456

 • double spacing after all tables in groups that start with ac
 • single spacing after all other tables.

33.3 Specifying table structure
If the tables in your document are complex, you might need to specify which cells belong
to headers or footers. Also, you might want to specify whether DITA2Go should generate
any or all of the following HTML tags for your tables: <colgroup> , <th> , <thead> ,
<tfoot> , and <tbody> .

The settings described in this section apply to all tables in your document. You can
override them for selected tables with [TableAccess] settings; see §33.3.2.6 Overriding
row and column group settings on page 630 and §33.3.3.2 Specifying different header and
footer counts for selected tables on page 631.

In this section:
§33.3.1 Choosing the table structure model on page 627
§33.3.2 Identifying row and column groups and header cells on page 628
§33.3.3 Identifying table headers and footers on page 630

33.3.1 Choosing the table structure model

By default, DITA2Go converts tables to HTML using the HTML table model, and
converts tables to XML using the CALS table model. To specify the CALS table model
for HTML output:

[Tables]
; UseCALSModel = No (HTML default) or Yes (XML defa ult)
UseCALSModel = Yes

When UseCALSModel=Yes , DITA2Go uses the CALS table model to convert tables.
This is the default for generic XML, DocBook XML, and DITA XML.

When UseCALSModel=No, DITA2Go uses the HTML table model to convert tables. This
is the default for HTML and XHTML.

SPECIFYING TABLE STRUCTURE DITA2GO USER’S GUIDE

628 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

33.3.2 Identifying row and column groups and heade r cells

In this section:
§33.3.2.1 Using browser-dependent HTML tags for tables on page 628
§33.3.2.2 Designating table header cells on page 628
§33.3.2.3 Enumerating table column groups on page 628
§33.3.2.4 Wrapping table row groups on page 629
§33.3.2.5 Positioning table footer rows (deprecated) on page 629
§33.3.2.6 Overriding row and column group settings on page 630

33.3.2.1 Using browser-dependent HTML tags for tab les

Some browsers might not support some HTML tags for tables, such as <colgroup> ,
<th> , <thead> , <tfoot> , and <tbody> . By default, DITA2Go does not use these tags
when converting tables, because browsers that do not support them might crash, or might
not show the tables.

You can specify settings in the [Tables] section to direct DITA2Go to use these HTML
table tags. Table 33-2 shows the settings available. These settings apply to all tables in
your document. To override a setting for one or more tables, see §33.3.2.6 Overriding row
and column group settings on page 630.

33.3.2.2 Designating table header cells

The default for HTML tables generated by DITA2Go is not to use the <th> tag to
distinguish header cells from body cells. However, you can direct DITA2Go to identify
header cells:

[Tables]
; UseTbHeaderCode = No (default, always use <td...>)
; or Yes (use <th...>)
UseTbHeaderCode=No

If you specify UseTbHeaderCode=Yes , DITA2Go generates <th> elements for all
header cells in your tables.

33.3.2.3 Enumerating table column groups

To group table columns, table rows must be preceded by <colgroup> elements that
determine the extent of each group:

[Tables]
; ColGroupElements = No (default) or Yes (to put ou t <colgroup>
; elements before first table row; needed to enabl e scope="colgroup")
ColGroupElements=No

Table 33-2 Browser-dependent HTML tags for tables

[Tables] setting
Default
value Purpose

UseTbHeaderCode No Use <th> for header cells; default is to use <td> for all cells

ColGroupElements No List <colgroup> elements before first table row; enables scope=
"colgroup" , each ColGroup head starts a new <colgroup>

HeadFootBodyTags No Wrap table rows in <thead> , <tfoot> , and <tbody> groups;
enables scope="rowgroup" , each RowGroup head starts a
new <tbody>

33 CONVERTING TABLES TO HTML SPECIFYING TABLE STRUCTURE

ALL RIGHTS RESERVED. MAY 19, 2013 629

This setting is intended primarily to support WAI interpretation using the WAI scope
attribute; see §35 Identifying HTML table structure for WAI on page 657 for more
information. However, you can use this setting also to add CSS class attributes.

DITA2Go generates <colgroup> elements, but not <col> elements. The main use of
<col> is to give a column a class attribute, so you can apply column-specific formatting
(borders, shading) in CSS (see §31 Setting up CSS for HTML on page 591). To use
<col> elements, specify them in [TableStartMacros] (see §33.6.1 Invoking macros
around tables on page 642), and supply the needed attributes there. For example:

[TableStartMacros]
sometable=
<colgroup>
 <col span="2" class="LeftSide" />
</colgroup>
<colgroup>
 <col class="UnitPrice" />
 <col class="MinQty" />
</colgroup>

If you provide your own <colgroup> and <col> elements this way, either set
ColGroupElements=No (for all tables), or override ColGroupElements for those
tables where you supply these elements; see §33.3.2.6 Overriding row and column group
settings on page 630.

33.3.2.4 Wrapping table row groups

To group table rows, the rows must be wrapped in elements that distinguish header, footer,
and body rows, and that provide a way to group body rows. By default, DITA2Go wraps
table rows in groups.

To prevent DITA2Go from wrapping table row groups:
[Tables]
; HeadFootBodyTags = Yes (default, wrap table rows in <thead>,
; <tfoot>, and <tbody> groups, to enable scope="row group") or No
HeadFootBodyTags = No

Create header,
footer, and body

sections

When HeadFootBodyTags=Yes , DITA2Go wraps table rows with <thead> , <tbody> ,
and <tfoot> tags, as follows:

 • All rows that are included in the table header are wrapped in <thead>...</thead >.
 • All rows that are included in the table footer are wrapped in <tfoot>...</tfoot >.
 • All remaining rows are wrapped in <tbody>...</tbody >.

This is intended primarily to support WAI interpretation using the WAI scope attribute;
see §35 Identifying HTML table structure for WAI on page 657 for more information.
However, you can also use this setting also to add CSS class attributes.

33.3.2.5 Positioning table footer rows (deprecated)

W3C specifies that a <tfoot> element, if present, must immediately follow the <thead>
element, before any <tbody> elements; for more information, see:

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.3

By default, that is where DITA2Go puts <tfoot> elements in your HTML output. Any
compliant HTML 4.x or XHTML 1.x browser should support this positioning; require it,
even, and fail to display the table otherwise.

When HeadFootBodyTags=Yes (the default; see §33.3.2.4 Wrapping table row groups
on page 629), but you want to guarantee that, for some legacy viewers, table footers will

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.3

SPECIFYING TABLE STRUCTURE DITA2GO USER’S GUIDE

630 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

appear in HTML output at the bottom of your tables (even though this apparently flies in
the face of the W3C specification), you can also specify FootTagLast=Yes :

[Tables]
; FootTagLast = No (default, put after thead) or Ye s
FootTagLast=Yes

However, this setting is deprecated, and should not be needed for current browsers and
HTML viewers.

33.3.2.6 Overriding row and column group settings

You can override the default value of HeadFootBodyTags or ColGroupElements for
table groups:

[TableAccess]
; table ID = method list (overrides default in [Tab les])
; Can override HeadFootBodyTags with HFBTags, ColGr oupElements with
; CGElems.

You can prefix either setting with No to turn that setting off for selected tables. For
example:

[TableAccess]
aa123456=NoHFBTags
ac254360=HFBTags
Group5=HFBTags NoCGElems
FormatA=CGElems

You can turn these settings off if you are creating your own groups (especially for
ColGroupElements , essential if you want to add class attributes). If you turn off a
setting that is required by other settings, the presumption is that you are supplying the
attributes yourself another way, such as via macros or JavaScript.

For example, suppose you have specified ColGroupElements=Yes , but you want to
“roll your own” column groups for table aa123456 , and include CSS class attributes:

[TableStartMacros]
; table ID = text of macro to put after <table> tag before first <tr>
; This is where a set of custom <colgroup> elements would go.
aa123456=
<colgroup>
 <col class="FirstCol"></col>
 <col class="SecondCol"></col>
</colgroup>
<colgroup span="5" class="DataSet">
 <col class="DataFirstCol"></col>
 <col class="DataSecondCol"></col>
 <!-- three missing col tags get class DataSet -->
</colgroup>

You would also specify the following:
[TableAccess]
aa123456=NoCGElems

33.3.3 Identifying table headers and footers

To designate footer rows (a feature not present in DITA) for selected tables, see §6.9
Specifying formats and options for tables on page 103.

In this section:
§33.3.3.1 Specifying default header and footer counts for all tables on page 631

33 CONVERTING TABLES TO HTML SPECIFYING TABLE STRUCTURE

ALL RIGHTS RESERVED. MAY 19, 2013 631

§33.3.3.2 Specifying different header and footer counts for selected tables on
page 631

33.3.3.1 Specifying default header and footer coun ts for all tables

You can specify how many column-header rows, row-header columns, and footer rows the
tables in your document typically have. These settings are intended primarily to support
WAI interpretation; see §35 Identifying HTML table structure for WAI on page 657 for
more information. Table 33-3 shows the settings.

Use these settings to establish document-wide defaults for the number of columns in row
headers, the number of rows in column headers, and the number of rows in table footers.

[Tables]
; TableHeaderCols = count of cols in which to make td -> th,
; counting from left at the start of each row in t he table
TableHeaderCols=0
; TableHeaderRows = count of rows in which to make td -> th,
; counting from the top of the table
TableHeaderRows=0
; TableFooterRows = count of footer rows from botto m of the table,
; significant only when RowGroupIDs = Yes.
TableFooterRows=0

For example, if your tables typically have two DITA-defined header rows, and you want
the first body row in most of them to be considered a header row also, you would set
TableHeaderRows=3 . To designate cells in the first column as row headers, set
TableHeaderCols=1 .

Note: You need the TableHeaderRows and TableFooterRows settings only if some
header rows are misclassified as body rows in DITA. If you consistently use DITA
header (there is no DITA concept of footer) rows for the headers in your tables,
and you provide an @outputclass for rows to be treated as footer rows, you do
not need either of these settings. See §6.9 Specifying formats and options for
tables on page 103.

33.3.3.2 Specifying different header and footer co unts for selected tables

You can override the default number of header columns, header rows, or footer rows with
[TableAccess] settings; for example:

[TableAccess]
; table ID = method list (overrides default in [Tab les]); can
; include HColsN and HRowsN, where N is the number of cols or rows
; to make td -> th (overrides TableHeaderCols and T ableHeaderRows),
; and FRowsN to override TableFooterRows.

Table 33-3 Default counts of table header rows/columns and footer rows

[Tables] setting
Default
value

[TableAccess]
override Purpose

TableHeaderCols 0 HCols N Number of columns (counting from the left)
to use for row headers

TableHeaderRows 0 HRows N Number of rows (counting from the top) to
use for column headers,

TableFooterRows 0 FRows N Number of rows (counting from the bottom)
to treat as footer rows for row-grouping
purposes, significant only when
HeadFootBodyTags=Yes

SPECIFYING TABLE ATTRIBUTES DITA2GO USER’S GUIDE

632 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

aa132446=HCols1
aa133564=HCols2 HRows3 FRows2
FormatA=FRows1

These [TableAccess] settings have the following effects:

You could use these settings to specify the structure of every table in your document.
However, if all or most of the tables in your document happen to need HCols1 (for
example), it is easier to specify [Tables]TableHeaderCols=1 , and use the
[TableAccess] settings only for exceptions.

If [Tables]UseTbHeaderCode=No (the default setting), even if you specify HCols N or
HRowsN, the affected cells are tagged <td> instead of <th> ; however, all DITA2Go
settings for header cells work just as though the cells were tagged <th> .

33.4 Specifying table attributes
You can exclude auto-generated attributes from HTML or XML output, and have
DITA2Go include only those for which you specify explicit values.

In this section:
§33.4.1 Specifying attributes for all tables on page 632
§33.4.2 Overriding attributes for selected tables on page 633
§33.4.3 Assigning a CSS class to a table on page 633
§33.4.4 Using PI markers to assign attributes to tables, rows, or cells on page 634
§33.4.5 Specifying attributes for table rows on page 634
§33.4.6 Specifying attributes for table cells on page 635
§33.4.8 Adjusting borders, cell spacing, and cell padding on page 636
§33.4.9 Determining the width of table columns on page 638
§33.4.10 Deciding what to do with empty paragraphs in table cells on page 640

See also:
§33.1.1 Understanding precedence of assignment methods on page 625
§33.6.5 Specifying row-group, row, and cell attributes with macros on page 644

33.4.1 Specifying attributes for all tables

You can specify default HTML attributes for most table-related tags, although values for
some attributes might not be recognized by some browsers.

To specify default attributes for all tables:
[Attributes]
; HTML element = attributes (macro) to set

HCols N Treats cells in the first N columns (counting from the left) as row
headers; tags the cells <th> if [Tables]UseTbHeaderCode=Yes .
See §33.3.2.2 Designating table header cells on page 628).

HRowsN Treats cells in the first N rows (counting from the top) as column
headers; tags the cells <th> if [Tables]UseTbHeaderCode=Yes .
See §33.3.2.3 Enumerating table column groups on page 628).

FRowsN Treats the last N rows (counting from the bottom) as footer rows;
wraps them in a <tfoot> ...</tfoot> element if
[Tables]HeadFootBodyTags=Yes .
See §33.3.2.4 Wrapping table row groups on page 629).

33 CONVERTING TABLES TO HTML SPECIFYING TABLE ATTRIBUTES

ALL RIGHTS RESERVED. MAY 19, 2013 633

You can specify attributes here for the following tags: body , table , tr , td , th , thead ,
tfoot , and tbody . For example:

[Attributes]
table= rules="rows"
th= align="left" bgcolor="yellow"
td= valign="top"

List all attributes for a given tag on one line, even if that line is very long. Also see §33.6.5
Specifying row-group, row, and cell attributes with macros on page 644.

No border,
cellspacing, or

cellpadding

If you list attributes for the <table> tag, do not include border , cellspacing , or
cellpadding ; if you do, DITA2Go writes duplicate assignments for any of these you
specify in [Attributes] . Use one of the following instead:

 • Settings in the [Tables] section; see §33.4.8 Adjusting borders, cell spacing, and
cell padding on page 636.

 • Attributes in the [TableAttributes] section; see §33.4.2 Overriding attributes for
selected tables on page 633.

Also see §33.4.8.2 Taming border, cellspacing, and cellpadding settings on page 637.

33.4.2 Overriding attributes for selected tables

To specify HTML <table> attributes for a single table or a group of tables:
[TableAttributes]
; Table ID = text (macro) to put inside table eleme nt, overrides
; settings in [Tables] for Border, Spacing, and Pad ding, and
; [Attributes] for table
SomeTable = attribute=" value"

On the left of the = sign you can specify a TableID or a table group name, and you can use
wildcards in the name. See §33.2.1 Creating table groups on page 626.

On the right of the = sign you can include any arbitrary HTML, even macros (see §37
Working with macros on page 679) and JavaScript (perhaps something like
onmouseover="javascript: dosomething(now)"). Just keep it all on the same
line.

For example, for cell borders, rather than use a global setting for all tables (as you would
in the [Tables] section or in the [Attributes] section), you can set the borders based
on the table format name:

[TableAttributes]
FormatA= border="0" cellspacing="2" cellpadding="1"

Values you specify in the [TableAttributes] section override corresponding settings
in the [Tables] section, and also override any attributes you assign to the table
element in the [Attributes] section. However, see §33.4.8.2 Taming border,
cellspacing, and cellpadding settings on page 637 for special constraints on specifying
values for border , cellspacing , and cellpadding .

See also:
§33.1.1 Understanding precedence of assignment methods on page 625

33.4.3 Assigning a CSS class to a table

The default CSS class for a table is the table @outputclass ; failing that, the table format
name. To assign a different class:

[TableClasses]
; Table format name = class to use (default is base d on name)

SPECIFYING TABLE ATTRIBUTES DITA2GO USER’S GUIDE

634 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; For XML, the class is used as the tag name by def ault.
TableFormatName = classname

You could also use the [TableAttributes] section to assign a different class name to
one or more tables. However, that method is deprecated, and does not connect to format
definitions in a table-format configuration file.

See also:
§7.7 Configuring table output formats on page 129
§31.7.4 Assigning CSS classes to table formats on page 603

33.4.4 Using PI markers to assign attributes to ta bles, rows, or cells

If you give a PI marker type a name that starts with Table , Row, or Cell , DITA2Go uses
the content of the marker for the value of whatever HTML attribute is designated by the
rest of the PI marker-type name, and puts the attribute and its value in the generated
<table> , <th> , <tr> , or <td> tag. An attribute value assigned with a PI marker takes
precedence over values of the same attribute assigned any other way; see Table 33-1 on
page 626.

For example, to guarantee that a certain table cell is top-aligned in HTML regardless of its
properties in DITA or any properties assigned in the configuration file, you could insert a
PI marker of type CellValign just before the cell in DITA, and make the content of that
marker top . In HTML, the resulting tag for that cell would be <td valign="top"> .

See also:
§34.1.3 Inserting PI markers for WAI attributes on page 650
§38.3 Adding attributes with PI markers on page 721

33.4.5 Specifying attributes for table rows

You can specify attributes for the <tr> element with any of the following:
Paragraph format
Table format
Attribute PI marker.

See also:
§33.6.5 Specifying row-group, row, and cell attributes with macros on page 644.

Paragraph format To specify row attributes based on the paragraph format of the content of cells in the row,
you can use settings such as the following:

[HTMLParaStyles]
; RowAttribute inserts the contents of [StyleRowAtt ribute] into the
; start tag of the enclosing table row (ignored outs ide tables).
CellBody2 = RowAttribute

[StyleRowAttribute]
; doc style = attribute to insert in enclosing tabl e row start tag,
; used in addition to other row attributes given und er [Table...]
CellBody2 = bgcolor="yellow"

These settings would assign background color yellow to every row that contains a
CellBody2 paragraph, in every table. To apply the settings only to some tables, you can turn
these settings on and off around specific tables; see §42.2.9.1 Overriding paragraph and
character format properties on page 771.

Table format To base row attributes on the table format:

33 CONVERTING TABLES TO HTML SPECIFYING TABLE ATTRIBUTES

ALL RIGHTS RESERVED. MAY 19, 2013 635

[TableRowAttributes]
FormatA = bgcolor="yellow"

This setting assigns background color yellow to every row in every FormatA table. See
§33.6.5 Specifying row-group, row, and cell attributes with macros on page 644.

You can use a macro for the assignment in [TableRowAttributes] .

Attribute PI
marker

To assign an attribute to an individual row, place a PI marker of type RowAttr inside the
cell, where Attr is the name of the attribute. The marker content is just the attribute value,
without quotes. For example, to assign a class to an individual row, place a PI marker of
type RowClass inside any cell in the row. See §38.3 Adding attributes with PI markers on
page 721.

33.4.6 Specifying attributes for table cells

To specify attributes for the <td> and <th> elements, you can use any of the following:
Paragraph format
Table format
Attribute PI marker.

Also see §33.6.5 Specifying row-group, row, and cell attributes with macros on page 644.

Paragraph format If all the cells to which you want to assign a particular attribute or set of attributes contain
text in a particular paragraph format, for example CellBody, you can use settings such as
the following:

[HTMLParaStyles]
; CellAttribute inserts the contents of [StyleCellA ttribute] into
; the start tag of the enclosing table cell (ignored outside tables).
CellBody = CellAttribute

[StyleCellAttribute]
; doc style = attribute to insert in enclosing tabl e cell start tag,
; used in addition to other cell attributes given under [Table...]
CellBody = class="mycellstyle"

See §35.2.2.2 Assigning WAI attributes to paragraph formats on page 662. You can use a
macro for the assignment in [StyleCellAttribute] .

Table format To base cell attributes on the table format:
[TableCellAttributes]
FormatA = class="mycellstyle"

See §33.6.5 Specifying row-group, row, and cell attributes with macros on page 644. You
can use a macro for the assignment in [TableCellAttributes] .

Attribute PI
marker

To specify attributes for an individual cell, place a PI marker of type CellAttr inside the
cell, where Attr is the name of the attribute. The marker content is just the attribute value,
without quotes. For example, to assign a CSS class to an individual row, place a PI marker
of type CellClass inside the cell, and make the marker content the name of the class. See
§38.3 Adding attributes with PI markers on page 721.

33.4.7 Eliminating automatically generated attribu tes

DITA2Go automatically generates the following attributes for tables in HTML (but not
XML):

border , cellspacing , cellpadding

align , valign

bgcolor

SPECIFYING TABLE ATTRIBUTES DITA2GO USER’S GUIDE

636 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

You might not want these automatically generated attributes in HTML output, especially if
you are using CSS to control table appearance.

To exclude automatically generated attributes from HTML output, while preserving any of
the same attributes you specify explicitly in the configuration file or in markers:

[Tables]
; TableAttributes = Yes (default for HTML) or No (d efault for XML)
TableAttributes=No
; CellAlignAttributes = Yes (default for HTML) or N o (default for XML)
CellAlignAttributes=No
; CellColorAttributes = Yes (default for HTML) or N o (default for XML)
CellColorAttributes=No

border,
cellspacing,
cellpadding

When TableAttributes=No , automatically generated border , cellspacing , and
cellpadding attributes are excluded from HTML output; see §33.4.8.3 Excluding
border, cellspacing, and cellpadding attributes on page 638.

align, valign When CellAlignAttributes=No , automatically generated align and valign
attributes based on FrameMaker table properties are excluded from HTML output.

bgcolor When CellColorAttributes=No , automatically generated bgcolor attributes based
on FrameMaker table properties are excluded from HTML output.

Excluded from
XML output

If you are generating XML, by default DITA2Go excludes these automatically generated
attributes; however, DITA2Go still includes any of these attributes that you specify
explicitly in markers or in either of the following sections:

 • [Attributes] ; see §33.4.1 Specifying attributes for all tables on page 632)
 • [TableAttributes] ; see §33.4.2 Overriding attributes for selected tables on

page 633.

See §23.1 Setting up a generic XML project on page 449 and §23.3.2 Eliminating HTML
attributes and tags for generic XML on page 452.

33.4.8 Adjusting borders, cell spacing, and cell p adding

Unless you change their values in a configuration file, the automatically generated default
values for table borders, cell spacing, and cell padding are as follows:

<table border="3" cellpadding="6" cellspacing="2">

These values are specified in pixels.

In this section:
§33.4.8.1 Specifying default border, cellspacing, and cellpadding values on page 636
§33.4.8.2 Taming border, cellspacing, and cellpadding settings on page 637
§33.4.8.3 Excluding border, cellspacing, and cellpadding attributes on page 638

33.4.8.1 Specifying default border, cellspacing, a nd cellpadding values

To change the default border , cellspacing , and cellpadding values for all tables:
[Tables]
; Border, Spacing and Padding defaults for full tab le
Border=3
Spacing=2
Padding=6

The values for Border , Spacing , and Padding specified here become the values for
HTML <table> attributes border , cellspacing , and cellpadding , respectively.

33 CONVERTING TABLES TO HTML SPECIFYING TABLE ATTRIBUTES

ALL RIGHTS RESERVED. MAY 19, 2013 637

See also:
§33.4.8.2 Taming border, cellspacing, and cellpadding settings on page 637
§33.4.8.3 Excluding border, cellspacing, and cellpadding attributes on page 638

33.4.8.2 Taming border, cellspacing, and cellpaddi ng settings

You can specify values for border , cellspacing , and cellpadding in any of these
sections:

[Tables]
[Attributes]
[TableAttributes]

However, if you specify values in more than one section for the same attribute (that is,
values that apply to the same set of tables) you might get:

Duplicate attribute values
Missing attribute values.

Duplicate
attribute values

If you specify table border , cellspacing , or cellpadding values in the
[Attributes] section, DITA2Go also includes the Border , Spacing , and Padding
settings in the [Tables] section, resulting in duplicate assignments, which are not valid
HTML. For these attributes, use only the [Tables] section.

Missing attribute
values

If you specify border , cellspacing , or cellpadding values for a table or group of
tables in [TableAttributes] , even if what you list in [TableAttributes] does
not include any corresponding attributes, for that group of tables DITA2Go ignores all of
the following:

 • the Border , Spacing , and Padding settings (if any) in [Tables]

 • any border , cellspacing , or cellpadding values in [Attributes] .

This means that if you set any of border , cellspacing , or cellpadding in the
[TableAttributes] section, you must set them all; the entry in [TableAttributes]
replaces all three. If you set border="0" and you want any cell padding or cell spacing,
in the same [TableAttributes] entry you must specify greater-than-zero values for
cellspacing and cellpadding . If you omit an attribute, DITA2Go writes no value at
all for that attribute, in which case the browser default would apply.

For example, if you specify:
[Tables]
Border=0
Spacing=3
Padding=6

[Attributes]
table= cellspacing="2"

For every table you would get a duplicate assignment for cellspacing :
<table border="0" cellspacing="3" cellpadding="6" c ellspacing="2">

Then if you also specify:
[TableAttributes]
FormatA= border="2"

For FormatA tables you would get only a border value:
<table border="2">

SPECIFYING TABLE ATTRIBUTES DITA2GO USER’S GUIDE

638 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

33.4.8.3 Excluding border, cellspacing, and cellpa dding attributes

To exclude from HTML or XML output the automatically generated border ,
cellspacing , and cellpadding attributes:

[Tables]
; TableAttributes = Yes (HTML default, to allow abo ve values), or
; No (XML default, to exclude those while keeping a ny attributes
; explicitly added in the .ini or in PI markers).
TableAttributes=No

When TableAttributes=No , automatically generated border , cellspacing , and
cellpadding attributes (in the [Tables] section) are excluded from HTML or XML
output. However, DITA2Go includes any values you specify for these attributes in PI
markers or in the following sections:

 • [Attributes] ; see §33.4.1 Specifying attributes for all tables on page 632
 • [TableAttributes] ; see §33.4.2 Overriding attributes for selected tables on

page 633.

See also:
§33.4.8.1 Specifying default border, cellspacing, and cellpadding values on page 636
§33.4.8.2 Taming border, cellspacing, and cellpadding settings on page 637

33.4.9 Determining the width of table columns

The DITA table element is based on the OASIS model, which does not really provide a
way to specify overall table size; all you get is @pgwide, which for XHTML means
nothing at all. The colspec element has @colwidth , which “describes the column
width”. For the simpletable element, DITA provides only @relcolwidth , with its odd
n* method of setting percentages. Your best bet is to use CSS syntax and semantics for
column “width”.

By default, table columns are adaptively sized in HTML output. You can specify a
different sizing method in the configuration file. You can also override the default sizing
method for particular tables.

In this section:
§33.4.9.1 Specifying a method for determining table column widths on page 638
§33.4.9.2 Overriding the default table column sizing method on page 639
§33.4.9.3 Maintaining the width of table columns via relative sizing on page 639

33.4.9.1 Specifying a method for determining table column widths

To specify a default sizing method for columns in all tables:
[Tables]
; TableSizing = Adaptive, Fixed (pixels), or Percen t (of table)
TableSizing = Adaptive

Adaptive table sizing resizes columns individually to fit content; this is the default setting.
However, if your document includes a series of tables on related subjects, you might want
those tables to have a consistent look. Relative table sizing adjusts columns proportionally
to fit the browser window. Fixed table sizing also maintains relative column widths, but
does not adjust them to fit the browser window.

This setting affects the width attribute of table cells; it does not affect attributes of the
<table> element itself. To override the default sizing method for particular table groups,
see §33.4.9.2 Overriding the default table column sizing method on page 639.

33 CONVERTING TABLES TO HTML SPECIFYING TABLE ATTRIBUTES

ALL RIGHTS RESERVED. MAY 19, 2013 639

Adaptive table
sizing

When TableSizing=Adaptive (the default), DITA2Go does not automatically
generate any width attribute for table cells, so columns are resized to fit content. This
setting is best, unless you have a compelling reason to specify Fixed or Percent .

Relative table
sizing

When TableSizing=Percent , DITA2Go computes the width of each column as a
percent of the table width and gives each table cell a width attribute with a value
expressed as a percent of the full table width. See §33.4.9.3 Maintaining the width of table
columns via relative sizing on page 639.

Fixed table sizing When TableSizing=Fixed , DITA2Go gives each table cell a width attribute with a
value expressed in pixels. This method might require users to scroll horizontally to see the
whole table.

33.4.9.2 Overriding the default table column sizin g method

To override the default table sizing method for selected table groups:
[TableSizing]
; table ID = type of sizing: Adaptive (default), Fi xed (pixels),
; Percent
TableID = Adaptive

This setting overrides the default method specified by [Tables]TableSizing ; see
§33.4.9.1 Specifying a method for determining table column widths on page 638.

33.4.9.3 Maintaining the width of table columns vi a relative sizing

You can specify relative column widths for a table to override the widths specified in your
DITA document, or if no widths are specified in DITA. Otherwise, use one of the settings
described in §33.4.9.1 Specifying a method for determining table column widths on
page 638, such as:

[Tables]
TableSizing = Percent

Suppose you have specified the following settings as defaults for all tables in your
document:

[Tables]
TableSizing = Adaptive
Border = 1
Spacing = 0
Padding = 4

And suppose for one particular table format, TwoCol, you want relative column widths:
[TableSizing]
TwoCol = Percent

This setting would make the width of each column in each TwoCol table a percent of the
width of that particular table; but the setting would not specify the percentage.

If what you really want is for each TwoCol table to have columns of equal width, instead
you would specify:

[TableCellAttributes]
TwoCol = width="50%"

Naturally, this setting works only if all TwoCol tables have exactly two columns.

To set the width of the table itself, you could add:
[TableAttributes]
TwoCol = width="100%"

POSITIONING TABLES, TABLE TITLES, AND TABLE FOOTNOTES DITA2GO USER’S GUIDE

640 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

This setting would eliminate your [Tables] settings for border , cellpadding , and
cellspacing ; so you would have to add them to the attribute list for TwoCol tables:

[TableAttributes]
TwoCol = width="100%" border="1" cellpadding="4" ce llspacing="0"

See §33.4.2 Overriding attributes for selected tables on page 633.

33.4.10 Deciding what to do with empty paragraphs in table cells

Browsers neither shade nor apply borders to table cells that are empty, or that contain only
tags but no content. By default, DITA2Go adds a single nonbreaking space between the
opening and closing tags of each otherwise empty table-cell paragraph. This is appropriate
for HTML and generic XML, but not for DITA XML or DocBook XML.

You can have DITA2Go do any of the following:
Omit empty paragraph tags
Provide content for empty paragraphs
Retain empty paragraph tags.

Omit empty
paragraph tags

To omit empty paragraphs from table cells:
[Tables]
; RemoveEmptyTableParagraphs = No (default)
; or Yes (DITA/DocBook default)
RemoveEmptyTableParagraphs = Yes

When RemoveEmptyTableParagraphs=Yes , paragraph tags are omitted for empty
paragraphs in table cells (except for preformatted text, where tags are always preserved).
If a table cell is blank in DITA (contains only empty elements) in HTML output that cell
would consist of only <td></td> .

When RemoveEmptyTableParagraphs=No , the tags for empty elements are retained in
table cells.

Provide content
for empty

paragraphs

To specify text content for otherwise empty elements in table cells:
[Tables]
; EmptyTbCellContent = string to put in otherwise e mpty paragraphs
; in table cells
EmptyTbCellContent =

The default value for EmptyTbCellContent is a single nonbreaking space: .

Retain empty
paragraph tags

To retain paragraph tags but omit text content for empty elements in table cells:
[Tables]
RemoveEmptyTableParagraphs = No
EmptyTbCellContent =

When RemoveEmptyTableParagraphs=Yes , EmptyTbCellContent has no effect.

33.5 Positioning tables, table titles, and table f ootnotes
In this section:

§33.5.1 Indenting tables (deprecated) on page 641
§33.5.2 Configuring and positioning table titles on page 641
§33.5.3 Positioning table footnotes on page 642

33 CONVERTING TABLES TO HTML POSITIONING TABLES, TABLE TITLES, AND TABLE FOOTNOTES

ALL RIGHTS RESERVED. MAY 19, 2013 641

33.5.1 Indenting tables (deprecated)

Best practice is to use CSS to indent tables in HTML. The technique described in this
section should be used only if you cannot use CSS.

Note: This technique has been superseded by format configuration properties, which use
CSS; see §7 Configuring output formats on page 109.

Because there is no indent attribute for tables in HTML, DITA2Go places a spacer graphic
just before the table; see §32.5.2 Indenting images (deprecated) on page 617.

To use the spacer graphic:
[HTMLOptions]
; UseSpacers = No (default)
; or Yes, use to position tables and graphics
UseSpacers = Yes

See §32.5.2 Indenting images (deprecated) on page 617.

To specify the width of the spacer graphic:
[Tables]
; TableIndents=-1 (based on indent in FM), 0 (none) , or count of
; pixels; overridden for particular tables and group s in
; [TableIndents] section
TableIndents = -1

When TableIndents=-1 (the default), tables are indented the same as in your
FrameMaker document.

When TableIndents=0 , tables are not indented.

When TableIndents= n, where n is a positive integer, tables are indented n pixels.

To override this setting for a particular table or table group:
[TableIndents]
; TableID = number of pixels to indent using PixelS pacerImage
; zero prevents indent, -1 is autoindent (default a ction)
; overrides default set in [Tables]TableIndents for its table or group

For example, to indent table af123456 by 60 pixels, and prevent any tables in file ag
from being indented:

[TableIndents]
af123456=60
ag*=0

33.5.2 Configuring and positioning table titles

To specify use and placement of table titles in HTML or XML output:
[Tables]
; TableTitles = 0 to leave alone, 1 to put at top, 2 to put at bottom
TableTitles = 0
; UseInformaltableTag = No (default) or Yes (use wh en there is no
; table caption, as in DocBook)
UseInformaltableTag = No
; InternalTableCaption = Yes (default) or No (put o utside table)
InternalTableCaption = Yes
; TableCaptionTag = tag for internal table captions , default "caption"
TableCaptionTag = caption

Some browsers do not like the <caption> tag inside the <table> tags. To satisfy those
browsers, specify InternalTableCaption=No .

USING MACROS TO CONTROL TABLE PROPERTIES DITA2GO USER’S GUIDE

642 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

33.5.3 Positioning table footnotes

Table footnotes are handled in the same stream as text footnotes, instead of appearing at
the end of the table. If you must keep table footnotes with the table, either make the table a
file of its own (by splitting before and after it), or use cross references to simulate table
footnotes.

To specify placement of footnotes:
[Tables]
; TableFootnotesWithTable = No (default) or Yes (pu t after separator)
TableFootnotesWithTable=No
; TableFootnoteSeparator = macro between table end tag and footnotes
;TableFootnoteSeparator=

See also:
§30.10.1 Configuring and placing footnotes on page 582
§31.7.5 Assigning CSS classes to text and table footnotes on page 603.

33.6 Using macros to control table properties
You can fine-tune table appearance with settings that insert HTML code in precise
locations in and around tables. This is a good place to use DITA2Go macros (see §37.9.4
Assigning macros to graphics or tables for HTML on page 713). You can even use macros
to wrap a table in another table, to get special effects.

In this section
§33.6.1 Invoking macros around tables on page 642
§33.6.2 Adding space before tables on page 643
§33.6.3 Adjusting space after tables on page 643
§33.6.4 Turning processing on and off around selected tables on page 643
§33.6.5 Specifying row-group, row, and cell attributes with macros on page 644
§33.6.6 Capturing table row and column counts with variables on page 645
§33.6.7 Selectively modifying table text with macros: an example on page 645

33.6.1 Invoking macros around tables

You can specify macros to be invoked before, after, or in place of any table or group of
tables, by assigning macros to a TableID in one of the [Table*Macros] sections:

[TableBeforeMacros]
; TableID = macro to put before table start, top ti tle or indent

[TableStartMacros]
; TableID = macro to put after <table> tag before f irst <tr>
; This is where a set of custom <colgroup> elements would go.

[TableReplaceMacros]
; TableID = macro to use in place of table (and tit le and indent)

[TableEndMacros]
; TableID = macro to put just before </table>

[TableAfterMacros]
; TableID = macro to put after table end or bottom title

When you specify a macro or other HTML code to replace a table, any Before, Start, End,
or After code or macro you assigned to that table in one of the other [Table...Macros]
sections is not used.

33 CONVERTING TABLES TO HTML USING MACROS TO CONTROL TABLE PROPERTIES

ALL RIGHTS RESERVED. MAY 19, 2013 643

33.6.2 Adding space before tables

To add space before all tables:
[TableBeforeMacros]
*=

To add space before a specific table, use its TableID (see §33.2 Defining sets of tables on
page 626); for example:

[TableBeforeMacros]
ae1001207=

DITA2Go checks section [TableBeforeMacros] and uses the first rule that applies to
the current table. This allows you to make exceptions. For example:

[TableBeforeMacros]
ae123456=

InLine=
*=

These settings would result in the following:

 • double spacing before the table with TableID ae123456

 • no spacing before any table with format InLine

 • single spacing before all other tables.

See §33.6.1 Invoking macros around tables on page 642.

33.6.3 Adjusting space after tables

You can use this setting to add space after all tables:
[TableAfterMacros]
*=

Or, you can use more specific wildcards or full TableIDs to adjust space in individual
cases. DITA2Go uses the first entry in the section that matches, so put the exceptions
before the general case:

[TableAfterMacros]
af123456=
ac*=

*=

These settings result in the following:

 • no spacing after table af123456

 • double spacing after all tables in groups that start with ac

 • single spacing after all other tables.

See §33.6.1 Invoking macros around tables on page 642.

33.6.4 Turning processing on and off around select ed tables

Suppose you use two-cell tables to hold notes and warnings, with an icon in the first cell
and text in the second cell. And suppose for HTML output you want to strip the table
structure, discard the icon, and keep just the text from the second cell.

You can use Before and After macros for the table format to turn on and off the
StripTables setting (see §33.7.2 Removing table-specific tags from selected tables on
page 647) for the table format in question; in this example, NoteTable:

[TableBeforeMacros]
NoteTable = <$$[Tables]StripTables=1>

USING MACROS TO CONTROL TABLE PROPERTIES DITA2GO USER’S GUIDE

644 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[TableAfterMacros]
NoteTable = <$$[Tables]StripTables=0>

Stripping a table removes only the table code; the content remains unaltered, so you still
have both icon and text.

To exclude the icon(s) from HTML output, suppose you have established a graphics group
for such icons (see §32.4.1.4 Creating named groups of graphics on page 615), with group
name NoteIcons:

[GraphReplaceMacros]
NoteIcons = <$$nothing=1>

See §32.3 Omitting graphics from HTML output on page 613.

33.6.5 Specifying row-group, row, and cell attribu tes with macros

You can specify HTML code to add attributes at precisely defined locations inside table
row groups, rows, and cells. These attributes override the same attributes specified in the
[Attributes] section:

Row-group attributes
Row attributes
Cell attributes.

Row-group
attributes

The following sections let you control attributes of table row groups, and allow you to use
macros in a row-group element: <thead> , <tfoot> , or <tbody> .

[TableHeaderAttributes]
; table ID = text (macro) to put inside <thead>,
; overrides [Attributes] for <thead>

[TableFooterAttributes]
; table ID = = text (macro) to put inside <tfoot>,
; overrides [Attributes] for <tfoot>

[TableBodyAttributes]
; table ID = = text (macro) to put inside <tbody>,
; overrides [Attributes] for <tbody>

For these overrides to take effect, you must also specify either of the following:

 • for all tables, any one of:
[Tables]
HeadFootBodyTags = Yes
AccessMethod = Scope
ScopeRowGroup = Yes

 • for table groups, any one of:
[TableAccess]
TableID = HFBTags
TableID = Scope
TableID = ScopeRowGroup

See also:
§33.3.2.4 Wrapping table row groups on page 629
§33.3.2.6 Overriding row and column group settings on page 630.

Row attributes The following sections let you control row attributes for all the rows in a table (or group of
tables), and use macros in a row before and after other content. See also §35.1 Identifying
table rows and columns on page 657 for ways to identify table rows for WAI (Web
Accessibility Initiative) markup.

[TableRowAttributes]
; table ID = text (macro) to put inside <tr>, overr ides [Attributes]

33 CONVERTING TABLES TO HTML USING MACROS TO CONTROL TABLE PROPERTIES

ALL RIGHTS RESERVED. MAY 19, 2013 645

[TableRowStartMacros]
; table ID = text of macro to put on line after <tr >

[TableRowEndMacros]
; table ID = text of macro to put before </tr>

See also:
§33.4.5 Specifying attributes for table rows on page 634

Cell attributes The following sections let you control cell attributes for all the cells in a table (or group of
tables), and use macros in a cell before and after other content.

[TableCellAttributes]
; table ID = text (macro) to put inside <td>, overr ides [Attributes]

[TableCellStartMacros]
; table ID = text of macro to put after <td>

[TableCellEndMacros]
; table ID = text of macro to put before </td>

33.6.6 Capturing table row and column counts with variables

Two predefined macro variables allow you to access the numbers of columns and rows in
the current table:

<$$_tblcols> Count of columns in the current table
<$$_tblrows> Count of rows in the current table

You can use these variables in macro expressions that manipulate or make use of table
properties. For example, to add a rule above and below each table by placing the rule in an
extra row that spans all columns:

[TableStartMacros]
*=<tr><td colspan="<$$_tblcols>"><hr></td></tr>

[TableEndMacros]
*=<tr><td colspan="<$$_tblcols>"><hr></td></tr>

See also:
§33.6.1 Invoking macros around tables on page 642
§37.3.4 Using predefined macro variables on page 691

33.6.7 Selectively modifying table text with macro s: an example

Suppose the following:

 • Some columns in your tables have text that you want bold in HTML, even though in
DITA the text is not differentiated with an inline element.

 • The columns in question all have column headings that include the word “Fields”.
 • The paragraph format for table body cells is CellBody, and the format for column

headings is CellHeading.

To achieve selective bolding, you can use macros to assign different class attributes to
paragraph format CellBody, based on the content of each column heading.

Use macro
variables to

identify table
columns

Create two macro variables to hold column numbers; for example, $$ColNum and
$$FieldColNum . $$ColNum counts the columns in a table, and $$FieldColNum holds
the column number of any column whose heading contains the word “Fields”.

If you are not using table macros for any other purpose, you can use a wildcard to specify
the following macros for all tables:

USING MACROS TO CONTROL TABLE PROPERTIES DITA2GO USER’S GUIDE

646 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[TableStartMacros]
; Reset $$FieldColNum for each table:
*=<$$FieldColNum = 0>

[TableRowStartMacros]
; Reset $$ColNum for each table row:
*=<$$ColNum = 0>

[TableCellStartMacros]
; Increment $$ColNum for each table column:
*=<$$ColNum++>

See also:
§33.2.2 Using wildcards to specify table sets on page 627
§33.6.1 Invoking macros around tables on page 642
§37.3 Using macro variables on page 687

Assign coding
options to table-

cell formats

Turn off the HTML paragraph tag that DITA2Go would otherwise automatically assign to
CellBody, and specify macro code for both CellBody and CellHeading:

[HTMLParaStyles]
; CellBody formatting will be replaced by macro cod e:
CellBody=NoPara CodeStart CodeEnd
; CellHeading will hold column-heading content to b e checked,
; and also provide the code for checking:
CellHeading=CodeStore CodeAfter

[ParaStyleCodeStart]
; Assign a macro to CellBody, so the code can excee d one line:
CellBody=<$SelectClass>

[ParaStyleCodeEnd]
; Provide a closing tag for the class attribute:
CellBody=</p>

[ParaStyleCodeAfter]
; Use the CodeStore property assigned to CellHeadin g to
; capture the content of the current CellHeading pa ragraph,
; and also assign a macro, so the code can exceed o ne line:
CellHeading=<$$CellHeading><$CheckColHead>

See also:
§30.2.4 Stripping paragraph properties on page 568
§37.3.2 Assigning values to macro variables on page 688
§37.9.3 Surrounding or replacing text with code or macros on page 711
§37.3.5.2 Inserting code with the CodeStore property on page 693

Check for
columns that
need bolding

Use a conditional expression to check the content of each CellHeading paragraph:
[CheckColHead]
; Use string operator "contains" to check the conte nt;
; if the text sought is present, flag the column:
<$_if ($$CellHeading contains "Fields")>

<$$FieldColNum = $$ColNum>
<$_endif>

Select a class
attribute based on

the column flag

To select a class attribute for CellBody, compare $$ColNum and $$FieldColNum in a
conditional expression:

[SelectClass]
<p class="<$_if ($$FieldColNum == $$ColNum)>CellBod yBold

<$_else>CellBody
<$_endif>">

33 CONVERTING TABLES TO HTML CONVERTING TABLES TO PARAGRAPHS

ALL RIGHTS RESERVED. MAY 19, 2013 647

See also:
§37.6.4 Using control structures in expressions on page 704
§37.6.5 Specifying substrings in expressions on page 706

33.7 Converting tables to paragraphs
To use content stored in tables as ordinary non-table content, you can direct DITA2Go to
remove table-specific tagging from tables in your document, leaving just cell content. You
might need to do this if you have a long table and you want to split it across several HTML
files, but not as a table; or if you are preparing output to be displayed in a browser that
does not support HTML table tags.

In this section:
§33.7.1 Removing table-specific tags from all tables on page 647
§33.7.2 Removing table-specific tags from selected tables on page 647
§33.7.3 Removing table-specific tags from complex tables on page 648

See also:
§33.6.4 Turning processing on and off around selected tables on page 643

33.7.1 Removing table-specific tags from all table s

To strip all tables of table-specific elements:
[Tables]
; StripTable = No (default) or Yes to remove all ta ble tagging while
; retaining cell content.
StripTable = Yes

This setting applies to all tables in your document.

When StripTable=Yes , DITA2Go writes out the content of each table cell in row order
(top to bottom) then column order (left to right), preserving paragraph and character
formats.

By default, DITA2Go also sets the following file-splitting options:
[Tables]
; AllowTbSplit = No (default)
; or Yes (allow file split for head in table)
AllowTbSplit = Yes
; AllowTbTitle = No (default) or Yes (allow title f rom head in table)
AllowTbTitle = Yes

You can override these settings; see §27.3.1 Designating split points on page 526 and
§27.5.2.2 Assigning a title with a paragraph format on page 532.

33.7.2 Removing table-specific tags from selected tables

To strip tags only from selected tables, you can use either of the following methods:
Strip table tags with configuration macros
Strip table tags with Config PI markers.

Strip table tags
with configuration

macros

To remove table tags by assigning table macros to a table ID:
[TableBeforeMacros]
TableID = <$$[Tables]StripTable=1>

[TableAfterMacros]
TableID = <$$[Tables]StripTable=0>

CONVERTING TABLES TO PARAGRAPHS DITA2GO USER’S GUIDE

648 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

See §33.6.1 Invoking macros around tables on page 642 and §33.6.4 Turning processing
on and off around selected tables on page 643.

Strip table tags
with Config PI

markers

To remove table tags from individual tables, you can surround each table with Config PI
markers:

See §42.2.8 Overriding fixed-key configuration settings on page 770.

33.7.3 Removing table-specific tags from complex t ables

For complex tables, if the raw result of [Table]StripTable=Yes is not satisfactory,
you might need to use macros to control placement and appearance of content. You can
use table macros for this purpose, even though the content is not displayed with table tags
in the output; see §33.6 Using macros to control table properties on page 642. You can
also use format-related macros; see §37.9.3 Surrounding or replacing text with code or
macros on page 711.

(No illustrations)

Config PI marker
content Marker placement

[Tables]StripTable=1 Before the table anchor

[Tables]StripTable=0 After the table

ALL RIGHTS RESERVED. MAY 19, 2013 649

34 Generating WAI markup for HTML

DITA2Go supports WAI (Web Accessibility Initiative) guidelines for authoring HTML
content intended to be accessible to people with disabilities. Topics include:

§34.1 Comparing DITA2Go markup methods for WAI on page 649
§34.2 Applying WAI markup to images on page 650
§34.3 Applying WAI markup to links on page 651
§34.4 Applying WAI markup to tables on page 652

See also:
§38 Working with processing instructions on page 717

For more information about WAI, see:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/

To test the effectiveness of the WAI attributes you specify using DITA2Go , see:
http://www.w3.org/WAI/eval/Overview.html

34.1 Comparing DITA2Go markup methods for WAI
In this section:

§34.1.1 Choosing a markup method for WAI attributes on page 649
§34.1.2 Using paragraph formats for WAI attributes on page 649
§34.1.3 Inserting PI markers for WAI attributes on page 650

34.1.1 Choosing a markup method for WAI attributes

DITA2Go provides the following ways to specify WAI attributes for HTML:

 • Assign a DITA2Go property that represents a WAI attribute to a paragraph format,
and assign a value to the property, in the configuration file. This method is supported
primarily for table markup.

 • Assign a WAI attribute to a paragraph format in the configuration file, and make the
paragraph content the attribute value. This method is supported for a limited number
of WAI attributes.

 • Use a PI marker named after a WAI attribute, and make the marker text the attribute
value.

Macros and macro variables can be referenced in the attributes, both from PI markers and
from text identified as attribute content.

34.1.2 Using paragraph formats for WAI attributes

To use a paragraph-format method, you must dedicate a different paragraph format to each
WAI attribute or combination of attributes that you need in your document. You can use a
paragraph format for either of the following:

 • a single attribute, and use multiple paragraphs (each with a different format) to apply
more than one attribute to the same item in your document;

 • a combination of attributes, and use a single paragraph to apply the combination.

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www.w3.org/WAI/eval/Overview.html

APPLYING WAI MARKUP TO IMAGES DITA2GO USER’S GUIDE

650 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To hide WAI
markup, use

conditions

Using a different paragraph format for material that does not actually call for a different
format in printed versions can unduly complicate document maintenance. To get around
this drawback, you can use the following variation:

1. Apply the WAI paragraph format to an extra paragraph you insert just before the item
that requires the markup (or in the same cell, if in a table).

2. Apply a condition, so you can hide the content of that extra paragraph in printed
versions of the document.

3. In the configuration file specify the Delete property for the paragraph format, to
exclude the extra paragraph from HTML output.

Assign WAI
attributes with

properties

You assign DITA2Go properties to paragraph formats in the [HTMLParaStyles]
section, and you assign values to the attributes represented by those properties in
[StyleCell*] sections. WAI table-cell attributes can be assigned this way; see §35.2.2
Using paragraph formats for table-cell attributes on page 661.

Use special
paragraphs for

WAI attribute
values

In the [HTMLParaStyles] section you assign properties that represent WAI attributes
(and usually also the Delete property) to a paragraph format; DITA2Go uses the content
of the paragraph as the value of the attribute.

You can use an existing paragraph format for this purpose, and omit the Delete property,
if the format conforms to all of the following:

 • The paragraph format is not used for unrelated purposes elsewhere in the document.
 • Each paragraph with that format already contains text suitable for the attribute value.
 • Each paragraph with that format appears just before an item that needs the attribute

(with no intervening items of the same type), or in a table cell that needs the attribute.

34.1.3 Inserting PI markers for WAI attributes

You can insert PI markers in (or just before) items that require WAI markup.

Marker name is
significant

If you give a PI marker type a name that starts with Table , Cell , Graph , or Link , DITA2Go
automatically makes the marker text the value of whatever HTML attribute is named by
the rest of the PI marker-type name, and puts the attribute and its value in the generated
<table> , <th> , <td> , , or <a> tag.

34.2 Applying WAI markup to images
In this section:

§34.2.1 Following WAI guidelines for images on page 650
§34.2.2 Assigning WAI image attributes with dedicated formats on page 651
§34.2.3 Assigning WAI image attributes with PI markers on page 651

34.2.1 Following WAI guidelines for images

The WAI guidelines for images are intended to provide a text equivalent for every non-text
element. For more information, see:

http://www.w3.org/TR/WCAG10-HTML-TECHS/#image-text-equivalent

DITA2Go provides settings for the following attributes:

alt Short text equivalent of an image.

longdesc Path to an HTML file containing text that describes the image.

title Image description, for user agents that do not support longdesc .

http://www.w3.org/TR/WCAG10-HTML-TECHS/#image-text-equivalent

34 GENERATING WAI MARKUP FOR HTML APPLYING WAI MARKUP TO LINKS

ALL RIGHTS RESERVED. MAY 19, 2013 651

You can provide alt and title attributes for an image either with a paragraph format or
with a PI marker.

34.2.2 Assigning WAI image attributes with dedicat ed formats

You can designate a paragraph format whose content will be the text alternative for the
next image. For example, suppose you use paragraph format Figname for this purpose:

[HTMLParaStyles]
; Alt makes current para content into alt attribute for next img
Figname=Alt Delete

Somewhere just before the image you would insert a Figname paragraph containing the
name you want displayed as an alternate for the graphic image. Probably you would make
the Figname paragraph conditional so it would not appear in print. The Delete property
would exclude the paragraph (as such) from HTML output; HTML source would show the
text of the Figname paragraph as the value for the alt attribute of the element.

For example, if you were to place a Figname paragraph with the content “Cat in basket”
just before the image, in some browsers moving the pointer over the image would display
this content in a tooltip. However, in most current browsers, the tooltip shows the content
of the title attribute rather than the alt attribute; and the alt text is displayed only
when the image is not displayed or is missing.

You can use a similar strategy to provide content for the longdesc attribute of the
element; for example, using paragraph format Figdesc for this purpose:.

[HTMLParaStyles]
; Longdesc makes current para content into longdesc attribute
Figdesc = Longdesc Delete

The Delete property would exclude the paragraph from normal HTML text output.

34.2.3 Assigning WAI image attributes with PI mark ers

You can use PI markers to provide text equivalents of graphic images. The attribute value
in the text of a marker applies to the next anchored frame in a flow after the PI marker.
Each PI marker name must start with Graph and end with the name of the attribute. Valid
PI marker names are as follows

For example, to provide an alt attribute for each graphic, place a GraphAlt PI marker just
before the image.

34.3 Applying WAI markup to links
In this section:

§34.3.1 Following WAI guidelines for links on page 652
§34.3.2 Assigning WAI link attribute values with dedicated formats on page 652
§34.3.3 Assigning WAI link attribute values with PI markers on page 652

GraphAlt Short text equivalent of image; adds alt attribute.

GraphLongdesc Path to file with image description; adds longdesc attribute.

GraphTitle Long text description of image; adds title attribute.

APPLYING WAI MARKUP TO TABLES DITA2GO USER’S GUIDE

652 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

34.3.1 Following WAI guidelines for links

The HTML title attribute is commonly used in links, where it “hides” the value of the
href attribute that is otherwise shown, replacing it with a text description of the link
destination. For more information about WAI guidelines for links, see:

http://www.w3.org/TR/WCAG10-HTML-TECHS/#links

You can provide a title attribute for a link either with a paragraph format or with a PI
marker; and either may reference macro variable <$$_linksrc> .

34.3.2 Assigning WAI link attribute values with de dicated formats

You can designate a paragraph format whose content will be the text for the following
link. For example, suppose you use paragraph format Linkname for this purpose:

[HTMLParaStyles]
; LinkTitle makes current para content into title a ttr for next link
Linkname = LinkTitle Delete

In your DITA document, just before the link you would insert an element to which you
have assigned format Linkname containing the name you want displayed for the link
destination. The Delete property would exclude the paragraph (as such) from HTML
output; HTML source would show the text of the Linkname paragraph as the value for the
title= attribute of the <a> tag.

You can use a similar strategy to assign a CSS class to the next link. For example, to use
paragraph format LinkCSS for this purpose:

[HTMLParaStyles]
; LinkClass makes current para content into class attribute
; used to set the link display properties in CSS.
LinkCSS = LinkClass Delete

The Delete property would exclude the paragraph from normal HTML text output.

34.3.3 Assigning WAI link attribute values with PI markers

You can use PI markers to provide text alternatives (and other attributes) for links. The
attribute applies to the next link after the PI marker. The PI marker name must start with
Link and end with the name of the attribute:

For example, to provide a title attribute for each link, place a LinkTitle marker just
before the link.

To assign a CSS class to a link, see §28.2.2.1 Assigning a link class with a PI marker on
page 546.

34.4 Applying WAI markup to tables
In this section:

§34.4.1 Following WAI guidelines for tables on page 653
§34.4.2 Choosing a WAI markup method for tables on page 653
§34.4.3 Providing table summary and title information on page 654
§34.4.4 Identifying table row and column information on page 655

LinkClass CSS class for the next link.

LinkTitle Descriptive title for the link destination.

http://www.w3.org/TR/WCAG10-HTML-TECHS/#links

34 GENERATING WAI MARKUP FOR HTML APPLYING WAI MARKUP TO TABLES

ALL RIGHTS RESERVED. MAY 19, 2013 653

See also:
§35 Identifying HTML table structure for WAI on page 657
§36 Marking HTML table cells for WAI on page 667

34.4.1 Following WAI guidelines for tables

You can assign WAI attributes to tables, and within tables to rows, columns, and header
cells. DITA2Go supports WAI guidelines for the following kinds of table markup:

 • Providing summary information (WAI guidelines 5.1 and 5.2).
 • Identifying row and column information (WAI guidelines 5.5 and 5.6).

DITA2Go provides settings for the following attributes:

DITA2Go automatically generates markup for the following (non-WAI) attributes, based
on row and column straddling in your tables:

For information about WAI table guidelines, see:
http://www.w3.org/TR/WCAG10-HTML-TECHS/#data-tables

For information about using WAI table attributes, see:
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4

34.4.2 Choosing a WAI markup method for tables

For WAI markup that affects the table as whole, probably it does not matter which markup
method you choose (see §34.1 Comparing DITA2Go markup methods for WAI on
page 649). However, for markup that affects individual rows, columns, or cells, the “best”
(most practical) method depends on the following characteristics of the tables in your
DITA document:

 • Number (are you converting a single table, 10 tables, or 1,000 tables?)
 • Size (are most tables on the order of two rows by three columns, or 2,000 rows by 15

columns?)
 • Diversity (do most tables have the same structure, or do they vary widely?)
 • Complexity (do some tables have more than two dimensions of data, or multiple row

or column headers, and do some tables have header or body cells that span more than
one row or column?)

For large, complex tables you will have a lot of work to do no matter which method(s) you
choose.

abbr Abbreviation for the contents of a cell.

axis Conceptual category of cell content, provided for queries.

headers References to header-cell IDs.

id ID (name) of a header cell.

scope Rows or columns covered by a header cell.

summary Description of a table’s purpose and structure.

title Brief description of table.

colspan Number of columns spanned (straddled) by a cell.

rowspan Number of rows spanned (straddled) by a cell.

http://www.w3.org/TR/WCAG10-HTML-TECHS/#data-tables
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4

APPLYING WAI MARKUP TO TABLES DITA2GO USER’S GUIDE

654 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

34.4.3 Providing table summary and title informati on

In this section:
§34.4.3.1 Using a table attribute for summary or title on page 654
§34.4.3.2 Using a dedicated format for table summary or title on page 654
§34.4.3.3 Using a PI marker for table summary or title on page 655

34.4.3.1 Using a table attribute for summary or ti tle

Under [TableAttributes] specify the summary or title attribute for the table’s
TableID, and give the attribute a value:

[TableAttributes]
TableID= summary=" Text of summary for this table"
TableID= title=" Text of title for this table"

For example, for the summary attribute you would specify something like this:
[TableAttributes]
aa123456= summary="This is the text of my summary f or this table"

where aa123456 is the TableID (see §4.3 Identifying files and elements on page 76).

You could also specify the following:
[TableAttributes]
aa123456= title="My Title Attribute" summary="My su mmary info"

The attributes and values must fit all on one line (of any length) in the configuration file.
You could specify a macro instead, and use any number of lines:

[TableAttributes]
aa123456= <$attr4aa123456>

[Attr4aa123456]
title="I can put as long a title attribute here as I want"
summary="This is my lengthy and informative table s ummary"

The line breaks in the macro are preserved in the HTML output. See §37 Working with
macros on page 679 for more information.

34.4.3.2 Using a dedicated format for table summar y or title

You can designate a paragraph format whose content will be the value of the summary
attribute for the next table in your document. For example, suppose you use paragraph
format TblSum for this purpose:

[HTMLParaStyles]
; Summary makes current para content into summary for table tag
TblSum=Summary Delete

Somewhere in each table (or just before the table) you would insert a TblSum paragraph
containing the summary for that table. Probably you would make that paragraph
conditional so it would not appear in print. The Delete property would exclude the
paragraph (as such) from HTML output; HTML source would show the text of the TblSum
paragraph as the value for the summary attribute of the <table> element.

If some tables in your document have no captions, you might want to use the HTML
title attribute also, to provide a title. Designate a paragraph format whose content will
be the title for any table in which (or just before which) you place an instance of the
paragraph. For example, suppose you use paragraph format TblTtl for this purpose:

[HTMLParaStyles]
; TableTitle makes current para content into title attr for table
TblTtl=TableTitle Delete

34 GENERATING WAI MARKUP FOR HTML APPLYING WAI MARKUP TO TABLES

ALL RIGHTS RESERVED. MAY 19, 2013 655

The content of the TblTtl paragraph would become the text of the title attribute of the
HTML <table> tag.

34.4.3.3 Using a PI marker for table summary or ti tle

You can use a PI marker to provide a summary for a table, and another PI marker to
provide a title. Each PI marker name must start with Table and end with the name of the
attribute:

For example, to add a summary attribute, place a TableSummary PI marker somewhere in
the table, or just before the table.

The HTML source would show the <table> tag as follows (omitting display attributes):
<table summary="The Server Configuration table show s the
identification number and description for each para meter for each
server module.">

Note: If the content of a TableSummary or TableTitle PI marker includes characters < or
>, these characters must be escaped, thus: \< or \> ; otherwise the table might not
be rendered correctly in HTML.

34.4.4 Identifying table row and column informatio n

Grouping cells logically for non-visual interpretation, and associating each cell in a table
with the actual or virtual header information that informs the content of that cell, can
require a lot of markup. Methods for using DITA2Go to generate WAI table-cell attributes
are described in the following sections:

§35 Identifying HTML table structure for WAI on page 657
§36 Marking HTML table cells for WAI on page 667
(No tables)

TableSummary Summary attribute for table (maximum 256 characters).

TableTitle Title attribute for a table that has no <caption> .

APPLYING WAI MARKUP TO TABLES DITA2GO USER’S GUIDE

656 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 657

35 Identifying HTML table structure for WAI

This section describes how to use DITA2Go configuration settings to identify table
structure for WAI support. Topics include:

§35.1 Identifying table rows and columns on page 657
§35.2 Associating table cells with header cells on page 660

See also:
§34 Generating WAI markup for HTML on page 649
§36 Marking HTML table cells for WAI on page 667

35.1 Identifying table rows and columns
In this section:

§35.1.1 Developing a strategy for row and column markup on page 657
§35.1.2 Comparing scope and id/headers accessibility methods on page 657
§35.1.3 Specifying a default accessibility method on page 658
§35.1.4 Overriding the default accessibility method on page 659

35.1.1 Developing a strategy for row and column ma rkup

DITA2Go supports two markup methods for associating table-cell content with row and
column header information; you can mix the two approaches:

Strategy for WAI
table markup

To keep WAI table markup as simple as possible, consider using this strategy:

1. Decide on a basic policy with respect to accessibility method for all tables in your
document, and set [Tables]AccessMethod accordingly; see §35.1.3 Specifying a
default accessibility method on page 658.

2. If there are repeating sets of columns or rows in some tables, make the appropriate
top/left cells in those tables ColGroup or RowGroup cells; see §35.2.1 Specifying
group properties for header cells on page 660.

3. Test the result, and if necessary use fine-control settings to correct any problems that
might result from complex or unusual table structures; see §35.2 Associating table
cells with header cells on page 660.

4. Add abbr and axis attributes as needed; see §35.2.2.2 Assigning WAI attributes to
paragraph formats on page 662 and §35.2.4 Assigning table-cell attribute values with
PI markers on page 666.

35.1.2 Comparing scope and id/headers accessibilit y methods
scope method The scope method works well for simple tables. DITA2Go places a single attribute in

each column-header or row-header cell, to apply that header to the rest of the cells in the
same column or row.

scope Indicates the set of body cells to which a header cell applies.

id /headers Gives each header cell an id= uniqueID attribute.
Gives each cell to which that header cell applies a headers=
uniqueID attribute.

IDENTIFYING TABLE ROWS AND COLUMNS DITA2GO USER’S GUIDE

658 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

id / headers
method

The id /headers method is better for complex tables. DITA2Go names each header cell
(gives it an id= name attribute) and also indicates that cell’s applicability by specifying the
headers= name attribute in every affected cell.

Both methods For some table structures it can also make sense to mix methods, such as using the
id /headers method for columns and the scope method for rows.

35.1.3 Specifying a default accessibility method

In this section:
§35.1.3.1 Establishing a basic policy for table accessibility on page 658
§35.1.3.2 Applying the scope method to all tables on page 658
§35.1.3.3 Applying the id/headers method to all tables on page 659

35.1.3.1 Establishing a basic policy for table acc essibility

You can set a basic policy for adding accessibility to tables, by specifying a default
method for associating table-cell content with row and column header information:

[Tables]
 ; AccessMethod = None (default), Scope, or IDheade rs
 AccessMethod=None

If you specify a default method, DITA2Go applies that method to all tables in your
document. To specify a different method for selected tables, table formats, or table groups,
you can indicate overrides in the [TableAccess] section; see §35.1.4 Overriding the
default accessibility method on page 659.

If you specify group properties for some or all header cells (see §35.2.1 Specifying group
properties for header cells on page 660), AccessMethod works in concert with these
properties.

If you do not specify a default method, or if you specify AccessMethod=None , you can
still apply one or both methods to all tables by specifying settings for columns, rows,
column groups, and row groups; see §36 Marking HTML table cells for WAI on page 667.
This is a good way to mix the two methods, because you can treat columns and rows
differently.

Note: If you specify a default method for all tables, do not also use a different setting, or
a PI marker, to apply the same method to an individual table; the result is
duplicate attribute assignments. See §22.14.4 Avoiding redundant attribute
assignments in tables on page 447.

35.1.3.2 Applying the scope method to all tables

When AccessMethod=Scope , DITA2Go supplies the following WAI attributes for
every table:

 • scope="colgroup" for any header cells marked ColGroup ; automatically sets
ColGroupElements=Yes (see §33.3.2.3 Enumerating table column groups on
page 628) if any column-header cells are so specified.

 • scope="rowgroup" for any left-side cells marked RowGroup; automatically sets
HeadFootBodyTags=Yes (see §33.3.2.4 Wrapping table row groups on page 629) if
any row-header cells are so specified.

 • scope="row" or scope="col" for the remaining header cells.
 • If a header cell spans more than one column or row (and is not marked ColGroup or

RowGroup), it must have an ID even though the method is scope , because there is no

35 IDENTIFYING HTML TABLE STRUCTURE FOR WAI IDENTIFYING TABLE ROWS AND COLUMNS

ALL RIGHTS RESERVED. MAY 19, 2013 659

WAI attribute for scope="colspan" (or "rowspan"); such header cells get id=
"spanN" and the cells affected by them get headers="spanN" .

In addition, AccessMethod=Scope sets [Tables] properties ScopeColGroup ,
ScopeRowGroup , ScopeCol , and ScopeRow; and sets ColSpanIDs and RowSpanIDs
for other straddling header cells. See §36.2 Using the scope method to identify table cells
on page 667 for more information.

Note: If any of your tables have footer rows, when you use the scope method the
resulting HTML might contain some surprises; see §33.3.2.4 Wrapping table row
groups on page 629.

35.1.3.3 Applying the id/headers method to all tab les

When AccessMethod=IDheaders , DITA2Go supplies the following WAI attributes for
every table:

 • id="groupN" for any cells marked ColGroup or RowGroup.
 • id="spanN" for any spanning cells (and cells marked Span).
 • id="rowN" or id="colN" for the remaining cells.
 • A headers attribute that names all applicable IDs for each affected cell.

In addition, AccessMethod=IDheaders sets [Tables] properties ColGroupIDs ,
RowGroupIDs , ColSpanIDs , RowSpanIDs , ColIDs , and RowIDs , so that most header
cells have IDs and the corresponding body cells have matching headers. See §36.3 Using
the id/headers method to identify table cells on page 669 for more information.

35.1.4 Overriding the default accessibility method

You can use settings in the [TableAccess] section to override, for selected tables, the
corresponding [Tables] default settings; everything you can set in [TableAccess] has
a document-wide default in the [Tables] section.

You can specify overrides that apply to table groups, to tables of a certain format, and to
individual tables. You can even use wildcards to specify tables that are not explicitly
grouped.

Use these settings to specify accessibility-method overrides:
[TableAccess]
; table ID = method list (overrides default in [Tab les]); Can
; override [Tables]AccessMethod policy with NoAcce ss, Scope, or IDs.

For example:
[TableAccess]
ac254360=NoAccess
Group5=IDs
Format A=HCols1 HRows2 Scope

To override the default method for all tables for rows, columns, row groups, or column
groups, use one of the row or column markup methods instead; see:

§36.2 Using the scope method to identify table cells on page 667
§36.3 Using the id/headers method to identify table cells on page 669

To override attributes at the cell level, use one of the table-cell markup methods instead;
see:

 §35.2.2 Using paragraph formats for table-cell attributes on page 661
 §35.2.3 Assigning table-cell attribute values with dedicated formats on page 665
 §35.2.4 Assigning table-cell attribute values with PI markers on page 666

ASSOCIATING TABLE CELLS WITH HEADER CELLS DITA2GO USER’S GUIDE

660 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Note: If you specify a default method for all tables (see §35.1.3 Specifying a default
accessibility method on page 658), do not also use an override to apply the same
method to an individual table; the result is duplicate attribute assignments. See
§22.14.4 Avoiding redundant attribute assignments in tables on page 447.

35.2 Associating table cells with header cells
If specifying an accessibility method does not prove adequate for some or all tables in
your document, DITA2Go provides two additional ways to indicate, for WAI purposes,
which header cells apply to which other table cells:

 • [Tables] settings for rows and columns; these apply by default to all tables, but you
can override them with [TableAccess] settings. See §36 Marking HTML table
cells for WAI on page 667 for information about these settings.

 • Attributes you specify for rows, columns, or individual cells via paragraph formats or
PI markers; these apply to the tables in which you use them.

In this section:
§35.2.1 Specifying group properties for header cells on page 660
§35.2.2 Using paragraph formats for table-cell attributes on page 661
§35.2.3 Assigning table-cell attribute values with dedicated formats on page 665
§35.2.4 Assigning table-cell attribute values with PI markers on page 666

35.2.1 Specifying group properties for header cell s

In this section:
§35.2.1.1 Defining blocks of header cells on page 660
§35.2.1.2 Using header cells to define column groups on page 660
§35.2.1.3 Using header cells to define row groups on page 661

35.2.1.1 Defining blocks of header cells

You can specify that a row- or column-header cell should apply not just to the cells in its
immediate row or column, but to a larger group: a block of cells, possibly including other
row- or column-header cells. How the group property works depends on whether you are
using the scope method or the id /headers method to associate body cells with header
cells.

For example, if you use scope="colgroup" in a column-header cell along with
ColGroupElements=Yes , the table columns to which the header cell applies are all
those in its own <colgroup> element. If you use id /headers instead, the setting for
ColGroupElements does not matter; DITA2Go does the work of making matching id
and headers identifiers. They do the very same job as scope+ColGroupElements ; the
same associations are made from header cells to body cells.

See §36.5 Using ColGroup and RowGroup cells on page 676 for more information.

35.2.1.2 Using header cells to define column group s

DITA2Go refers to a column-header cell with a group attribute as a ColGroup cell. To
make a header cell a ColGroup cell, include in it one of the following:

 • a paragraph that is in a format you have designated [HTMLParaStyles] ColGroup
(see §35.2.2 Using paragraph formats for table-cell attributes on page 661)

35 IDENTIFYING HTML TABLE STRUCTURE FOR WAI ASSOCIATING TABLE CELLS WITH HEADER CELLS

ALL RIGHTS RESERVED. MAY 19, 2013 661

 • a CellGroup PI marker that you have given content col
(see §35.2.4 Assigning table-cell attribute values with PI markers on page 666).

When you designate a header cell as a ColGroup cell, the effect of that property depends
on which method you specify for table columns:

 • scope automatically specifies the following:
 – [Tables]ColGroupElements=Yes

(ColGroup cell starts a new <colgroup> element)
 – scope="colgroup" in the ColGroup cell

(ColGroup cell affects all other cells subsumed by its <colgroup>)
 • id /headers automatically specifies the following:

 – [Tables]ColGroupIDs=Yes
(ColGroup cell gets id="groupN" , dependent cells get headers="groupN")

See §36.5.1 Understanding how the ColGroup property works on page 676 for more
information.

35.2.1.3 Using header cells to define row groups

DITA2Go refers to a row-header cell that has a group attribute as a RowGroup cell. To
make a header cell a RowGroup cell, include in it one of the following:

 • a paragraph that is in a format you have designated [HTMLParaStyles] RowGroup
(see §35.2.2 Using paragraph formats for table-cell attributes on page 661)

 • a CellGroup PI marker that you have given content row
(see §35.2.4 Assigning table-cell attribute values with PI markers on page 666).

When you designate a header cell as a RowGroup cell, the effect of that property depends
on which method you specify for table rows:

 • scope automatically specifies the following:
 – HeadFootBodyTags=Yes

(RowGroup cell starts a new <tbody> element)
 – scope="rowgroup" in the RowGroup cell

(RowGroup cell affects all other cells in its <tbody>)
 • id /headers automatically specifies the following:

 – RowGroupIDs=Yes
(RowGroup cell gets id="groupN" , dependent cells get headers="groupN")

See §36.5.2 Understanding how the RowGroup property works on page 677 for more
information.

35.2.2 Using paragraph formats for table-cell attr ibutes

In this section:
§35.2.2.1 Choosing how to use paragraph formats for WAI markup on page 661
§35.2.2.2 Assigning WAI attributes to paragraph formats on page 662
§35.2.2.3 Assigning values to WAI attributes on page 663
§35.2.2.4 Specifying a different HTML table-cell tag on page 663
§35.2.2.5 Identifying table cells with formats: an example on page 664

35.2.2.1 Choosing how to use paragraph formats for WAI markup

To add WAI markup using paragraph formats, you must apply a different paragraph format
to the content of each cell that needs a particular combination of WAI markup, in each
table. You can apply the unique format to the visible content of the cell; or you can apply it

ASSOCIATING TABLE CELLS WITH HEADER CELLS DITA2GO USER’S GUIDE

662 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

to extra text in the cell, use property Delete to prevent the additional text from appearing
in the HTML output, and apply a condition to hide the extra text in print versions. See
§34.1.2 Using paragraph formats for WAI attributes on page 649 for more information.

A paragraph format to which you assign a WAI attribute can be anywhere in the cell, and
does not have to be the only paragraph format used in that cell.

35.2.2.2 Assigning WAI attributes to paragraph for mats

You can combine format-specific settings in [HTMLParaStyles] with attributes you
define in other [HtmlStyle*] sections to control WAI behavior at the cell level. You
must use a different paragraph format for the content of each cell that needs a different set
of attributes.

Use these settings to specify WAI attributes for table cells.
[HTMLParaStyles]
; format name = properties
; These provide support for Web Accessibility Initi ative table markup.
; CellAttribute inserts the contents of [StyleCellA ttribute] into
; the start tag of the enclosing table cell (ignor ed outside tables).
; Span causes assignment of ColSpanID or RowSpanID, as enabled in
; the [Tables] section.
; NoColID prevents assignment of id for ColIDs (ena bled in [Tables])
; for any cell that contains an instance of its pa ra format.
; ColGroup is used for para formats in cells in the header row.
; RowGroup is used for para formats in cells at the left of their
; rows.
; Scope looks up value for scope= attribute in [Sty leCellScope]
; Abbr looks up value for abbr= attribute in [Sty leCellAbbr]
; Axis looks up value for axis= attribute in [Sty leCellAxis]

Table 35-1 describes each of these properties.

Table 35-1 Format properties for WAI table-cell attributes

Property Description

Abbr An abbreviation for the cell’s content is assigned to the paragraph format under
[StyleCellAbbr] .

Axis The cell belongs to a category that is not necessarily indicated by the row and
column headers with which it is associated; the category (axis) is specified for the
paragraph format under [StyleCellAxis] .

CellAttribute Attributes listed under [StyleCellAttribute] for the paragraph format are
applied to the cell. You can list values for other WAI attributes (Scope , Abbr , and
Axis) under [StyleCellAttribute] if you want to, instead of listing them in
the attribute-specific sections.

ColGroup The cell is a header cell that starts a column group. See §35.2.1.2 Using header
cells to define column groups on page 660.

NoColID The column to which the cell belongs does not need to be identified for WAI
purposes, even though you have specified in the [Tables] section that you want
columns identified. This setting is intended to allow skipping columns that are
used only for spacing.

RowGroup The cell is a header cell that starts a row group. See §35.2.1.3 Using header cells
to define row groups on page 661.

Scope The cell is a header cell that applies to a column, a group of columns, a row, or a
group of rows, whichever is indicated for the format under [StyleCellScope] .

Span The cell is a header cell that applies to more than one column or row; id=
"span N" is assigned to the cell, regardless of ColSpanIDs or RowSpanIDs
settings.

35 IDENTIFYING HTML TABLE STRUCTURE FOR WAI ASSOCIATING TABLE CELLS WITH HEADER CELLS

ALL RIGHTS RESERVED. MAY 19, 2013 663

35.2.2.3 Assigning values to WAI attributes

The following configuration-file sections can include settings for WAI attributes that are
assigned to paragraph formats in the [HTMLParaStyles] section:

[StyleCellAbbr]
; format name = abbr attribute value to insert in e nclosing cell

[StyleCellAxis]
; format name = axis attribute value to insert in e nclosing cell

[StyleCellScope]
; format name = scope attribute value to insert in enclosing cell,
; required by WAI to be one of col, colgroup, row, or rowgroup.

[StyleCellAttribute]
; doc style = attribute to insert in enclosing tabl e cell start tag,
; used in addition to other cell attributes given under [Table...]

You can use the format or an abbreviation of the cell content to specify the scope:
Format example
Abbreviation example

Format example For example, if you are using column groups and a table has a column header that applies
to (has a scope of) more than one column, you might give the text of the header a unique
paragraph format (such as WideHdr), and specify the following settings:

[HTMLParaStyles]
WideHdr=Scope

[StyleCellScope]
WideHdr=colgroup

Instead of using [StyleCellScope] , you could specify the colgroup attribute like
this:

[HTMLParaStyles]
WideHdr=CellAttribute

[StyleCellAttribute]
WideHdr= scope="colgroup"

Abbreviation
example

Suppose the header-cell content with paragraph format WideHdr is “Type of convention”.
To abbreviate this text to “Type”, you could specify both attributes like this:

[HTMLParaStyles]
WideHdr=Scope CellAttribute

[StyleCellAttribute]
WideHdr= abbr="Type" scope="colgroup"

or like this:
[HTMLParaStyles]
WideHdr=Scope Abbr

[StyleCellScope]
WideHdr=colgroup

[StyleCellAbbr]
WideHdr="Type"

35.2.2.4 Specifying a different HTML table-cell ta g

You can use the following settings to alter the HTML tag for table cells containing the
designated paragraph formats:

[HTMLParaStyles]
; doc style (para or char) = keywords for functions and properties
; These alter properties or attributes of their tab le cell:

ASSOCIATING TABLE CELLS WITH HEADER CELLS DITA2GO USER’S GUIDE

664 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; TableHead forces containing cell tag to th inste ad of td
; TableBody forces containing cell tag to td inste ad of th
CellHeadParaFormat=TableHead
CellBodyParaFormat=TableBody

You might want to do this if some tables in your document have a structure different from
that described by document-wide [Tables] settings. A more straightforward method is
to use [TableAccess] settings to override the [Tables] settings for selected tables,
and thus avoid dedicating a paragraph format to this purpose. See §33.3.3 Identifying table
headers and footers on page 630.

35.2.2.5 Identifying table cells with formats: an example

Suppose your DITA document contains a table with the following structure; Table 35-2
has these characteristics:

 • multiple header rows
 • a column-header cell that spans more than one column
 • a row-header column whose cells span more than one row
 • a column that has no header.

To use paragraph formats to identify body cells according to their row headers and column
headers, those header cells that span more than one row or column must contain an
element that is assigned a paragraph format different from (or perhaps in addition to) the
paragraph format assigned to elements used in ordinary row and column headers:

 • Because it spans more than one column, the topmost column-header cell in Table 35-2
needs special identification, so a different paragraph format is used for that cell.

 • All row-header cells span more than one row, so no individual row-header cell needs a
format different from any other. However, collectively the row-header contents need
an element that is assigned a paragraph format different from the format for column
headers.

 • The rightmost column in Table 35-2 has no header; a different paragraph format is
used to identify the cells in this column, in order to give them the NoColID attribute.

You could specify the following attributes for Table 35-2:
[Tables]
UseTbHeaderCode=Yes
TableHeaderCols=1
ColIDs=Yes
ColHead=col
ColSpanIDs=Yes
ColSpanHead=span
RowIDs=Yes
RowHead=row

Table 35-2 Using paragraph formats to identify table cells (example)

Configuration parameters << Column-header rows have paragraph
format CellHead except top row, which has
CellHeadM.Module PID Parameter description

Security 001 Administrator PIN y << Body cells have paragraph format
CellBody, except cells in rightmost column,
which have CellBodyN.

012 Private key y

Certificate 002 Authority certificate n

011 Manager certificate n

009 Server certificate y

 ̂ ̂ Paragraph format is CategoryM for body cells in the first column = row headers.

35 IDENTIFYING HTML TABLE STRUCTURE FOR WAI ASSOCIATING TABLE CELLS WITH HEADER CELLS

ALL RIGHTS RESERVED. MAY 19, 2013 665

RowSpanIDs=Yes
RowSpanHead=span

Because these settings specify enough information to associate every cell in the table with
all applicable row and column headers, there is no need for the Scope attribute. However,
using it does no harm, so Scope is included for purposes of illustration:

[HTMLParaStyles]
CellHead=Scope
CellHeadM=Scope Span
CategoryM=Scope Span
CellBodyN=NoColID

[StyleCellScope]
CellHead=column
CellHeadM=colgroup
CategoryM=rowgroup

Because ColIDs take precedence over RowIDs , the top left cell gets id="col1" . The
cell to its right is in column 2; the cell below it is in row 2. Table 35-2 on page 664 looks
something like this (omitting display attributes) in DITA2Go -generated HTML:

<table>
<caption><p>Table 35-2: Server configuration</p></c aption>
<tr><th id="col1" scope="column" rowspan="2"><p>Mod ule</p></th>

<th id="span1" scope="colgroup" colspan="3">
<p>Configuration parameters</p></th></tr>

<tr><th id="col2" scope="column" headers="span1">
<p>PID</p></th>

<th id="span2" scope="column" colspan="2">
<p>Parameter description</p></th></tr>

<tr><th id="span3" scope="rowgroup" headers="col1" rowspan="2">
<p>Security</p></th>

<td id="row3" headers="col2 span1 span3"><p>001</p> </td>
<td headers="col2 row3 span1 span2 span3">

<p>Administrator PIN</p></td>
<td headers="row3 span1 span2 span3"><p>y</p></td>< /tr>

<tr><td id="row4" headers="col2 span1 span3"><p>012 </p></td>
<td headers="col2 row4 span1 span2 span3"><p>Privat e key</p></td>
<td headers="row4 span1 span2 span3"><p>y</p></td>< /tr>

<tr><th id="span4" scope="rowgroup" headers="col1" rowspan="3">
<p>Certificate</p></th>

<td id="row5" headers="col2 span1 span4"><p>002</p> </td>
<td headers="col2 row5 span1 span2 span4">

<p>Authority certificate</p></td>
<td headers="row5 span1 span2 span4"><p>n</p></td>< /tr>

<tr><td id="row6" headers="col2 span1 span4"><p>011 </p></td>
<td headers="col2 row6 span1 span2 span4">

<p>Manager certificate</p></td>
<td headers="row6 span1 span2 span4"><p>n</p></td>< /tr>

<tr><td id="row7" headers="col2 span1 span4"><p>009 </p></td>
<td headers="col2 row7 span1 span2 span4">

<p>Server certificate</p></td>
<td headers="row7 span1 span2 span4"><p>y</p></td>< /tr>

</table>

35.2.3 Assigning table-cell attribute values with dedicated formats

Instead of inventing another paragraph format every time you need to assign a different
combination of WAI attributes, you can dedicate a small set of paragraph formats to this
purpose: one for each WAI attribute. The text of each instance of such a paragraph format
becomes the value of the attribute:

ASSOCIATING TABLE CELLS WITH HEADER CELLS DITA2GO USER’S GUIDE

666 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[HTMLParaStyles]
; These para format properties all make their conte nt into attributes.
; If you do not want the content in the text also, use with Delete.
; AbbrVal makes current para content into abbr for table cell
; AxisVal makes current para content into axis for table cell

Probably you would not want the text of these special paragraphs to appear either in
printed output or in HTML output; therefore you would assign property Delete to each
such paragraph format in section [HTMLParaStyles] .

For example, suppose you assign paragraph format WAIabbr to an element, and assign a
WAI attribute to this format:

[HTMLParaStyles]
WAIabbr = AbbrVal Delete

If a header cell in a table reads Type of Widget and you want to provide the abbreviation
Type, somewhere in that cell you would place an element assigned format WAIabbr and
give it content Type. The Delete property would exclude the paragraph (as such) from
HTML output, and the HTML source would show <abbr= " Type " > for the cell in
question; see §30.2.6 Eliminating unwanted paragraphs on page 569.

35.2.4 Assigning table-cell attribute values with PI markers

You can use PI markers to apply WAI cell attributes. Each PI marker name must start with
Cell and end with the name of an attribute. The PI markers for table cells are as follows:

For example, to add the abbr attribute to a table cell, place a CellAbbr PI marker in the
cell.

Two additional PI marker types do not conform to the naming convention described
above. Instead, they provide the same effects as certain properties assigned to paragraph
formats in the [HTMLParaStyles] section:

For information about assigning properties ColGroup , RowGroup, and Span, see
§35.2.2.2 Assigning WAI attributes to paragraph formats on page 662.

Note: If you specify a default access method for all tables (see §35.1.3 Specifying a
default accessibility method on page 658), do not also use a PI marker to apply the
same method to individual tables; the result is duplicate attribute assignments. See
§22.14.4 Avoiding redundant attribute assignments in tables on page 447.

(No illustrations)

CellAbbr Abbreviation for content of a cell; adds abbr attribute.

CellAxis Conceptual category for the content of a cell; adds axis attribute.

CellID Cell identifier; replaces the value of any generated id attribute.

CellScope Number of rows or columns covered by a header cell; adds scope
attribute.

CellGroup The marker text must contain either col or row ; the effect is as though
ColGroup or RowGroup was assigned to a paragraph format in the
cell. See §35.2.1 Specifying group properties for header cells on
page 660.

CellSpan The marker text can contain anything, but must not be empty; the
effect is as though Span was assigned to a paragraph format in the
cell.

ALL RIGHTS RESERVED. MAY 19, 2013 667

36 Marking HTML table cells for WAI

This section describes how to use DITA2Go configuration settings to fine-tune the
association of table-cell content with row- and column-header information. Topics
include:

§36.1 Understanding table cell settings on page 667
§36.2 Using the scope method to identify table cells on page 667
§36.3 Using the id/headers method to identify table cells on page 669
§36.4 Overriding default table-cell settings on page 675
§36.5 Using ColGroup and RowGroup cells on page 676

See also:
§34 Generating WAI markup for HTML on page 649
§35 Identifying HTML table structure for WAI on page 657

36.1 Understanding table cell settings
You use [Tables] settings to specify WAI attributes that associate table cells with rows,
row groups, columns, and column groups. These settings apply to all tables in your
document. You can use corresponding [TableAccess] settings to override many of them
for selected tables. To specify different [Tables] settings for all the tables referenced by
a single ditamap, you can include those settings in a configuration file named after the
ditamap file; for example, Chap2.ini . See §42.1 Using a different configuration for
selected files on page 765.

DITA2Go generates identifiers for each cell from the [Tables] settings, to associate the
cell with the specified parts of the table. To avoid duplicate cell identifiers when an output
file includes more than one table, DITA2Go adds to each identifier a string that is unique
to each table in the file. For example, all identifiers in the first table in the file end with t1 ,
those in the next table end with t2 , and so forth.

36.2 Using the scope method to identify table cell s
Table 36-1 lists the scope settings you can specify in the [Tables] section of the
configuration file.

Table 36-1 WAI scope attributes for table cells

[Tables] setting
Default
value

[TableAccess]
override Purpose

Column ScopeCol No ScopeCol Apply scope="col" (the default)
to column-header cells

ScopeColGroup No ScopeColGroup Apply scope="colgroup" to
ColGroup header cells*

Row ScopeRow No ScopeRow Apply scope="row" (the default)
to row-header cells

ScopeRowGroup No ScopeRowGroup Apply scope="rowgroup" to
RowGroup header cells*

* Cells marked as ColGroup or RowGroup via [HTMLParaStyles] parafmt=*Group or CellGroup PI
marker

USING THE SCOPE METHOD TO IDENTIFY TABLE CELLS DITA2GO USER’S GUIDE

668 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Use these settings to identify column and row header cells that apply to more than one
body column or row, either explicitly or implicitly:

[Tables]
; ScopeCol = No (to not use) or Yes (to apply defau lt scope="col"
; to non-empty cells in table header)
ScopeCol=No
; ScopeColGroup = No (to not use) or Yes (to apply scope="colgroup"
; instead of "col" to column head cells identified as ColGroup via
; [HTMLParaStyles] or CellGroup marker col; sets C olGroupElements).
ScopeColGroup=No
; ScopeRow = No (to not use) or Yes (to apply defau lt scope="row"
; to first non-empty cell in each row in the table)
ScopeRow=No
; ScopeRowGroup = No (to not use) or Yes (to apply scope="rowgroup"
; instead of "row" to non-empty row-spanning cells at left in table;
; applies "row" to non-spanning cells, so ScopeRow is not needed).
ScopeRowGroup=No

You can override each of these settings in the [TableAccess] section for selected tables
by specifying the same setting, prefixed with No, as a property; see §36.4 Overriding
default table-cell settings on page 675.

Note: If you set AccessMethod=Scope , DITA2Go automatically sets ScopeCol ,
ScopeRow, ScopeColGroup , and ScopeRowGroup to Yes.

Columns and
rows

ScopeCol applies to non-empty cells in rows that are tagged <th> or that are designated
as header rows via [Tables]TableHeaderRows or [TableAccess]HRows N.

ScopeRow applies to non-empty cells in the first (leftmost) column in the table, even if the
cells in that column are tagged <td> instead of <th> ; or to columns that are designated as
row headers via [Tables]TableHeaderCols or [TableAccess]HCols N.

Groups of
columns or rows

You can use scope=colgroup or scope=rowgroup to apply a header to all cells in a
group. If you use column groups and row groups, you can specify a group scope even
though none of the header cells spans more than one column or row.

For the group scope settings to be meaningful and effective, a table has to have the
structure they imply. For example, scope="colgroup" works only if the table has
column groups (<colgroup> elements), and scope="rowgroup" works only if the
table has row groups (<tbody> elements). Therefore:

 • Specifying column groups automatically sets [Tables]ColGroupElements=Yes ;
for more information, see §33.3.2.3 Enumerating table column groups on page 628.

 • Specifying row groups automatically sets [Tables]HeadFootBodyTags=Yes ; for
more information, see §33.3.2.4 Wrapping table row groups on page 629.

The group scope attributes work in concert with ColGroup and RowGroup cells: header
cells that are assigned [HTMLParaStyles] property ColGroup or RowGroup, described
in §35.2.2 Using paragraph formats for table-cell attributes on page 661; or that contain PI
marker type CellGroup , described in §35.2.4 Assigning table-cell attribute values with PI
markers on page 666.

Note: If any of your tables have footer rows, when you use scope="rowgroup" the
resulting HTML might contain some surprises; see §33.3.2.5 Positioning table
footer rows (deprecated) on page 629 in §33.3.2.4 Wrapping table row groups on
page 629.

36 MARKING HTML TABLE CELLS FOR WAI USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS

ALL RIGHTS RESERVED. MAY 19, 2013 669

36.3 Using the id/headers method to identify table cells
In this section:

§36.3.1 Choosing an id/headers level on page 669
§36.3.2 Specifying id/headers attributes for table cells on page 669
§36.3.3 Grouping header cells for identification on page 670
§36.3.4 Column-group and row-group extent on page 671
§36.3.5 Choosing a different row-group method on page 672
§36.3.6 Using span attributes to identify rows and columns on page 672
§36.3.7 Column-span and row-span extent on page 673
§36.3.8 Identifying individual table cells by row and column on page 674
§36.3.9 Column and row extent on page 674
§36.3.10 Using span IDs with row or column IDs on page 675

36.3.1 Choosing an id/headers level

If you decide to use the id /headers method, you can choose from three levels:

First see if you can use groups to adequately identify cells; if grouping header cells does
not give you enough resolution, consider span attributes; if span attributes do not suffice,
use row and column IDs to provide the maximum amount of identification for each cell.

If you need to identify cells by virtual or conceptual properties, or by disjoint groupings of
header cells, you might want to apply the axis attribute also, using one of the table
markup methods described in §35.2.3 Assigning table-cell attribute values with dedicated
formats on page 665 or §35.2.4 Assigning table-cell attribute values with PI markers on
page 666.

36.3.2 Specifying id/headers attributes for table cells

Table 36-2 shows the id/headers attributes you can specify in the [Tables] section.
For selected tables you can override each of the *IDs settings in the [TableAccess]
section, by specifying the same setting, prefixed with No, as a property; see §36.4
Overriding default table-cell settings on page 675.

Groups: Identify column-header cells or row-header cells that apply to a block of
cells, including other header cells; add headers attributes to all affected
cells, identifying each by the header cell of its block.

Spans: Identify column-header or row-header cells that explicitly or implicitly
apply to multiple columns or rows of body cells; add headers attributes
to all affected body cells, identifying each by the header cells that apply.

Cells: Identify each column-header cell and row-header cell; add headers
attributes to all body cells, identifying each by row and column.

USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS DITA2GO USER’S GUIDE

670 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

36.3.3 Grouping header cells for identification

Use the following settings to specify whether header cells should be grouped. These
settings work in concert with ColGroup and RowGroup cells: header cells that are
assigned [HTMLParaStyles] property ColGroup or RowGroup, described in §35.2.2
Using paragraph formats for table-cell attributes on page 661; or that contain PI marker
type CellGroup , described in §35.2.4 Assigning table-cell attribute values with PI markers
on page 666.

[Tables]
; ColGroupHead is "group" by default; it is used in the id attrs of
; header cells containing a para format with [HTMLP araStyles]ColGroup.
ColGroupHead=group
; RowGroupHead is "group" by default; it is used in the id attrs of
; left cells containing a para format with [HTMLPar aStyles]RowGroup.
; If ColGroup is used, first ID numerically follow s last ColGroup ID.
RowGroupHead=group
; ColGroupIDs = No (default)
; or Yes (to use id="groupN" in col head cells ide ntified
; as ColGroup via [HTMLParaStyles] or the CellGrou p marker col.)
ColGroupIDs=No

Table 36-2 WAI id/header table cell attributes

[Tables] setting
Default
value Purpose Ref.

Column ColGroupHead group Name the id to use for column group
headers

36.3.3

ColGroupIDs No Add id="groupN" to ColGroup* header
cells, headers="groupN" to cells in the
column group

ColSpanHead span Name the id to use for column-spanning
headers

36.3.6

ColSpanIDs No Add id="spanN" to column-header cells
designated Span via [HTMLParaStyles] or
CellSpan PI marker, headers="spanN" to
cells in the column

ColHead col Name the id to use for columns 36.3.8
ColIDs No Add id="colN" to column headers,

headers="colN" to cells in the column

Row RowGroupHead group Name the id to use for row group headers 36.3.3
RowGroupIDs No Add id="groupN" to RowGroup* header

cells, headers="groupN" to cells in the row
group

RowSpanHead span Name the id to use for row-spanning
headers

36.3.6

RowSpanIDs No Add id="spanN" to row-header cells (first
cell in each row) designated Span via
[HTMLParaStyles] (or via a CellSpan PI
marker), headers="spanN" to cells in the
row

RowHead row Name the id to use for rows 36.3.8
RowIDs No Add id="rowN" to leftmost column,

headers="rowN" to cells in the row

* Cells marked ColGroup or RowGroup via [HTMLParaStyles] parafmt=xGroup or via CellGroup PI
marker

36 MARKING HTML TABLE CELLS FOR WAI USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS

ALL RIGHTS RESERVED. MAY 19, 2013 671

; RowGroupIDs = No (default)
; or Yes (to use id="groupN" in row head cells ide ntified
; as RowGroup via [HTMLParaStyles] or the CellGrou p marker row.)
RowGroupIDs=No

Column-group
and row-group

identifiers

The values you specify for ColGroupHead and RowGroupHead are the names DITA2Go
uses for column-group and row-group identifiers. For example, if you specify
ColGroupHead= gname, every ColGroup cell gets attribute id=" gnameN" . If you do not
specify values for ColGroupHead and RowGroupHead, DITA2Go uses the default name,
group , for both; and numbers the row groups starting where the column-group numbers
end.

Column groups When you specify ColGroupIDs=Yes , DITA2Go generates the following identifiers:

id="group N"

 • for each ColGroup cell (header cell that contains either a paragraph designated
[HTMLParaStyles] ColGroup , or a CellGroup PI marker with content col).

headers="group N"

 • for each cell to the right of the id="group N" cell until the next ColGroup cell;
 • for each cell below the id="group N" cell;
 • for each cell below the headers="group N" cells that are in the id=group n

row.

Specifying ColGroupIDs=Yes prevents assignment of a single-column ID to the id=
"group N" cell, but does not prevent this assignment to the headers=group N cells to the
right of the id="group N" cell. See §36.3.8 Identifying individual table cells by row and
column on page 674 for information about specifying IDs for individual columns. See also
§36.5.1 Understanding how the ColGroup property works on page 676.

Row groups When you specify RowGroupIDs=Yes , DITA2Go generates the following identifiers:

id="group N"

 • for each RowGroup cell (header cell that contains either a paragraph designated
[HTMLParaStyles] RowGroup, or a CellGroup PI marker with content row)
and that does not have a column ID.

headers="group N"

 • for each cell below the id="group N" cell until the next RowGroup cell;
 • for each cell to the right of the id="group N" cell;
 • for each cell to the right of the headers="group N" cells that are in the id=

"group N" column.

Specifying RowGroupIDs=Yes prevents assignment of a row ID to the RowGroup cell,
but does not prevent this assignment to the headers="group N" cells below the id=
"group N" cell. See §36.3.8 Identifying individual table cells by row and column on
page 674 for information about specifying IDs for individual rows. See also §36.5.2
Understanding how the RowGroup property works on page 677.

36.3.4 Column-group and row-group extent

Figure 36-1 shows the range of cells that are given headers="colgrp1" or headers=
"rowgrp2" , or both, when ColGroupIDs=Yes , RowGroupIDs=Yes , ColGroupHead=
colgrp , and RowGroupHead=rowgrp .

USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS DITA2GO USER’S GUIDE

672 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Figure 36-1 Extent of row and column groups

36.3.5 Choosing a different row-group method

If you set HeadFootBodyTags=Yes , probably you will not want to use RowGroupIDs ;
use the scope method instead. For example, if you use paragraph format
RowGroupHeading for row-group header text, you could specify:

[HTMLParaStyles]
RowGroupHeading=RowGroup Scope TableHead

[StyleCellScope]
RowGroupHeading=rowgroup

or, if the RowGroupHeading cells actually span the rows in the group:
[Tables]
ScopeRowGroup=Yes

either of which produces:
<tbody>
<tr><th scope=rowgroup>My Group Head</th><td></td> ... </tr>
<tr><td></td>... </tr>
...
</tbody>

This provides the association between “My Group Head” and all the cells in the <tbody>
section at minimum cost in HTML coding and file size. Only if you cannot use
HeadFootBodyTags , perhaps because your target browser does not support it, would you
want to use RowGroupIDs for this purpose.

36.3.6 Using span attributes to identify rows and columns

If complex tables contain header cells that span more than one column or row, you can use
the following settings to have DITA2Go generate span-numbered id attributes for the
dependent cells. These settings work in concert with Span cells: header cells that are
assigned [HTMLParaStyles] property Span, described in §35.2.2 Using paragraph
formats for table-cell attributes on page 661; or that contain PI marker type CellSpan ,
described in §35.2.4 Assigning table-cell attribute values with PI markers on page 666.

[Tables]
; ColSpanIDs = No (to use only per markers or forma ts), or Yes
; adds id=spanN to each cell in header rows that s pans columns,
; or that has a CellSpan marker, or contains any para formats
; with [HTMLParaStyles] Span, increments for each one used.
; adds headers=spanN to all cells below the spanni ng cell.
ColSpanIDs=No
; ColSpanHead is usually "span".
ColSpanHead=span
; RowSpanIDs = No (to use only per markers or forma ts), or Yes
; adds id=spanN to first cell in each row if it sp ans rows, or
; if it has a CellSpan marker, or if it has any p ara formats

id=colgrp1 id=colgrp2

id=rowgrp1

id=rowgrp2

id=rowgrp3

headers=colgrp1

headers=rowgrp2

headers=colgrp1 rowgrp2

36 MARKING HTML TABLE CELLS FOR WAI USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS

ALL RIGHTS RESERVED. MAY 19, 2013 673

; with [HTMLParaStyles] Span, increments for each one used.
; adds headers=spanN to all cells right of the spa nning cell.
; if ColSpan used, first ID numerically follows la st ColSpanID.
RowSpanIDs=No
; RowSpanHead is usually also "span"; that's why th e ID numbers
; used for ColSpan are skipped for RowSpan
RowSpanHead=span

DITA2Go implements cell spans so that you can have several span values that all apply to
the same cell. If you specify the [HTMLParaStyles] Span property for paragraph
formats (or insert CellSpan PI markers) in multiple header columns or rows, and the
higher-level headers really do span the columns or rows they affect, their span values
appear in each dependent cell’s attributes.

You can override each of the *IDs settings in the [TableAccess] section for selected
tables by specifying the same setting, prefixed with No, as a property; see §36.4
Overriding default table-cell settings on page 675.

Column-span and
row-span
identifiers

The values you specify for ColSpanHead and RowSpanHead are the names DITA2Go
uses for column-spanning and row-spanning header-cell identifiers. For example, if you
specify ColSpanHead= sname, every column-header Span cell gets attribute id=
" snameN" . If you do not specify values for ColSpanHead and RowSpanHead,
DITA2Go uses the default, span , for both; and numbers the row-spanning header cells
starting where the column-spanning numbers end.

Column spans When you specify ColSpanIDs=Yes , DITA2Go generates the following identifiers:

Row spans When you specify RowSpanIDs=Yes , DITA2Go generates the following identifiers:

36.3.7 Column-span and row-span extent

Figure 36-2 shows the range of cells that are given headers="cspan1" or headers=
"rspan2" , or both, when ColSpanIDs=Yes , RowSpanIDs=Yes , ColSpanHead=
cspan , and RowSpanHead=rspan .

Figure 36-2 Extent of column and row spans

id="span N" for each column-header Span cell (cell containing a
paragraph designated [HTMLParaStyles] Span, or a
CellSpan PI marker).

headers="span N" for each cell in each column below (spanned by) the id=
"span n" cell.

id="span N" for each row-header Span cell (cell containing a paragraph
designated [HTMLParaStyles] Span, or a CellSpan PI
marker), and that does not have a column ID.

headers="span N" for each cell in each row to the right of the id="span n"
cell.

id=cspan1

id=rspan1

id=rspan2

headers=cspan1

headers=rspan2

headers=cspan1 rspan2

USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS DITA2GO USER’S GUIDE

674 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

36.3.8 Identifying individual table cells by row a nd column

When you use the following settings, DITA2Go automatically generates the WAI id
attribute for all row and column headers, and the headers attribute for all individual
cells:

[Tables]
;RowIDs and ColIDs set row and col IDs in table hea der cells
; and the matching headers attribute in table body cells.
; ColIDs = No (to not use), or Yes
; adds id=colN to first cell in header row of each column,
; adds headers=colN to each cell below in the same column(s).
ColIDs=No
; ColHead is often seen in examples as "header", bu t this is
; not essential; it can be any useful identifier:
ColHead=col
; RowIDs = No (to not use), or Yes
; if ColIDs are used, does not affect all the head er rows.
; adds id=rowN attribute to the first cell of each body row,
; adds headers=rowN to each following cell in that row.
RowIDs=No
; RowHead is usually row, but again could be anythi ng:
RowHead=row

You can override each of the *IDs settings in the [TableAccess] section for selected
tables by specifying the same setting, prefixed with No, as a property; see §36.4
Overriding default table-cell settings on page 675.

Column and row
identifiers

The values you specify for ColHead and RowHead are the names DITA2Go uses for
column and row identifiers. For example, if you specify ColHead= name, every cell in
column N gets attribute id=" nameN" . If you do not specify values for ColHead and
RowHead, DITA2Go uses the defaults: col and row , respectively.

Columns When you specify ColIDs=Yes , DITA2Go generates the following identifiers for each
column:

DITA2Go interprets straddled column-header cells as applying to all the body cells under
them. For example, if the header cell for column 3 also straddles columns 4 and 5,
DITA2Go generates headers="col3" for the body cells in columns 3, 4, and 5.

Rows When you specify RowIDs=Yes , DITA2Go generates the following identifiers for each
row:

36.3.9 Column and row extent

Figure 36-3 shows the range of cells that are given a headers="col2" attribute, a
headers="row3" attribute, or both, when ColIDs=Yes , RowIDs=Yes , ColHead=col ,
and RowHead=row.

id="col N" for the first (top left) header cell in column n

headers="col N" for each body cell in column n

id="row N" for the first (top left) cell in row n that does not already
contain an id attribute (such as id="col1" in the first
header row)

headers="row N" for each body cell in row n to the right of the id=row n cell

36 MARKING HTML TABLE CELLS FOR WAI OVERRIDING DEFAULT TABLE-CELL SETTINGS

ALL RIGHTS RESERVED. MAY 19, 2013 675

Figure 36-3 Extent of column and row IDs

36.3.10 Using span IDs with row or column IDs

When ColIDs=Yes:

 • If ColSpanIDs=No , DITA2Go interprets horizontally straddled cells in a column-
header row as applying to all the body cells below them. For example, if the first cell
in column 2 also straddles the cell next to it in column 3, DITA2Go generates
headers="col2" for the body cells in columns 2 and 3.

 • If ColSpanIDs=Yes , the cells are identified as follows:
 – The straddling cell gets id="span n" instead of id="col2" .
 – The two non-straddling cells in the first row below the straddling cell get id=

"col2" (left cell) and id="col3" (right cell).
 – The rest of the non-straddling cells below get headers="col2" (left column)

and headers="col3" (right column).
 – All cells below the straddling cell get headers="span n" .

When RowIDs=Yes:

 • If RowSpanIDs=No , DITA2Go interprets vertically straddled cells in a row-header
column as applying to all the body cells to the right of them. For example, if the first
cell in row 2 also straddles the cell below it in row 3, DITA2Go generates headers=
"row2" for the body cells in rows 2 and 3.

 • If RowSpanIDs=Yes , the cells are identified as follows:
 – The straddling cell gets id="span n" instead of id="row2" .
 – The two non-straddling cells in the first column to the right of the straddling cell

get id="row2" (top cell) and id="row3" (bottom cell).
 – The rest of the non-straddling cells to the right get headers="row2" (top row)

and headers="row3" (bottom row).
 – All cells to the right of the straddling cell get headers="span n" .

See §36.3.6 Using span attributes to identify rows and columns on page 672 for more
information about RowSpanIDs .

36.4 Overriding default table-cell settings
You can use settings in the [TableAccess] section to override, for selected tables, the
corresponding [Tables] default settings; everything you can set in [TableAccess] has
a document-wide default in the [Tables] section.

You can specify overrides that apply to table groups, to tables of a certain format, and to
individual tables. You can even use wildcards to specify tables that are not explicitly
grouped.

You can negate a default setting by prefixing any of the following keywords with No:

id=row2

id=row4

id=row3

id=row5

id=row6

id=col2 id=col4id=col3

headers=col2

headers=row3

headers=col2 row3

USING COLGROUP AND ROWGROUP CELLS DITA2GO USER’S GUIDE

676 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ColIDs
ColGroupIDs
ColSpanIDs
RowIDs
RowGroupIDs
RowSpanIDs
ScopeCol
ScopeColGroup
ScopeRow
ScopeRowGroup

For example:
[TableAccess]
; table ID = method list (overrides default in [Tab les]) of
; ColIDs, RowIDs, ColSpanIDs, RowSpanIDs, ScopeCol , ScopeColGroup,
; ScopeRow, ScopeRowGroup, ColGroupIDs, RowGroupID s,
; or any prefixed with No, such as NoColIDs.
aa123456=ColIDs NoRowIDs
group5=ScopeColGroup
Format A=RowSpanIDs NoColIDs

36.5 Using ColGroup and RowGroup cells
ColGroup and RowGroup designations describe a structural fact about a table: that the
contents of the column or row header cell applies beyond its own column or row.

In this section:
§36.5.1 Understanding how the ColGroup property works on page 676
§36.5.2 Understanding how the RowGroup property works on page 677

See §35.2.1 Specifying group properties for header cells on page 660 for information
about specifying ColGroup and RowGroup cells.

36.5.1 Understanding how the ColGroup property wor ks

When you designate a header cell as a ColGroup cell, the effect of that property on the
table depends on which accessibility method you have specified:

Using the scope method automatically specifies ColGroupElements=Yes ; the
ColGroup cell starts a new <colgroup> element; and the ColGroup cell’s information
applies to all cells subsumed by that element.

ColGroupElements=Yes is a necessary condition for scope="colgroup" , but not for
id/headers="groupN" ; for the latter, the ColGroupElements value does not affect
which cells are marked id/headers="groupN" .

ColGroupIDs=Yes is a necessary condition for id/headers="groupN" , but not for
scope="colgroup" ; for the latter, the ColGroupIDs value does not affect which cells
are subsumed under scope="colgroup" .

Table 36-3 summarizes the effects of the ColGroup property when combined with these
settings.

scope (via AccessMethod=Scope or via ScopeColGroup=Yes)

id /headers (via AccessMethod=IDheaders or via ColGroupIDs=Yes)

36 MARKING HTML TABLE CELLS FOR WAI USING COLGROUP AND ROWGROUP CELLS

ALL RIGHTS RESERVED. MAY 19, 2013 677

If ColGroupElements=Yes , each ColGroup cell starts a new <colgroup> element. If
the ColGroup cell contains a CellScope PI marker (or the
[HTMLParaStyles]/[StyleCellScope] equivalent) that sets the scope=
"colgroup" attribute, the ColGroup property works in concert with the scope attribute
to apply the ColGroup header to all cells subsumed by its <colgroup> . The scope
attribute is in effect only within the same <colgroup> section as the ColGroup cell. See
§36.2 Using the scope method to identify table cells on page 667.

If ColGroupIDs=Yes , each ColGroup cell gets an id="groupN" attribute; cells below
the header cell and to the right of the header-cell column, across to the next ColGroup
header cell or to the edge of the table (see Figure 36-1 on page 672), each get a matching
headers="groupN" attribute. If ColGroupElements=Yes , these are the cells
subsumed by the <colgroup> element. See §36.3.3 Grouping header cells for
identification on page 670.

36.5.2 Understanding how the RowGroup property wor ks

When you designate a header cell as a RowGroup cell, the effect of that property depends
on which of the following you specify also:

Using the scope method automatically specifies HeadFootBodyTags=Yes ; the
RowGroup cell starts a new <tbody> element; and the RowGroup cell’s information
applies to all cells in that element.

HeadFootBodyTags=Yes is a necessary condition for scope="rowgroup" , but not for
id/headers="groupN" ; for the latter, the HeadFootBodyTags value does not affect
which cells are marked id/headers="groupN" .

RowGroupIDs=Yes is a necessary condition for id/headers="groupN" , but not for
scope="rowgroup" ; for the latter, the RowGroupIDs value does not affect which cells
are subsumed under scope="rowgroup" .

Table 36-4 summarizes the effects of the RowGroup property when combined with these
settings.

Table 36-3 ColGroup property effects

Setting ColGroupElements Yes No

ColGroupIDs Yes No Yes No

scope="colgroup" * Yes No Yes No Yes No Yes No

Effect starts new <colgroup> Yes Yes Yes Yes No No No No

id/headers="groupN" Yes Yes No No Yes Yes No No

scope attribute applied Yes No Yes No No No No No

* Set via CellScope PI marker or [HTMLParaStyles] fmt=Scope , [HtmlStyleCellScope] fmt=
colgroup

scope (via AccessMethod=Scope or via ScopeRowGroup=Yes)

id /headers (via AccessMethod=IDheaders or via RowGroupIDs=Yes)

Table 36-4 RowGroup property effects

Setting HeadFootBodyTags Yes No

RowGroupIDs Yes No Yes No

scope="rowgroup" * Yes No Yes No Yes No Yes No

* Set via CellScope PI marker or [HTMLParaStyles] fmt=Scope , [StyleCellScope] fmt=rowgroup

USING COLGROUP AND ROWGROUP CELLS DITA2GO USER’S GUIDE

678 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

If HeadFootBodyTags=Yes , each RowGroup cell starts a new <tbody> element. If the
RowGroup cell also contains a CellScope PI marker (or the
[HTMLParaStyles]/[StyleCellScope] equivalent) that sets the scope=
"rowgroup" attribute, the RowGroup property works in concert with the scope attribute
to apply the RowGroup header to all cells in its <tbody> section. The scope attribute is
in effect only within the same <tbody> section as the RowGroup cell. See §36.2 Using
the scope method to identify table cells on page 667.

If RowGroupIDs=Yes , each RowGroup cell is given an id consisting of the
RowGroupHead name followed by a sequential number. This id is used as a headers
attribute in all cells to the right of the RowGroup cell and all cells below that row (see
Figure 36-1 on page 672), until the next cell down that contains a RowGroup paragraph.
See §36.3.3 Grouping header cells for identification on page 670.

Effect starts new <tbody> Yes Yes Yes Yes No No No No

id/headers="groupN" Yes Yes No No Yes Yes No No

scope attribute applied Yes No Yes No No No No No

Table 36-4 RowGroup property effects

* Set via CellScope PI marker or [HTMLParaStyles] fmt=Scope , [StyleCellScope] fmt=rowgroup

ALL RIGHTS RESERVED. MAY 19, 2013 679

37 Working with macros

You can use macros to insert any content into the output stream. Because the DITA2Go
macro language is Turing-complete, the DITA2Go macro facility is powerful enough to
let you insert anything in RTF output, and do almost anything to HTML or XML output.
Topics include:

§37.1 Defining and invoking macros on page 679
§37.2 Accessing DITA2Go macro libraries on page 684
§37.3 Using macro variables on page 687
§37.4 Using multiple-value list variables on page 695
§37.5 Accessing settings with configuration macros on page 699
§37.6 Using expressions in macros on page 700
§37.7 Passing a parameter to a macro on page 709
§37.8 Debugging macros on page 709
§37.9 Deploying macros and macro variables on page 710
§37.10 Using macros to fine-tune HTML or XML output on page 713

See also:
§42.2.3 Overriding settings with macros on page 767

37.1 Defining and invoking macros
In this section:

§37.1.1 Defining macros on page 679
§37.1.2 Invoking a macro on page 683
§37.1.3 Nesting macros on page 683
§37.1.4 Using predefined macros on page 683

37.1.1 Defining macros

To define a macro, create a configuration-file section with the name of the macro as the
section name. This section can go in your project configuration file, or in a macro library
file; see §37.1.1.2 Understanding where you can define named macros on page 680.

For example, to define macro $OurLogo for HTML output:
[OurLogo]
<hr />

<hr /><b r />

The content of the macro begins on the next line after the section name, and ends at the
start of the next section, or at the end of the configuration file. The name must consist only
of letters and digits. Do not include punctuation or spaces in a macro name.

In this section:
§37.1.1.1 Understanding what a macro definition can include on page 680
§37.1.1.2 Understanding where you can define named macros on page 680
§37.1.1.3 Escaping special characters in macro definitions on page 680
§37.1.1.4 Managing line breaks in macro definitions on page 681
§37.1.1.5 Including comments in macro definitions on page 681
§37.1.1.6 Obtaining RTF code for macro definitions on page 682

DEFINING AND INVOKING MACROS DITA2GO USER’S GUIDE

680 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

37.1.1.1 Understanding what a macro definition can include

Macros can include more than simple code:

 • For HTML output a macro can contain HTML code, JavaScript, or anything else
printable that follows the rules of whatever language you are using.

 • For RTF output, a macro can insert Field content.
 • For all types of output, a macro can specify Windows system commands, provided

double any backslashes and enclose paths that contain spaces in double quotes; see
§43.1.5 Supplying system commands in a macro on page 779.

A macro can be any length. You can define macros to use as “building blocks” for other
macros. There is no limit to the number of macros you can define for a project.

Note: You do not have to define every string of code as a macro. Any place in the
configuration file where you can use a macro, you can also use plain HTML or
RTF code, provided you include the entire code string on one line.

Whether you use a formal named macro definition or an informal string of code, for
HTML output DITA2Go always inserts an extra line break in the output immediately
before the expanded macro. This is so you can readily identify macro-supplied code, for
ease in correcting any errors in your macro settings. Browsers ignore the extra line break.

37.1.1.2 Understanding where you can define named macros

You can put DITA2Go macro definitions in any of the following places:

 • Best place: in a macro library file; see §37.2 Accessing DITA2Go macro libraries on
page 684.

 • If large or complex: individually in separate macro files; see §37.2.3 Storing a macro
definition in a separate file on page 685.

 • Otherwise: toward the end of your project configuration file, before any
[MacroVariables] section.

Order does not
matter

The relative order in which macro definitions appear in a file is not important; what
matters is the order in which they are invoked during conversion (see §37.1.2 Invoking a
macro on page 683).

Do not end a file
with a macro

Do not put a macro at the very end of a configuration file or library file. If you have no
macro variables to define, and no [MacroVariables] section, end the file with a
dummy section; for example:

[End]

No macros in
templates

Do not include macro definitions in a configuration template (see §39.5.2 Deciding what
to include in a general configuration template on page 742).

Put complex
macros in a
separate file

If you create lengthy macros (for example, with a lot of conditional expressions), and you
indent the code for readability, put the macros in a library file separate from the
configuration file; or put each macro in its own macroname.txt file. That way the
indentation is preserved. When DITA2Go updates your project configuration file as a
consequence of changes you make to Export options, Windows rewrites the file, and
deletes all leading spaces in the settings.

37.1.1.3 Escaping special characters in macro defi nitions

Use a backslash in a macro to escape other characters, such as “\ ”, “ <”, “ >”, “ " ”, “ $”, “ ; ”
and “ ” (space). For example, if you need to start a macro content line with “[” or “ ; ”
(left bracket or semicolon), preface the line with a backslash, to keep the line from being
treated as a comment or section head:

37 WORKING WITH MACROS DEFINING AND INVOKING MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 681

[MyMacro]
\; This is not a configuration-file comment
; This is a configuration-file comment
\[NotTheNextSection]
[TheNextSection]

To specify a trailing space at the end of a macro, insert any of the following:
two spaces
\ (a backslash followed by a space)
\~ (a backslash followed by a tilde).

The \~ convention is especially helpful, because it allows you to show that a space is
unequivocally intended.

Make sure to escape the backslash itself if your macro includes path names. For example:
[MyGraphicFileCopy]
cd <$$_currpath>\\wrap
copy "c:\\my graphics*.jpg"
copy "c:\\more graphics*.jpg"

To include a comment in macro definitions, see §37.1.1.5 Including comments in macro
definitions on page 681.

37.1.1.4 Managing line breaks in macro definitions

A macro definition does not have to be all on one line; DITA2Go ignores line breaks
when processing macros. However, any implicit line breaks in the definition are retained
in output when a macro is expanded.

To remove an implicit line break so it does not appear in the output, end the line in
question with a backslash “\ ”.

To remove all implicit line breaks from macros upon expansion:
[Macros]
; OmitMacroReturns = No (default)
; or Yes (omit macro linebreaks in output)
OmitMacroReturns=Yes

Be aware that omitting all line breaks means that the code generated from each expanded
macro—even JavaScript code—ends up all on one line in the output. Few browsers can
handle the very long lines that might result.

If you specify OmitMacroReturns=Yes , but still need line breaks in some macros to
keep line lengths reasonable in output, you can insert a C-style line terminator “\n ” in the
definition, even in the middle of a line, wherever you want an explicit line break in the
output.

37.1.1.5 Including comments in macro definitions

Any line in a macro definition that starts with a semicolon (;) is treated as a
configuration-file comment, even lines that would otherwise execute system commands:

[SomeMacro]
; This entire line is a comment, and so is the next :
; jhjar <$$currpath>\help ugdita2go
; But the following line will be executed:
jhindex <$$currpath>\help html

Normally, a line that starts with a semicolon in a macro definition does not appear at all in
the output. If you do want such a comment to appear in the output, as itself, escape the
semicolon with a backslash:

DEFINING AND INVOKING MACROS DITA2GO USER’S GUIDE

682 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

\; my macro comment

When you do this, you get the backslash character in the output, which appears to be
wrong based on the rule for escaping characters (see §37.1.1.3 Escaping special characters
in macro definitions on page 680). However, using two backslashes “\\; ” also results in
“ \; ” in the output, which is correct.

There is a reason for this odd behavior. Macros can be nested, and it is desirable to avoid
multiple escaping that depends on the nesting level. If the original backslash went away,
and the macro was nested inside another macro, the comment would disappear on the next
evaluation, unless you used “\\\; ”; and if the macro was nested two deep you would
need “\\\\\\; ”, which starts to become user unfriendly. Keeping the single backslash
avoids all that, but it can cause astonishment.

What you do not get in the output is an HTML comment:

<!-- my macro comment -->

If that is what you want, put the comment in your macro using HTML comment syntax,
exactly as you want it to appear in HTML output.

37.1.1.6 Obtaining RTF code for macro definitions

RTF coding is arcane, especially for tables. Unless you are an RTF expert, your best bet
might be to copy existing RTF code. Here are some ways to obtain RTF code for your
macros:

Get code examples from Word
Get code examples from DITA2Go
Generate RTF code with DITA2Go.

Get code
examples from

Word

You can pretty-print RTF output from Word to mine for code (if you open a Word RTF file
directly in a text editor, you see only unbroken lines of unreadable code):

1. In Word, create an example of the output you want.

2. Save as RTF from Word.

3. At a Windows command prompt, run pretty-printer program pprtf.exe on the saved
RTF. The pprtf.exe program is included in your DITA2Go distribution directory.

The RTF pretty-printer, pprtf.exe , takes either one or two arguments:

 • the name of the RTF file, with extension
 • optionally, a different name for the output file, with extension

and creates a new file:
pprtf ExampleFile.rtf NewFile.txt

If you omit the second argument, the output is a file of the same name as the RTF file, but
with extension .txt .

Get code
examples from

DITA2Go

Another way to obtain RTF code is to create an example in DITA, run DITA2Go , and then
copy/paste the resulting RTF code into your d2rtf.ini configuration file or into a macro
library file. DITA2Go produces RTF output that is even more readable than the output
from pprtf.exe .

Generate RTF
code with
DITA2Go

For paragraphs, you can use CodeStore to generate RTF code; see §37.3.5.2 Inserting
code with the CodeStore property on page 693.

37 WORKING WITH MACROS DEFINING AND INVOKING MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 683

37.1.2 Invoking a macro

To invoke a macro, insert its name, enclosed in a <$ > tag:
<$Macroname>

The dollar sign at the start of the tag is not valid in HTML, so it will not interfere with any
real HTML (or XML) code. A space after the dollar sign is optional. When DITA2Go sees
a macro name, it replaces the tag with the macro content.

You can invoke a macro:

 • as all or part of the value in certain key=value configuration settings; see §37.9.1
Understanding where to use macros and macro variables on page 710.

 • in an HTML Macro PI marker; see §37.9.5 Using HTML Macro PI markers to invoke
macros on page 713.

Wherever you can invoke a macro, you can also supply plain HTML. You do not have to
name and define strings of HTML code that you expect to include in only one place.

Invoking an
undefined macro

DITA2Go ignores the invocation of any macro for which no definition can be found,
unless you specify a special debugging option; see §37.8 Debugging macros on page 709.
You can take advantage of this behavior to set up a series of alternatives, then selectively
enable only the ones you want for a given conversion project by renaming (or moving)
macro library files. See §37.2.4 Including macro definitions in your own macro library on
page 685.

37.1.3 Nesting macros

Within one macro you can invoke another macro, and that macro can invoke another, and
so on; you can nest macro invocations to any level. When a macro calls another macro,
DITA2Go notes the “nesting level” and compares it with the limit you set:

[Macros]
; MacroNestMax = maximum depth of macro calls in on e statement
; used to prevent runaways when macros call each o ther in circles
MacroNestMax=128

So if you define a macro as:
[Again]
<P>Play it again, Sam.</P><$Again>

you would get at most 128 lines, then DITA2Go would continue. You cannot crash it by
making it loop.

37.1.4 Using predefined macros

DITA2Go provides several predefined macros for HTML, listed in Table 37-1, and for
RTF, listed in Table 37-2.

Predefined macro
names are

reserved

Avoid giving any of your own macros a name that starts with an underscore; the
DITA2Go definition takes precedence. The “$” says “this is a DITA2Go construct”; the
“_” says “the name is reserved, not one of yours”.

Table 37-1 Predefined macros for HTML output

Macro Description Ref.

<$_TopicStartCode> Macros from marker type TopicStartCode 38.2

<$_trail> Inserts a “breadcrumb trail” of links 29.2

ACCESSING DITA2GO MACRO LIBRARIES DITA2GO USER’S GUIDE

684 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The predefined macros for RTF output, listed in Table 37-2, are intended for use in
defining RTF output formats; see §7.4.8 Assigning content-adding properties to formats
on page 118.

37.2 Accessing DITA2Go macro libraries
In this section:

§37.2.1 Understanding DITA2Go-supplied macro libraries on page 684
§37.2.2 Modifying DITA2Go-supplied macro definitions on page 685
§37.2.3 Storing a macro definition in a separate file on page 685
§37.2.4 Including macro definitions in your own macro library on page 685

37.2.1 Understanding DITA2Go-supplied macro librar ies

Your DITA2Go distribution includes several macro library files in the form of macro
configuration templates, listed in Table 39-9. These macro libraries are located in
directory %OMSYSHOME%\d2g\macros. The templates are chained together by references.

To access a macro library (for example):
[Templates]
; Macros = path to macro library file
Macros = %OMSYSHOME%\d2g\d2htm_macro.ini

DITA2Go checks the referenced chain of macro libraries whenever a macro you invoke is
not defined in your project configuration file.

A macro library file can include another [Templates]Macros setting, to make a chain
of macro libraries to be searched; the chain can be any length. However, all files in the
chain must have distinct names; the chain stops if DITA2Go finds a repeat.

Your DITA2Go project configuration file should reference d2htm_macros.ini or
d2rtf_macros.ini , either directly or indirectly through your own macro library file.

See also:
§39.2 Referencing configuration files and templates on page 731
§37.2.4.3 Creating a chain of macro libraries on page 687

Table 37-2 Predefined macros for RTF output

Macro Description

<$_style(stylename)> RTF start code for a paragraph or character format

<$_colornum(colorref)> Color number, after \\cf or \\cb

<$_fontnum(fontname)> Font number, after \\f

<$_stylenum(stylename)> Style number; after \\s i

<$_styleref(stylename)> STYLEREF field with the named style

<$_pageref> PAGEREF field referencing last bookmark used

Table 37-3 Dita2Go macro libraries

Macro library Scope of macro settings Referenced temp late

d2g_macros.ini All DITA2Go projects (None)

d2htm_macros.ini DITA2Go HTML/XML projects d2g_macros.ini

d2rtf_macros.ini DITA2Go RTF projects d2g_macros.ini

37 WORKING WITH MACROS ACCESSING DITA2GO MACRO LIBRARIES

ALL RIGHTS RESERVED. MAY 19, 2013 685

37.2.2 Modifying DITA2Go-supplied macro definition s

You can modify the macro definitions included in the macro libraries supplied with your
DITA2Go distribution, located in %OMSYSHOME%\d2g\macros. However, if you change
anything in those files, whenever you update DITA2Go you will need to run a file
comparison program to see if anything has been added or changed by Omni Systems
developers; see §1.3.9 Obtain a file comparison tool (optional) on page 35.

An alternative is to create your own macro library file and copy into it any macros you
want to alter; see §37.2.4 Including macro definitions in your own macro library on
page 685.

One sample macro is a proposed definition for a spacer for indenting graphics and tables.
A macro variable is suggested for use with this macro (see §37.3 Using macro variables on
page 687):

[Spacer]
<img src="1p.gif" height="10" width="<$$spacerwidth >" alt="[spacer]">

[MacroVariables]
spacerwidth=80

You can copy these definitions into your own macro library file, and modify them as you
wish.

37.2.3 Storing a macro definition in a separate fi le

You might want to use individual files for very large macros; or a separate file for a macro
that you want to include in different configurations, much like a text inset.

A macro file is a text file that contains a nameless macro, with content that comprises the
definition of the macro. A macro file can have any name and any extension; however, it
makes sense to give the file a base name that is the name you would have given the same
macro if included in a macro library file.

To invoke a macro in a macro file, specify a path to the macro file inside a $< ... >
wrapper. The path must include at least one path separator (forward slash or backslash);
this is what distinguishes a file macro invocation from a local or library macro invocation.
A relative path is relative to the project directory. For example:

[ParaStyleCodeReplace]
ParaFmt = <$./mymacro.ini>

would cause DITA2Go to replace each instance of ParaFmt in the output with the content
of mymacro.txt , located in the project directory.

A macro in a macro file can invoke other macros, including predefined macros, macros in
other macro files, macros in library files, and macros in configuration files. Macros in
macro files do not participate in the rules of precedence for chained macro libraries.

See also:
§37.2.4 Including macro definitions in your own macro library on page 685

37.2.4 Including macro definitions in your own mac ro library

You can construct a library of macros to use from anywhere in your project, or even across
multiple projects, by storing macro definitions in a configuration file of their own: a macro
library file. Macros in the library are defined the same way as in your project
configuration file, each macro in its own section. If a macro definition is not present in
your project configuration file, DITA2Go looks for the definition in a macro library file.

ACCESSING DITA2GO MACRO LIBRARIES DITA2GO USER’S GUIDE

686 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

In this section:
§37.2.4.1 Creating a macro library on page 686
§37.2.4.2 Creating a file-specific macro library on page 686
§37.2.4.3 Creating a chain of macro libraries on page 687

37.2.4.1 Creating a macro library

To create your own macro library:

1. Create a new text file for your macro library. Give the file extension .ini , and either
place it in your project directory or specify an absolute path to its location. It is a good
idea to use the same location for macro library files for all your DITA2Go projects.

2. Add macro definitions to the file, each in its own section, as described in §37.1.1
Defining macros on page 679.

3. Put a non-macro dummy section at the end of the file; for example:
[End]

Otherwise, the last macro in the library might cause an extra character to be included
in output.

4. Make your library file reference d2rtf_macros.ini or d2htm_macros.ini , and
make your project configuration file reference your library file. For example, suppose
you create a text file called MyMacros.ini , and place it in D:\MacroLibs .

In MyMacros.ini :
[Templates]
Macros = %OMSYSHOME%\d2g\d2htm_macro.ini

In your project configuration file:
[Templates]
Macros = D:\MacroLibs\MyMacros.ini

If you omit a path, DITA2Go looks for MyMacros.ini in your project directory.

Because MyMacros.ini is closer to your project configuration file in the chain of macro
libraries, your macro definitions take precedence over any definitions of the same macros
further away from your project configuration file in the chain.

Default macro
library

If you do not specify a value for Macros , and you invoke a macro that is not defined in
your project configuration file, DITA2Go looks in %OMSYSHOME%\d2g\macros for a file
named d2htm_macros.ini or d2rtf_macros.ini .

37.2.4.2 Creating a file-specific macro library

If you store macro definitions in a file named the same as the DITA file you are
converting, but with extension .ini , DITA2Go uses the macros in that file in place of any
with the same macro names in your project configuration file. This lets you plug in file-
specific code and data.

When you create a file-specific macro library, put a non-macro dummy section at the end
of the file; for example:

[End]

Otherwise, the last macro in the library might cause an extra character to be inserted in the
output.

37 WORKING WITH MACROS USING MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 19, 2013 687

37.2.4.3 Creating a chain of macro libraries

A macro library file can include a setting for [Templates]Macros , so the chain of
libraries for DITA2Go to search for macro definitions can be any length. However, all
files in the chain must have distinct names; the chain stops if DITA2Go finds a repeated
macro library name.

Precedence of
macro definitions

In a chain of macro libraries, if the same macro appears in more than one library file but
has a different definition in each file:

 • A definition in a library closer in the chain to the project configuration file overrides a
definition in any library farther away in the chain.

 • A definition in the project configuration file overrides the final library value.
 • A definition in an individual map configuration file (see §42.1 Using a different

configuration for selected files on page 765) overrides a definition in the project
configuration file, for that map only.

DITA2Go builds a set of macros for each DITAmap file in your project by starting with
the most specific macro definitions: those in the mapfile.ini configuration file, if there
is one. Next come macro definitions in your project configuration file.

Next, if mapfile.ini includes a value for [Templates]Macros , definitions in the
referenced macro library (and any additional libraries chained to it) are applied. If
mapfile.ini does not reference a macro library, next come definitions in any macro
library referenced by the project configuration file; then on up the chain from that library.

In other words, a chain of macro libraries is applied to mapfile.ditamap either from
mapfile.ini (preferentially) or from the project configuration file, but not from both. In
either case, definitions from a chain of macro libraries are applied after macro definitions
from the project configuration file, which are applied after definitions from the chapter
configuration file. For the same macro with different definitions in different configuration
files or macro libraries, the definition in the most specific file takes precedence.

37.3 Using macro variables
In this section:

§37.3.1 Creating and invoking macro variables on page 687
§37.3.2 Assigning values to macro variables on page 688
§37.3.3 Incrementing and decrementing macro variables on page 690
§37.3.4 Using predefined macro variables on page 691
§37.3.5 Creating macro variables from paragraph content on page 692

37.3.1 Creating and invoking macro variables

In this section:
§37.3.1.1 Naming macro variables on page 687
§37.3.1.2 Creating a macro variable on page 688
§37.3.1.3 Invoking a macro variable on page 688

37.3.1.1 Naming macro variables

A DITA2Go macro variable name looks like a DITA2Go macro name, except that a
macro variable name starts with two dollar signs instead of one: $$varname. The rest of
the name must consist only of letters and digits. Do not include punctuation or spaces in a
macro variable name.

USING MACRO VARIABLES DITA2GO USER’S GUIDE

688 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Reserved naming
for predefined

macro variables

Some macro variable names are predefined by DITA2Go , and cannot be used for other
purposes; see §37.3.4 Using predefined macro variables on page 691. The name of a
predefined DITA2Go macro variable starts with two dollar signs followed by an
underscore: $$_varname. Avoid giving a name that starts with an underscore to any of
your own macro variables; the DITA2Go definition takes precedence. The “$$” says “this
is a DITA2Go macro variable”; the “_” says “the name is reserved, not one of yours”.

A DITA2Go macro variable is not the same as a DITA2Go variable, though they share the
same naming convention. A DITA2Go macro variable overrides a DITA2Go variable of
the same name. See §12.1 Understanding how DITA2Go user variables work on page 185.

37.3.1.2 Creating a macro variable

You create a DITA2Go macro variable when you do any of the following:

 • Use the variable as the first term in a macro assignment or increment/decrement
statement; see §37.3.2 Assigning values to macro variables on page 688.

 • List the name of the variable in [MacroVariables] (for use in macros); see §37.3.2
Assigning values to macro variables on page 688.

 • Assign a TextStore or CodeStore property to a paragraph format; see §37.3.5
Creating macro variables from paragraph content on page 692.

37.3.1.3 Invoking a macro variable

You invoke a macro variable like this:
<$$varname>

Or like this:
<$$varname as display-format>

where display-format is a C-language style printf() format. See §37.6.3
Displaying expression results in output on page 702.

You do not need the enclosing angle brackets when you use a macro variable inside a
macro; for example, in an assignment such as <$$myvar = ($$othervar + 2)> .

An example Suppose you want to use a macro that includes the following:

 • an image, but with a different src attribute each time
 • a heading, but with different text each time.

Rather than have two almost identical macros, you can use a macro variable for the src
attribute and another for the heading, then set their values appropriately for each use.

You could define the macro like this:
[TopStory]
<img src="<$$Pic>" alt="Today’s top story" /><h2><$ $Head></h2>

Call it like this one day:
<$$Pic=lead000201.jpg><$$Head=No Survivors in Crash ><$TopStory>

and like this the next day:
<$$Pic=lead000202.jpg><$$Head=MS Embraces Linux><$T opStory>

37.3.2 Assigning values to macro variables

You can initialize the value of a macro variable in your configuration file, and you can
assign a value to a macro variable in the body of a macro definition:

Assign a starting value

37 WORKING WITH MACROS USING MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 19, 2013 689

Assign a value in a macro
Assign a character literal.

Assign a starting
value

Assign starting values to macro variables in configuration section [MacroVariables] .
Omit the leading $$ when you specify the name. For example:

[MacroVariables]
; varname = value to use as literal replacement, ca n be in Macro Ini
; can also be set in any macro with <$$name=value>, settings persist
; until the end of the file, but are not stored in the .ini file.
HdgCount = 000
HdgColor = blue

You can assign only literal values; you cannot assign a value that specifies a macro or
another macro variable.

Place section [MacroVariables] in one (or more) of the following files, after any
macro definitions:

 • your project configuration file
 • a configuration template
 • a separate macro file or macro library file.

Assign a value in
a macro

Use any of the following forms to assign values to variables inside DITA2Go macros:
<$$varname = $$ othername>

<$$varname = (expr)> (See §37.6 Using expressions in macros on page 700)

<$$varname = " quoted string even with \" double quotes\" in it">

<$$varname = ' quoted string using " single" quotes'>

<$$varname = string with no quotes>

<$$varname = ' x'> (Character literal)

Assign a
character literal

The value of a character literal assigned to a macro variable is the ASCII value of the
character. A character literal can be a character enclosed in single quotes, or any of the
special cases listed in Table 37-4.

Characters other than ' and \ that are preceded by a backslash are themselves. However,
' and \ , without a backslash, are not themselves:

When a string between single quotes contains more than two characters (or more than one
when the first character is not a backslash), you do not have to escape double quotes
within the string, a common JavaScript and HTML technique.

Table 37-4 Character literals for macro variables

Character literal Name Decimal ASCII value

'\r' return 13

'\n' newline 10

'' empty 0

\' single quote 39

\\ backslash 92

''' would be an empty string followed by an out-of-place ' , thus 0 (zero)

'\' is invalid, and would probably become a string with a single quote,
equivalent to "\'"

USING MACRO VARIABLES DITA2GO USER’S GUIDE

690 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Display an
assignment

Assigning a value to a macro variable does not cause the value to appear in output. To
display the value of an assignment, use as and a printf() format. For example, if the
value of <$$myvar> is 0 (zero), the following expression displays the value 0001 :

<$$myvar = ($$myvar + 1) as %0.4d>

See §37.6.3 Displaying expression results in output on page 702.

Assign a value
indirectly

You can assign a value to a variable indirectly:
<$$myvar = "$$other">
<*$$myvar = 10>

This sequence results in assigning the value 10 to $$other rather than to $$myvar . See
§37.6.7 Using indirection in expressions on page 708.

Nest macro
variables

You can nest macro variables:
[Macros]
; MacroVarNesting = Yes (default, vars contain <>)
; or No (first > ends var)
MacroVarNesting=Yes

This setting is provided solely to support old syntax in assignments. You used to use:
<$$myvar=<$$othervar>>

to get what is now simply:
<$$myvar = $$othervar>

You need MacroVarNesting=Yes only if your macro variable assignments use the old
syntax; the new syntax is always valid. Either way, you get the contents of the referenced
right-hand variable, rather than its name.

Note: Macro variables cannot contain macros.

See also:
§37.4.2 Assigning a value to a list-variable item on page 696
§42.2.4 Assigning values to configuration variables on page 768

37.3.3 Incrementing and decrementing macro variabl es

You can increment the value of a macro variable by 1 (one) like this:
<$$myvar++> (or just <$$myvar+>)

or decrement the value by 1 like this:
<$$myvar--> (or just <$$myvar->)

For example, to count Body paragraphs in a DITA file for HTML output, incrementing the
count before using it:

[HTMLParaStyles]
Body=CodeStart

[ParaStyleCodeStart]
Body=<!-- this is <$$bodynum++ as %0.3d> -->

[MacroVariables]
bodynum=bp000

These settings result in a comment like the following for each instance of a Body
paragraph in the HTML output:

<!-- this is bp003 -->

Reserve enough
digits

You must include enough placeholder digits in the starting value (in this example, bp000)
to accommodate the range of values you expect in the file. If you do not, the number will

37 WORKING WITH MACROS USING MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 19, 2013 691

roll over to zero after it reaches its maximum value: in this example bp999 would
increment to bp000 . If the value has no digits at all at the end, the last letter is
incremented instead; so a starting value of aaa increments to aab , aac , ..., aaz , aba , ...,
zzz , aaa . Case is retained for the incremented (or decremented) letter.

To increment the value after use, move the incrementing code after the reference:
[ParaStyleCodeStart]

Body=<!-- this is <$$bodynum> --><$$bodynum++>

Increment by
assignment

You can use an assignment (see §37.3.2 Assigning values to macro variables on page 688)
as another form of increment, as in the following:

<$$myvar = ($$myvar + 1)>

This form does not require reserving the maximum number of digits first.

Increment
hexadecimal

numbers

Incrementing and decrementing using ++ or -- notation does not work with values stored
as hexadecimal numbers; for those you must use an assignment to increment or decrement:

 <$$myhex = ($$myhex + 1)>

Display an
increment

You can also display the value of an increment or decrement by adding as and a
printf() format; for example:

<$$myvar++ as %d>

<$$myvar = ($$myvar + 1) as %0.4d>

See §37.6.3 Displaying expression results in output on page 702 for information about
display formats.

Increment
indirectly

You can increment a variable indirectly:
<$$myvar = "$$other">
<*$$myvar++>

This sequence increments the value of $$other rather than the value of $$myvar . See
§37.6.7 Using indirection in expressions on page 708.

37.3.4 Using predefined macro variables

DITA2Go provides a collection of predefined macro variables, listed in Table 37-5. Every
predefined macro variable name begins with “$$_ ”. Predefined macro variables are read-
only; you cannot assign values to them, and you cannot increment or decrement them.
However, you can do the following:

 • Use predefined macro variables in expressions; see §37.6.1 Understanding macro
expressions on page 700).

 • Format output of a predefined macro variable; see §37.6.3 Displaying expression
results in output on page 702).

Note: Only <$$_basename> and <$$_currpath> can be used in system commands;
other predefined macro variables do not work in system commands. See §43.1.5
Supplying system commands in a macro on page 779.

 Table 37-5 Predefined macro variables

Macro variable Where used Description Ref

$$_basefile HTML split files Base name only of parent file, without extension 27.7

$$_basename System commands Base file name (without path or extension) of current DITA file
or map

43.1.2

$$_basetitle HTML split files Original document title, unaffected by splits 27.7

$$_class Elements (HTML) CSS class name of current paragraph 37.6.6

USING MACRO VARIABLES DITA2GO USER’S GUIDE

692 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

37.3.5 Creating macro variables from paragraph con tent

Two [*Styles] properties, TextStore and CodeStore , allow you to assign text or
code to a paragraph format, and have the content of any paragraph in that format stored in
a macro variable for later insertion in the output.

In this section:
§37.3.5.1 Capturing paragraph content with the TextStore property on page 692
§37.3.5.2 Inserting code with the CodeStore property on page 693
§37.3.5.3 Understanding why TextStore and CodeStore work differently on page 694

37.3.5.1 Capturing paragraph content with the Text Store property

To store the text content of a paragraph in a macro variable, assign the TextStore
property to the paragraph format:

$$_count Loop constructs Current iteration count for <$_repeat> loops 37.6.4.3

$$_currbase Output files File name of current file, without extension 27.7

$$_currfile Output files File name of current file, with extension, 27.7

$$_currfilepath Output files Path and name of current file, with extension 27.7

$$_currpath System commands Path, without trailing slash, to project directory 43.1.2

$$_currtitle HTML split files Current file title, unaffected by extracts 27.7

$$_dcount Loop constructs Down-count for <$_repeat> loops 37.6.4.3

$$_element Elements (HTML) Name of the current element 37.6.6

$$_extrfile HTML extract files File name of extracted file 27.8.3

$$_extrgraph HTML extract files File name of first extracted graphic 27.8.3

$$_extrtitle HTML extract files Title of extracted file 27.8.3

$$_firstfile HTML split files 1 if first split part after original file, otherwise 0 27.7

$$_graphbase HTML graphics File name for attribute, no extension 32.4.2

$$_graphorighigh HTML graphics Original height in pixels of the image 32.4.2

$$_graphorigwide HTML graphics Original width in pixels of the image 32.4.2

$$_graphsrc HTML graphics File name for attribute, with extension 32.4.2

$$_indexfilename HTML index File name for non-Help HTML index file, with extension 14.8.6.4

$$_lastfile HTML split files 1 if last part (regardless of splitting), or if unsplit; otherwise 0 27.7

$$_linksrc HTML link attributes href content of a link 28.2.4

$$_macroparam Macros Value of parameter passed in parentheses 37.7

$$_nextfile HTML split files File name of split part that follows $$_currfile 27.7

$$_nexttitle HTML split files Title of $$_nextfile split part 27.7

$$_paratag Formats Name of current paragraph format 37.6.6

$$_prevfile HTML split files File name of split part that precedes $$_currfile 27.7

$$_prevtitle HTML split files Title of $$_prevfile split part 27.7

$$_prjpath System commands Path (without trailing slash) to the directory where the map file
resides

43.1

$$_tblcols Tables Count of columns in current table 33.6.6

$$_tblrows Tables Count of rows in current table 33.6.6

$$_wcount Loop constructs Iteration count for <$_while> loops 37.6.4.3

Table 37-5 Predefined macro variables (continued)

Macro variable Where used Description Ref

37 WORKING WITH MACROS USING MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 19, 2013 693

[HTMLParaStyles]
; TextStore stores the paragraph content as plain t ext in the
; macro variable named in [StyleTextStore].
Parafmt = TextStore

Explicitly assigning the TextStore property to a paragraph format is optional when you
assign a macro variable to that format in the following section:

[StyleTextStore]
; doc para format = name of macro variable in which to store para text
; if omitted, default is a macro variable of the p ara format name
Parafmt = Varname

Format name is
default variable

name

If you assign the TextStore property to a paragraph format, but you do not supply a
macro variable name in section [StyleTextStore] , DITA2Go uses the paragraph
format name itself as the macro variable name.

Plain text TextStore macro variables contain just plain text; no HTML tags, RTF formatting code,
macros, frames, or tables. Although the original paragraph content is left in place, you can
suppress its appearance in output by also assigning the Delete property to the paragraph
format.

Only last instance
counts

If more than one instance of a TextStore paragraph format appears in a portion of your
document destined for a given split or extract file, the TextStore macro variable retains
the content of only the last instance, for that particular split or extracted file.

Location can
follow point of use

For HTML, you can place a TextStore paragraph anywhere with respect to where you
want the macro-variable content to be used, within the limits of material to be split or
extracted into a single HTML output file; this is different from CodeStore paragraphs,
which must precede the point of use (see §37.3.5.3 Understanding why TextStore and
CodeStore work differently on page 694).

Content is
persistent

The content of a TextStore macro variable persists unchanged in, and is available
throughout, each HTML output file. If there is no instance of the paragraph format in the
current split file, DITA2Go uses the content of the previous instance (or even a later
instance) rather than come up empty-handed. Therefore, to prevent its use in a given split
file, you must set the value to zero in that portion of the source document.

37.3.5.2 Inserting code with the CodeStore propert y

To store the content of a paragraph in a macro variable, assign the CodeStore property to
the paragraph format:

[HTMLParaStyles] or [HelpStyles] or [WordStyles]
; CodeStore causes the paragraph content to be sto red in the macro
; variable named in [StyleCodeStore]; the para m ust *precede*
; the point of use of the macro variable in the output document.
; The original para is removed; it can be put ba ck by invoking the
; macro variable in a CodeAfter macro. Note tha t any CodeStart and
; CodeEnd macros are included in the macro varia ble content, but
; CodeBefore, CodeAfter, frames, and tables are not.
Parafmt=CodeStore

Explicitly assigning the CodeStore property to a paragraph format is optional when you
assign a macro variable to that format in the following section:

[StyleCodeStore]
; doc para format = name of macro variable in which to store para text
Parafmt=Varname

Any CodeStart and CodeEnd macros are included in the macro variable content;
however, CodeBefore macros, CodeAfter macros, frames, and tables are not included.

USING MACRO VARIABLES DITA2GO USER’S GUIDE

694 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Format name =
variable name

If you assign the CodeStore property to a paragraph format, but you do not supply a
macro variable name in [StyleCodeStore] , DITA2Go uses the paragraph format name
itself as the macro variable name.

Must precede
point of use

A paragraph with the content you want to appear at a certain point in the output must be
the last instance in your DITA document that precedes the point where you want the
content inserted. The macro variable holds the value of each instance of the paragraph
format in turn until the point of insertion, whereupon DITA2Go inserts the latest value in
the output. You can give the macro variable a starting value by defining its name in section
[MacroVariables] ; see §37.3.2 Assigning values to macro variables on page 688.

Content is
ignored

When you assign the CodeStore property to a paragraph format, DITA2Go removes all
instances of text in that format from the output. You can restore the text by invoking the
macro variable in a CodeAfter macro.

Observe the following caveats:

 • Do not assign property Delete to the CodeStore paragraph format; if you do, the
paragraph content will not be stored in the macro variable.

 • Avoid assigning CodeStore to a paragraph format that has any of the HTML List N
properties; the coding will be misplaced.

Insert HTML
navigation links

Suppose you have a paragraph format named Nextsect that you use for cross references to
other DITA files. And suppose you want to save the text of any Nextsect paragraph in
macro variable <$$Footnext> , so you can make the link appear in a footer in the HTML
output. You would specify these settings:

[HTMLParaStyles]
Nextsect=CodeStore

[StyleCodeStore]
Nextsect=Footnext

The content of each successive paragraph in format Nextsect would be stored in macro
variable <$$Footnext> , replacing the previous value for each instance of Nextsect.
Wherever you insert macro variable <$$Footnext> , its current content, taken from the
latest instance of Nextsect, appears in the output.

Generate RTF
code

You can use CodeStore to generate RTF code for use in later macros, so you do not have
to know arcane RTF syntax. For example, suppose you want a copyright notice at the
bottom of every WinHelp topic. Put the notice in a paragraph at the start of your DITA
document, using a special paragraph format (for example, Copyr). Make the Copyr
paragraphs conditional for “Help only” to keep the notices out of print versions of your
document. Then specify the following configuration settings:

[HelpStyles]
Copyr=CodeStore

[Inserts]
TopicEnd=<$$Copyr>

This is much easier than trying to compose RTF code yourself to insert via macro:
[Copyr]
\pard \s12 \f3 \fs20 \b Copyright \'a9 2012 Softwor ks Inc. \par

Besides, code such as \s12 and \f3 could change from one run to the next.

37.3.5.3 Understanding why TextStore and CodeStore work differently

DITA2Go DCL “write” filters, such as dwhtm.dll , operate in two phases:

Scan phase: The results of converting XML to DCL are stored in linked lists in
memory.

37 WORKING WITH MACROS USING MULTIPLE-VALUE LIST VARIABLES

ALL RIGHTS RESERVED. MAY 19, 2013 695

TextStore TextStore information is set during scan phase, and is available during write phase.

CodeStore CodeStore information is set during write phase, and is available only after the point in
the DITA file where the CodeStore paragraph occurs.

Scan phase During scan phase, information needed to produce the final output is incomplete. For
example, links to other files (including links among split files) are not resolved until the
end of the scan phase. TextStore processing is able to save the text content of a
paragraph during scan phase, because the text content is known at that time. The
TextStore property excludes items that are not known, such as links. This is the same
mechanism used to generate Title content.

Write phase During write phase, DITA2Go makes numerous cross-list accesses to pick up bits of
information needed to build the final output. Links are completed, macros are executed,
tables are constructed, graphics names are determined, and coded text is generated.
CodeStore processing saves the coded text from a paragraph assigned the CodeStore
property; however, at that point previous paragraphs have already been written to final
output, and cannot be altered.

37.4 Using multiple-value list variables
In addition to single-value macro variables (see §37.3 Using macro variables on
page 687), you can use multiple-value list variables. A list variable is a macro variable
that contains an ordered, indexable collection of items, each of the form index=value,
much like an array in the C programming language. A list variable can hold up to 64K
items.

In this section:
§37.4.1 Understanding list-variable syntax on page 695
§37.4.2 Assigning a value to a list-variable item on page 696
§37.4.3 Initializing list variables on page 696
§37.4.4 Using macros to process lists on page 696
§37.4.5 Using pointers to process lists on page 697
§37.4.6 Using a list instead of a conditional expression on page 698

37.4.1 Understanding list-variable syntax

To create a list variable, all you have to do is use a DITA2Go macro variable name with an
index value in brackets, similar to C-language array notation:

$$listname[index]

For example:
$$mylist[$$_count] a variable as the index
$$mylist[2] a constant as the index
$$mylist[($$myindex + 1)] an expression as the index

List indexes can
be nested

The index is a string, not just a number, so it can be anything, even another nested list
reference:

<$$mylist[$$another[one]]>

You can access the number of items in the list with <$$mylist[]> .

Write phase: The linked lists in memory are traversed, additional information is
collected, and output files are written.

USING MULTIPLE-VALUE LIST VARIABLES DITA2GO USER’S GUIDE

696 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

37.4.2 Assigning a value to a list-variable item

To specify the value of an item in a list, use an assignment that includes the index position
of the item in brackets (see §37.3.2 Assigning values to macro variables on page 688):

<$$listname[index] = somevalue>

How the value is assigned depends on whether you include or omit a default value:
Set a default value
Omit a default value.

Set a default
value

If you provide a value for list item 0 (zero), that value is used for any item in the list for
which you have not specified another value. For example, suppose you specify:

<$$mylist[0] = Error!>

Then if you use <$$mylist[15]> , without ever having assigned a value to the 15th item
in the list, that value becomes “Error! ”.

Omit a default
value

If you do not provide a value for <$$mylist[0]> , and you use <$$mylist[15]> , the
value of <$$mylist[15]> is 0 (zero).

37.4.3 Initializing list variables

To preset values for list-variable items, create a configuration-file section for the list
variable, and use the section to populate the list with indexes and corresponding values.
For example:

[MyList]
1 = First
abc = Alpha start
xyz = Alpha end
0 = Default
mno = middle

With these settings, the initial value of <$$MyList[1]> would be First and the initial
value of <$$MyList[mno]> would be middle . The initial value of <$$MyList[ghi]>
would be Default , because no value has been provided for an index named ghi (see
§37.4.2 Assigning a value to a list-variable item on page 696).

Suppose you set <$$MyList[1]=Second> in a macro. If this macro or another macro
subsequently refers to <$$MyList[1]> while DITA2Go is processing the same DITA
file, the value is Second , not First . But the value in the configuration file does not
change, so when DITA2Go processes the next DITA file, the initial value of
<$$MyList[1]> is First again. That is, the new value Second is in effect for the rest of
the current DITA file, but is not stored for use in the next.

37.4.4 Using macros to process lists

Suppose you want to generate a different set of sidebar navigation links for each major
section of a Web site, where each section is in a single DITA file that DITA2Go splits into
named pages (see §27 Splitting and extracting files on page 523). For each page, the
sidebar item that names that page should not be a link, because a live link to the current
page confuses people.

You need a slightly different list of sidebar items on every HTML page, to avoid a same-
page link. But the logic is always the same, as are the names of files and the titles to be
displayed. What is needed is a macro that takes into account which item should not be
linked.

37 WORKING WITH MACROS USING MULTIPLE-VALUE LIST VARIABLES

ALL RIGHTS RESERVED. MAY 19, 2013 697

Your configuration file could include a pair of lists, one with file names and the other with
matching sidebar titles, like this:

[DITA_File]
1 = homepage
2 = descript
3 = operate
4 = testimonial
5 = demo
6 = order

[SideTitle]
1 = Widgets
2 = What a Widget Does
3 = How to Use a Widget
4 = What Users Say About Widgets
5 = Get a Demo Widget
6 = Order Widgets On Line

You could process the two lists with this macro:
[Sidebar]
<$$val=2><$$maxval=6>\
<$_while ($$val <= $$maxval)>\

<$_if ($$_currbase is $$DITA_File[$$val])>\
<p class="SidebarTxt"><$$SideTitle[$$val]></p>\
<$_else>\
<p class="SidebarTxt"><a class="SidebarLnk"\
href="<$$DITA_File[$$val]>.htm"><$$SideTitle[$$val] ></p>\
<$_endif>

<$$val++>
<$_endwhile>

37.4.5 Using pointers to process lists

The method described in §37.4.4 Using macros to process lists on page 696 is fine for a
single pair of lists. But what if you have many such pairs of lists? Using the actual names
of the lists in the macro means including as many copies of the [Sidebar] macro as there
are pairs of lists, even though the functionality is identical for all pairs. Instead, you can
construct a macro that works for every pair of lists, using pointers (indirect references) to
the lists instead of the literal names of the lists.

To create a pointer to a list, assign the list name, in quotes, to a macro variable:
<$$ptr="$$ list">

A set-up macro could initialize the pointers, starting index, and ending index for the lists,
then invoke the [Sidebar] macro, which is now generalized for any pair of lists:

[SetupMySidebar]
<$$fileptr="$$FM_File">
<$$textptr="$$SideTitle">\
<$$val=2><$$maxval=6>
<$Sidebar>

[Sidebar]
<$_while ($$val <= $$maxval)>\

<$_if ($$_currbase is *$$fileptr[$$val])>\
<p class="SidebarTxt"><*$$textptr[$$val]></p>\
<$_else>\
<p class="SidebarTxt"><a class="SidebarLnk"\
href="<*$$fileptr[$$val]>.htm"><*$$textptr[$$val]>< /a></p>\
<$_endif>

<$$val++>
<$_endwhile>

USING MULTIPLE-VALUE LIST VARIABLES DITA2GO USER’S GUIDE

698 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The asterisks in front of *fileptr[$$val] and *$$txtptr[$$val] indicate that these
list variables are actually being used indirectly, as pointers to other lists. When you use the
form *$$ ptr[$$ index] , DITA2Go converts the reference internally to
$$list[$$ index] before retrieving the value.

Process a list of
pointers

If you need to access a list of pointers, do it in two steps. Suppose you have a list that
contains pointers to the other two lists in the sidebar example:

[PtrList]
1=$$DITA_File
2=$$SideTitles

To access an item in [DITA_File] , first assign to a macro variable the pointer-list item that
points to [DITA_File] :

<$$ptr=$$PtrList[1]>

Thereafter you can use the macro variable as a pointer to [DITA_File] ; and so, referring
to the [DITA_File] list in §37.4.4 Using macros to process lists on page 696,
<*$$ptr[2]> gets you the second item in the list, descript . You do not use quotes around
the value in this case, because you want the actual list item in $$ptr , not a reference to the
list.

37.4.6 Using a list instead of a conditional expre ssion

Suppose you want a different navigation bar for some of your HTML output files,
depending on the name of the chapter from which the files are generated. One way would
be to use a conditional expression (see §37.6.4.2 Using conditional expressions on
page 704) to check the current chapter file name and choose the code for the navigation
bar. For example:

[NavBar]
; Configure navigation bar for roadmap:
<$_if ($$_currbase is "user_roadmap")> <$rmap>
; Configure navigation bar for Programmer's Guide t opics:
<$_elseif ($$_currbase is "bgp_user")> <$pgnav>
<$_elseif ($$_currbase is "mld_user")> <$pgnav>

... (long list of similar clauses)
<$_elseif ($$_currbase is "pga_user")> <$pgnav>
; Configure navigation bar for function topics, by default:
<$_else>

<p>
Function Index
</p>

<$_endif>

Instead, you could use a list indexed by the value of $$_currbase , with each list value a
macro call (or HTML code):

[navmap]
0 = <p>Function Index</ p>
user_roadmap = <$rmap>
bgp_user = <$pgnav>
mld_user = <$pgnav>
 ...
pga_user = <$pgnav>

[NavBar]
<$navmap[$$_currbase]>

The 0 (zero) list item corresponds to the <$_else> clause in the original [NavBar]
macro, and is used if the specified index (the value of $$_currbase) is not found. Instead
of a macro call the value of this list item is straight HTML code, which works as long as

37 WORKING WITH MACROS ACCESSING SETTINGS WITH CONFIGURATION MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 699

the code is all on one line. You could just as well use a macro call for the zero value, like
the rest of the list items.

37.5 Accessing settings with configuration macros
You can access or change the current value of a configuration setting with a configuration
macro that specifies a configuration variable.

§37.5.1 Understanding configuration macros and variables on page 699
§37.5.2 Determining the value of a configuration variable on page 699
§37.5.3 Deploying configuration macros on page 700

37.5.1 Understanding configuration macros and vari ables

A configuration variable is a macro variable that looks like this:
$$[Section] Key

where the components of the variable are as follows:

A configuration macro is a DITA2Go macro that employs a configuration variable, either
to access or to change the value of a configuration setting.

This is all you need to access the current value of a configuration setting. To change the
value of a setting, see §42.2.4 Assigning values to configuration variables on page 768.

37.5.2 Determining the value of a configuration va riable

The value of a configuration variable depends on whether the referenced setting is present
and valid:

For present settings, value is the latest override (if any)
For missing settings, value is the default
For invalid settings, value is zero

For present
settings, value is

the latest override
(if any)

The value of a configuration variable is the value of the setting in question at the time a
macro is executed. If the original setting in your configuration file was overridden by a
configuration-variable assignment in a PI marker or another macro, the override, not the
original value, is the value returned for <$$[section] key>. See §42.2 Overriding
settings with PI markers or macros on page 766.

For missing
settings, value is

the default

If you use a configuration variable to retrieve the value of a setting when the key is not
present in your configuration file, or the section itself is missing from your configuration
file, the value of <$$[section] key> is the default value specified for that key.

In some cases the default value is an empty string, as for a missing [Style*Prefix] or
[Style*Suffix] setting.

For invalid
settings, value is

zero

If you use a configuration variable to retrieve a value when <$$[section] key> refers to
an invalid configuration-file section, or to an invalid key, DITA2Go returns 0 (zero),
which is interpreted as false in a conditional expression <$_if($$[section] key
...)> ; see §37.6.4.2 Using conditional expressions on page 704.

Section Name of a configuration-file section.

Key Keyword, format name, or other identifier that appears to the left
of the equals sign in a configuration setting under [Section] .

USING EXPRESSIONS IN MACROS DITA2GO USER’S GUIDE

700 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

37.5.3 Deploying configuration macros

To test the current value of a configuration setting (for example):
<$_if($$[HTMLOptions]ExtractEnable) ... >

To temporarily alter the value of a configuration setting (for example, to strip all table-
specific HTML tags from format Unruled tables, but not from other tables):

[TableBeforeMacros]
Unruled = <$$[Tables]StripTable=1>

[TableAfterMacros]
Unruled = <$$[Tables]StripTable=0>

To add a new setting with a configuration variable, see §42.2.5 Adding a new
configuration setting on the fly on page 768.

37.6 Using expressions in macros
In DITA2Go macros, an expression usually consists of two operands separated by an
operator:

<$(operand operator operand)>

As an exception, one type of conditional expression consists of three operands and two
operators:

<$(operand ? operand : operand)>

The result of a DITA2Go macro expression is a strong value.

In this section:
§37.6.1 Understanding macro expressions on page 700
§37.6.2 Understanding operands and operators on page 701
§37.6.3 Displaying expression results in output on page 702
§37.6.4 Using control structures in expressions on page 704
§37.6.5 Specifying substrings in expressions on page 706
§37.6.6 Using list variables in expressions on page 707
§37.6.7 Using indirection in expressions on page 708
§37.6.8 Removing spaces from strings: an example on page 709

37.6.1 Understanding macro expressions
Result is a string

value
An expression always generates a string value, which for some purposes can be treated as
a decimal integer number (or a hexadecimal number, depending on the operands); that is,
you can do arithmetic on the result.

Decimal vs.
hexadecimal

The numeric result of an expression is decimal by default, unless the left operand is in
hexadecimal format; then the result is in hexadecimal. You can coerce output to the other
base by adding zero as the first term, expressed in the desired base, to the left operand. For
example, you can coerce output to decimal with (0 + 0x30) , which yields 48; or to
hexadecimal with (0x0 + 31) , to get 0x1F .

DITA2Go does not support octal numbers or floating-point numbers.

Anonymous
expressions

Where you want to use the result of an expression, but you do not need to store the result
for later use, you can use “anonymous” expressions; for example:

<$($$_count + 2)>

37 WORKING WITH MACROS USING EXPRESSIONS IN MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 701

37.6.2 Understanding operands and operators
Operands for

macro
expressions

An operand can be any of the following:

 • a macro variable: $$name (see §37.3 Using macro variables on page 687)
 • a number, including hexadecimal numbers starting with 0x or 0X

 • a double-quoted string: "..."

 • a single-quoted string: '...'

 • a single-quoted character, including '\r' and '\n'

 • an unquoted single word
 • a parenthesized expression.

Operators for
macro

expressions

Operators include essentially the whole C-language numeric and logical sets, as well as
some DITA2Go string operators; Table 37-6 shows the operators you can use in macro
expressions. Most operators participate in binary (two-operand) expressions. Exceptions
are the operators used in the ternary conditional expression described in §37.6.4.2 Using
conditional expressions on page 704, and the unary string operators described in §37.6.5
Specifying substrings in expressions on page 706.

Table 37-6 Operators for HTML macro expressions

Type Operator Meaning Comments

Relational =, == equal to The result is 0 (zero) or 1 (one).
Spaces are optional; you can use any number
of spaces around symbol operators.

!= , <> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Logical and , && both operands are true The result is 0 (zero) or 1 (one).
Two-word operators must have exactly one
space between the two words. You can use
any number of spaces elsewhere. Unlike in C,
both operands are always fully evaluated.

and not , &&! first is true, and second is false

or , || either is true, or both are true

or not , ||! first is true, or second is false

xor , ̂ one operand is true, the other is false

xor not , ^! both are true, or both are false

Bitwise & 1 where both operands have 1
0 everywhere else

These are numeric string operators.
The first six are like the logical operators.
The last two are bitwise shifts with the second
operand the count.
For example:
 (($$myvar >> 8) & 0xFF)
extracts the second-up byte from a number.

&~ 1 where first has 1 and second has 0
0 everywhere else

| 1 where either has or both have 1
0 where both operands have 0

|~ 1 where first has 1 or second has 0
0 where first has 0 and second has 1

^ 1 where operand bits differ
0 where operand bits are the same

^~ 1 where operand bits are the same
0 where operand bits differ

<< N shift first operand to the left N bits

>> N shift first operand to the right N bits

USING EXPRESSIONS IN MACROS DITA2GO USER’S GUIDE

702 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

37.6.3 Displaying expression results in output

In general, DITA2Go macro expressions produce output. The exceptions are as follows:

 • assignments, where much of the time you are going to use the assigned value later (see
§37.3.2 Assigning values to macro variables on page 688)

 • control statements, which have no obvious meaning of their own (see §37.6.4 Using
control structures in expressions on page 704).

To display (that is, to include in HTML output) the result of evaluating an expression,
enclose the expression in parentheses, as follows:

<$(... expr ...)>

You can also specify a display format to use, with as plus a C-language-style format
string:

Arithmetic + plus These are the usual suspects.
The result of (n / 0) or (n % 0) is 0 (zero),
because infinity is hard to represent.

- minus

* times

/ divided by

% modulo

String is equal to is and is not are caseless compares using
stricmp()
plus is like strcat()
before and after use strstr() to find the
2nd operand in the 1st:
 (doggie before gi) is dog
You can get a strnicmp() effect using
“first N” or “last N”
with “is ” or “is not ”:
 (($$myvar first 3) is
 ($$yourvar last 3))

is not not equal to

plus concatenated with

before substring before the 1st (leftmost)
occurrence of 2nd string in 1st

after substring after the first (leftmost)
occurrence of 2nd string in 1st

first N leftmost N characters (default = 1)

last N rightmost N characters (default = 1)

length length in characters Integer result

starts $$ str true if $$str is at the start Boolean result

ends $$ str true if $$str is at the end Boolean result

contains $$ str true if $$str occurs anywhere in the string Boolean result

char N Nth character, counting from left First (leftmost) character is number 1
Default value of N is 1

trim first N all but first N characters Default value of N is 1

trim last N all but last N characters Default value of N is 1

$$str lower converts $$str to lowercase

$$str upper converts $$str to uppercase

$$str replace
$$str1 with
$$str2

converts each instance of $$str1 in $$str
to $$str2

Conditional ? “if” the 1st operand is true,
“then” the 2nd operand is the value of the
expression

<$($$myvar ? "yes" : "no")>
is equivalent to:

<$_if ($$myvar)> yes
 <$_else> no
 <$_endif>

: “else” the 3rd operand is the value of the
expression

Table 37-6 Operators for HTML macro expressions (continued)

Type Operator Meaning Comments

37 WORKING WITH MACROS USING EXPRESSIONS IN MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 703

<$(... expr ...) as format-string>

A format string starts with “%” (percent sign) and is composed as follows, where any
component enclosed in [] is optional:

%[flag(s)][width][. precision] format-code

The components of the format string can have any of the values listed in Table 37-7.

Integer precision Suppose you wish to display the integer value of user variable $$myint , which you have
set to internal value 5:

<$$myint = 5>

When you use a format string to display the value, the default integer precision is 1, as you
can determine by comparing the results of the following expressions:

<$$myint as %0d>
<$$myint as %0.1d>
<$$myint as %0.3d>

The first two yield identical results, 5, while the third yields 005 . However, when you do
not use the “as % ” construct, there is no precision; you get the internal string
representation, which has three digits, unless you initialized it otherwise.

Additional format
options

For more information about C-language format strings and for additional components and
format codes, see the following reference:

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.12.html#printf

You can use any C-language format codes except those for floating-point values (e, f , g)
or for pointers (p). It is best not to use the h or l (lowercase L) modifiers; however, if you
ignore this advice, l is at least harmless.

As an example, this macro generates an ASCII table:

Table 37-7 Format components for displaying expression results

Component Value Effect on output

flag - The result is left justified in the display field (the default is right justified)

+ The sign of the result is displayed (the default is to display the sign only for
negative values)

(blank) A blank is displayed for positive values, a minus sign for negative values

Hexadecimal result: displayed with the prefix 0X or 0x , depending on the
format code

Fractional decimal result: the decimal point is displayed

Integer decimal result: no effect

width (integer) Minimum size of display field in characters

precision (integer) Integer result: minimum number of digits displayed (the default is 1)

Fractional result: number of digits displayed after the decimal point

String result: maximum number of characters displayed (the default is the
entire string)

format-code c The result is displayed as a character

d The result is displayed as a decimal number

s The result is displayed as a string of characters

x The result is displayed as a hexadecimal number, with lowercase a
through f

X The result is displayed as a hexadecimal number, with uppercase A
through F

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.12.html#printf

USING EXPRESSIONS IN MACROS DITA2GO USER’S GUIDE

704 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[Charset]
<$$cval = ' '>
<$_while ($$cval < '~')>\
<p><$$cval = ($$cval + 1) as %0.3d> \
0x<$$cval as %02X> \
<$$cval as %c></p>

Hexadecimal
output

In an expression, hexadecimal numbers beginning with 0x or 0X are understood as
numeric values. But if you have a hexadecimal number stored in a variable, and try to
display it like this:

<$$myvar as %d> (or “as %c ”, or even “as %x ”)

you get 0 (zero) as output—for any hexadecimal number. Use the default (“as %s ”), or
just plain <$$myvar> .

37.6.4 Using control structures in expressions

DITA2Go provides predefined loop and conditional control structures for use in macro
expressions. You cannot nest loop or conditional structures; instead, the outer macro must
invoke another macro for the inner loop or conditional test.

In this section:
§37.6.4.1 Understanding control-structure elements on page 704
§37.6.4.2 Using conditional expressions on page 704
§37.6.4.3 Using loop structures on page 705

37.6.4.1 Understanding control-structure elements

The names of control-structure elements look almost identical to macro names. Avoid
defining any macro of your own that has the same name as one of the control-structure
elements listed in Table 37-8; the DITA2Go control-structure definition takes precedence.

37.6.4.2 Using conditional expressions

A conditional expression starts with:
<$_if (expr)>

or:

Table 37-8 Predefined control-structure elements

Control element Where used Purpose Ref.

<$_break> Loop structure Skip to the end of a loop 37.6.4.3

<$_continue> Loop structure Jump back to the start of the next iteration 37.6.4.3

<$_else> Conditional expression Introduce a final alternate condition 37.6.4.2

<$_elseif> Conditional expression Introduce an intermediate alternate
condition

37.6.4.2

<$_endif> Conditional expression End a conditional expression 37.6.4.2

<$_endrepeat> Loop structure End a count-down loop 37.6.4.3

<$_endwhile> Loop structure End a logical loop 37.6.4.3

<$_if> ,
<$_if not>

Conditional expression Begin a conditional expression 37.6.4.2

<$_repeat> Loop structure Begin a count-down loop 37.6.4.3

<$_until> Loop structure Begin a logical loop 37.6.4.3

<$_while> Loop structure Begin a logical loop 37.6.4.3

37 WORKING WITH MACROS USING EXPRESSIONS IN MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 705

<$_if not (expr)>

and continues with:
<$_elseif (expr)> (as many as you please)

<$_elseif not (expr)> (as many as you please)

<$_else> (evaluated when no expr is true)

<$_endif> (optional if at the end of a macro)

(As an alternative to a long list of <$_elseif> clauses, you could use an indexed array
for the (expr) values; see §37.4.6 Using a list instead of a conditional expression on
page 698.)

Result of testing a
string value

If (expr) has a string value, that value is seen as a non-number, and (expr) would
evaluate to zero; that is, false. The relational operators always return “0” (false) or “1”
(true), so if you had a variable $$myword with yes/no values, you would have to test the
value like this:

<$_if ($$myword is yes)>

or like this
<$_if ($$myword is "yes")>

because, by itself:
<$_if ($$myword)>

would never be true.

How to nest
conditionals

You cannot nest <$_if> s (and <$_if not> s) in the same macro; instead, call a second
macro from within the first, and include the subordinate <$_if> (or <$_if not>) in the
second macro. You specify a limit to such macro nesting with the following setting (see
§37.1.3 Nesting macros on page 683):

[Macros]
MacroNestMax=128

Conditionals
within

expressions

You can also use C-style ternary operators “?” and “: ”, for a shorthand version of a
conditional expression. For example:

<$($$myvar ? "yes" : "no")>

instead of:
<$_if ($$myvar)>yes<$_else>no<$_endif>

The ternary operators give you a natural way to use conditionals within an expression,
which is otherwise impossible.

37.6.4.3 Using loop structures

DITA2Go supports “while” loops, “repeat” loops, and “until” loops:
<$_while (expr)>...<$_endwhile> loops while expr is not 0 (zero)

<$_repeat (expr)>...<$_endrepeat> loops for the count of expr

<$_until (expr)>...<$_enduntil> loops while expr is false

“While” loops For <$_while> , a runaway-prevention feature ends the loop after the maximum count
specified in the following setting:

[Macros]
; WhileMax = maximum count for <$_while>, to preven t runaways; the
; current count can be accessed using predefined m acro variable
; <$$_wcount>
WhileMax=128

USING EXPRESSIONS IN MACROS DITA2GO USER’S GUIDE

706 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Predefined variable <$$_wcount> contains the loop count, starting with 1 (one).

“Until” loops Because “until” is really the same as “while not”, the <$_while> runaway-prevention
limit also applies to <$_until> loops:

[HtmlOptions]
WhileMax=128

For example, a loop controlled by <$_until (0)> goes to the WhileMax limit, unless
you include an effective <$_break> . Predefined variable <$$_wcount> contains the
loop count, starting with 1 (one).

“Repeat” loops For <$_repeat> , the runaway-prevention limit comes into play only if the count is set to
zero:

[Macros]
; RepeatMax = maximum count for <$_repeat> when val ue is not given, so
; that loop continues until a <$_break condition> is met
RepeatMax=128

The current loop count is held in predefined variable <$$_count> , and the down-count
starting with expr is in predefined variable <$$_dcount> .

Nest loops You cannot nest a <$_while> in a <$_while> , or a <$_repeat> in a <$_repeat> , in
the same macro. Nor can you nest a <$_while> in an <$_until> , or an <$_until> in a
<$_while> . Instead you can call another macro to run a sub-loop. However, you can nest
a <$_while> in a <$_repeat> , or a <$_repeat> in a <$_while> , and you can use one
layer of <$_if> in the mix:

<$_while (expr)>
 <$_if (expr)>
 <$_repeat (expr)>...<$_endrepeat>
 <$_else>
 <$_repeat (expr)>...<$_endrepeat>
 <$_endif>
<$_endwhile>

Move around
within loops

You can use <$_break> to skip to the end of the loop, and <$_continue> to jump back
to the start of the next iteration. Although you can invoke these control elements in
<$_if> s, it is simpler to use the following constructs:

<$_break if (expr)>

<$_continue if (expr)>

Use only a single space before each if , and a minimum of one space after each if . These
constructs work even in nested <$_while> or <$_repeat> loops, where they apply to
the innermost of the loops where they occur.

37.6.5 Specifying substrings in expressions

You can determine the number of characters in a macro variable, and use string operators
to extract substrings from the value of the variable. Table 37-9 lists several of the string
operators and shows how they are used in macro expressions.

See also:
§37.6.2 Understanding operands and operators on page 701
Table 37-6 Operators for HTML macro expressions on page 701

37 WORKING WITH MACROS USING EXPRESSIONS IN MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 707

For example, to trim off the first four characters of $$mystring :
<$$mystring = ($$yourstring trim first 4)>

If the value of $$yourstring is “makework ”, the value of $$mystring would be
“work ”.

Implied value of
second operand

If the second operand N is missing from an expression that uses one of the following
operators, a value of 1 (one) is assumed for N:

char
first
last
trim first
trim last

For example, to select only the last character, you can omit the second operand:
<$$yourstring = ($$mystring last)>

If the value of $$mystring is “groceries ”, the value of $$yourstring would be “s”.

37.6.6 Using list variables in expressions

You might want to generate lists, such as lists by level of elements above the current
element (its “ancestors”); see §37.4 Using multiple-value list variables on page 695.

In an expression, the following construct:
($$_paratag in $$mylist)

Table 37-9 String operators in macro expressions

Operator Macro expression

Result of expression

Type Value

length ($$ string length) Integer Number of characters in $$string

char ($$ string char N) String Nth character in $$string, counting
from the left; the leftmost character is
number 1

first ($$ string first N) String First N characters of $$string

last ($$ string last N) String Last N characters of $$string

before ($$ string before $$ str) String Substring that precedes the first
(leftmost) occurrence of $$str in
$$string

after ($$ string after $$ str) String Substring that follows the first (leftmost)
occurrence of $$str in $$string

starts ($$ string starts $$ str) Boolean True if $$str is at the start of $$string

ends ($$ string ends $$ str) Boolean True if $$str is at the end of $$string

contains ($$ string contains $$ str) Boolean True if $$str occurs anywhere in
$$string

trim first ($$ string trim first N) String All but the first N characters of
$$string

trim last ($$ string trim last N) String All but the last N characters of
$$string

replace with ($$ string replace " " with
"_")

String Each instance of first operand is
replaced with second operand

upper ($$ string upper) String $$string is all uppercase

lower ($$ string lower) String $$string is all lowercase

USING EXPRESSIONS IN MACROS DITA2GO USER’S GUIDE

708 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

returns the value of the index for the current paragraph format in <$$mylist> , or 0 (zero)
if missing; and:

($$mylist[$$level] is $$_paratag)

You can set the list item with a normal assignment:
<$$mylist[$$level] = $$_paratag>

37.6.7 Using indirection in expressions

Suppose you assign a variable to another variable, as follows:
<$$myvar = $$other>

Then, if you subsequently use:
<$$myvar>

you get whatever contents the variable named $$other had at the time you assigned it to
the variable named $$myvar . Suppose you specified the original assignment like this:

<$$myvar = "$$other">

Then, if you subsequently use:
<$$myvar>

all you get is the literal string “$$other ”. If instead you use:
<*$$myvar>

you get the current contents of the variable $$other (but if there were no variable named
$$other , you would get just the literal string “$$other ”).

The same thing works through multiple layers. If you use this series of assignments:
<$$myvar = "$$other">
<$$other = "$$whatever">
<$$whatever = "here">

then, subsequently, the contents of <*$$myvar> is “here ”, which is the same as the
contents of <*$$other> , or of <$$whatever> , or even of <*$$whatever> .

Now if you set:
<$$other = "something">

then:
<$$myvar> gives: $$other
<*$$myvar> gives: something

If next you set:
<*$$myvar = "something else">

then:
<$$other> gives: something else
<$$myvar> gives: $$other
<*$$myvar> gives: something else

If finally you set:
<$$other = "$$myvar">

then (oops!):
<$$other> gives: nothing

Runaway-
prevention limit

However, a built-in circular-reference counter saves you from the natural consequences of
this last foolish assignment. The counter prevents indirection through more than 128
levels.

37 WORKING WITH MACROS PASSING A PARAMETER TO A MACRO

ALL RIGHTS RESERVED. MAY 19, 2013 709

The top-level variable is like an envelope that can contain more nested envelopes; you
continue opening them until you get to the letter (the contents). You can use indirection to
recurse, to process variables and expressions, and so forth, down to a simple value,
through whatever layers that takes.

37.6.8 Removing spaces from strings: an example

Suppose you need to remove spaces and apostrophes from a string value (such as a topic
title), and replace each space with an underscore, sending the result to output. The
following macro uses several macro expression features:

[NewString]
<$_repeat ($$OldString length)>\

<$$char = ($$OldString char $$_count)>\
<$_if ($$char is " ")>_\

<$_elseif ($$char is not "'"><$$char>\
<$_endif>\

<$_endrepeat>\

37.7 Passing a parameter to a macro
You can pass a single parameter to a macro by enclosing the value of the parameter in
parentheses; for examples, see the predefined macros for RTF output listed in Table 37-2
on page 684. DITA2Go evaluates the parameter as an expression, and the result of the
expression is captured in predefined macro variable $$_macroparam . You can reference
$$_macroparam in the same macro, and if you need to keep it around, assign its value to
another macro variable.

For example, suppose you have a pair of before-and-after macros that surround the body
of content intended to be rendered as a note:

[NoteBefore]
<p class="notehead"><$$_macroparam></p>
<p class="notebody">

You could change the heading to reflect the severity level of the note by invoking the
macro like this:

<$NoteBefore("Warning")>

or like this:
<$NoteBefore("Note")>

37.8 Debugging macros
By default, DITA2Go ignores undefined or blank macros and macro variables; they do not
appear in the output. However, if you are debugging a macro process, you might want the
names of undefined (possibly misspelled) macros or macro variables to be flagged. To
make the name of any blank (or undefined) macro or macro variable appear in the output
where the value of the macro or variable would normally appear, specify one or both of the
following options:

[Macros]
; NameUndefinedMacros = No (default)
; or Yes (insert $macro name in output)
NameUndefinedMacros=Yes
; NameUndefinedMacroVars = No (default)
; or Yes (insert $$macrovar name in output)
NameUndefinedMacroVars=Yes

DEPLOYING MACROS AND MACRO VARIABLES DITA2GO USER’S GUIDE

710 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

37.9 Deploying macros and macro variables
In this section:

§37.9.1 Understanding where to use macros and macro variables on page 710
§37.9.2 Invoking macros at predetermined points in output on page 710
§37.9.3 Surrounding or replacing text with code or macros on page 711
§37.9.4 Assigning macros to graphics or tables for HTML on page 713
§37.9.5 Using HTML Macro PI markers to invoke macros on page 713
§37.9.6 Implementing drop-down text with macros on page 713

37.9.1 Understanding where to use macros and macro variables

You can use a macro to insert HTML or RTF code in any of the following places:

 • before, after, or in place of:
 – a paragraph or character format
 – a graphic or a group of graphics
 – a table or a group of tables

 • within table cells
 • at any point in the text, using an HTML Macro or Code PI marker
 • at fixed points in an HTML file, such as <head> , or at start and end of <body>

 • at fixed points in an RTF file, such as in the header or footer, or at top or bottom.

You can give a macro variable an initial value in [MacroVariables] (see §37.3.2
Assigning values to macro variables on page 688); however, you can use macro variables
only within DITA2Go macros.

Configuration settings whose values are not themselves macros cannot include macro
variables.

37.9.2 Invoking macros at predetermined points in output

You can specify macros to be invoked at several predetermined points in HTML or RTF
output, by assigning the macros to keywords. Locations for macro insertion depend on the
type of output:

HTML macro insertion points
RTF macro insertion points for Word
RTF macro insertion points for WinHelp

HTML macro
insertion points

To insert macros in HTML output:
[Inserts]
; location = macro to insert, can call another macr o
; TopicBreak is placed between topics when files ar e not split
; Entities is placed before the head element
; Head is placed after the title element within the head element
; Frames is placed between the head and body (for F ramesets)
; Top is placed at the beginning of the body elemen t
; Bottom is placed just before the ending of the bo dy
; End is placed after the ending of the body (to cl ose noframes)

For split and extract files, you can use variants of the [Inserts] keywords to restrict the
types of files to which an inserted macro should apply; see §27.6.2 Assigning code to
[Inserts] keywords for splits and extracts on page 535.

For example:

37 WORKING WITH MACROS DEPLOYING MACROS AND MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 19, 2013 711

[Inserts]
Top=<$EscapeFrameset>

[EscapeFrameset]
<SCRIPT LANGUAGE="JavaScript">
<!-- Begin
if (self.top.frames.length != 0)
 self.top.location=self.location;
// End -->
</SCRIPT>

RTF macro
insertion points

for Word

To insert macros (or other content) in RTF output for Word:
[Inserts]
; location = content to insert, which may be a DITA2Go macro
; Top, Bottom
; Header, Footer
; FirstHeader, FirstFooter
; LeftHeader, LeftFooter
; RightHeader, RightFooter

RTF macro
insertion points

for WinHelp

To insert macros (or other content) in RTF output for WinHelp:
[Inserts]
; location = content to insert, which may be a macr o
; TopicStart, TopicEnd
; SlideStart, SlideEnd

37.9.3 Surrounding or replacing text with code or macros

For a better way to surround text with any arbitrary content, you can include start , end ,
before , and after settings in a format configuration file; see §7.4.8 Assigning content-
adding properties to formats on page 118.

To specify code to be invoked before, after, or in place of a paragraph or character format:

1. List the format name in the configuration section appropriate for your output type:
[HTMLParaStyles] or
[HTMLCharStyles] for HTML, XML, or HTML-based Help
[WordStyles] for Word
[HelpStyles] for WinHelp.

2. Assign to the format one of the Code* properties listed in Table 37-10. For example:
[HTMLParaStyles]
PopHead=CodeBefore

3. List the same format name in the corresponding [ParaStyleCode*] or
[CharStyleCode*] or [AnumCode*] section, and assign to it whatever macros (or
code, or both) you want inserted at that point in the resulting output. For example:

[ParaStyleCodeBefore]
PopHead=<$$isPopup=1>

This assignment can include any macros of the form <$Macroname> or, for HTML
output, <$.\ macrofile.htm> .

Note: If the code you assign requires more than one line, you must specify a macro
for it, because a key=value entry cannot exceed one line; see §3.4
Understanding the rules for configuration settings on page 62.

DEPLOYING MACROS AND MACRO VARIABLES DITA2GO USER’S GUIDE

712 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

You can also assign a macro to a format in section [StyleLinkSrc] , to provide code for
the href attribute of HTML links; see §28.2.4 Specifying link properties with macros on
page 548.

For example, to precede each major heading in HTML with an image:
[HTMLParaStyles]
Heading1=CodeBefore

[ParaStyleCodeBefore]
Heading1=<p class="MyImageTag"><$Mona></p>

Later in the configuration file, or in a macro library file:
[Mona]

The effect in the resulting HTML would be to display the image smile.jpg just before
each element mapped from a Heading1 paragraph.

A macro does not have to be well formed by itself; only the end result must be well
formed, after all macros are included. For example, suppose you use formats A, B, and C,
one after the other, and you want all of them centered in HTML output. You could use
these settings to achieve that effect:

[HTMLParaStyles]
A=CodeBefore
C=CodeAfter

[ParaStyleCodeBefore]
A=<div align="center">

[ParaStyleCodeAfter]
C=</div>

Table 37-10 Macro code placement properties

Property Configuration section* HTML code placement RT F code placement

CodeBefore [ParaStyleCodeBefore],
[CharStyleCodeBefore]

Before the starting element tag, such
as <p>

Before the paragraph starting \pard ,
or before the opening brace for
character formats

CodeAfter [ParaStyleCodeAfter],
[CharStyleCodeAfter]

Right after the closing element tag Right after the closing \par , or after
the closing brace for character
formats

CodeBeforeAnum [AnumCodeBefore] Before the paragraph autonumber
(does not apply to character formats)

Before the paragraph autonumber
(does not apply to character formats)

CodeAfterAnum [AnumCodeAfter] After the paragraph autonumber
(does not apply to character formats)

After the paragraph autonumber
(does not apply to character formats)

CodeStart [ParaStyleCodeStart],
[CharStyleCodeStart]

Right after the starting element tag At the start of the text, after properties;
if a starting character format also has
a CodeStart macro, both are used

CodeEnd [ParaStyleCodeEnd],
[CharStyleCodeEnd]

Before the closing element tag, such
as </p>

At the end of the text just before
\par , or before the closing brace for
character formats

CodeReplace [ParaStyleCodeReplace],
[CharStyleCodeReplace]

Instead of paragraph or character
content; any CodeBefore or
CodeAfter is ignored

Instead of paragraph or character
content; any CodeBefore or
CodeAfter is ignored

LinkSrc [ParaStyleLinkSrc],
[CharStyleLinkSrc]

In the href attribute of an HTML link Does not apply to RTF output

* For HTML conversions, DITA2Go recognizes section names prefixed with Html (as in [HtmlStyleCodeAfter]) for backward
compatibility.

37 WORKING WITH MACROS USING MACROS TO FINE-TUNE HTML OR XML OUTPUT

ALL RIGHTS RESERVED. MAY 19, 2013 713

Text properties for
RTF

You can use [ParaStyleCodeBefore] and [ParaStyleCodeAfter] to place ruled
lines or images before and after a heading in RTF output. You can use
[ParaStyleCodeStart] to add properties to text in RTF output, such as borders or
background shading.

Tables for HTML You can use [ParaStyleCodeBefore] and [ParaStyleCodeAfter] to construct a
table around a paragraph for HTML, possibly with an image in a cell; this works well for
notes or tips. You can also construct a table around a series of paragraphs.

Entire document
for HTML

You could have a DITA file that contains only a single paragraph, specify CodeReplace
for that paragraph format, and assign to it a [ParaStyleCodeReplace] macro; then
build the whole HTML output from macros, using macro variables (see §37.3 Using
macro variables on page 687) to include specific content based on user entries.

See also:
§37.3.5 Creating macro variables from paragraph content on page 692

37.9.4 Assigning macros to graphics or tables for HTML

You can specify macros to be invoked before, after, or in place of a graphic, or a group of
graphics, by assigning macros to a GraphicID in one of the [Graph*Macros] sections;
see §32.4.2 Replacing or surrounding a graphic with macro code on page 615.

You can specify macros to be invoked before, after, or in place of a table, or a group of
tables, by assigning macros to a TableID in one of the [Table*Macros] sections; see
§33.6 Using macros to control table properties on page 642 and §33.6.1 Invoking macros
around tables on page 642.

You can also specify macros to be invoked inside tables; see §33.6.5 Specifying row-
group, row, and cell attributes with macros on page 644.

37.9.5 Using HTML Macro PI markers to invoke macro s

You can specify a macro to be invoked via the HTML Macro PI marker. Insert a PI marker
of type HTML Macro where you want a macro to be invoked, and supply <$Macroname>
or <$.\ macrofile.htm> as the marker text.

For compatibility with existing HTML macro usage, you can also specify just the macro
name in a HTML Macro PI marker, without the angle brackets and dollar sign; DITA2Go
processes the marker text as though it were a DITA2Go macro.

37.9.6 Implementing drop-down text with macros

The following sections of the DITA2Go User’s Guide present examples of macros that
incorporate JavaScript to dynamically expand and collapse areas of text:

§16.9.7 Deploying JavaScript code for drop-down sections on page 271
§16.9.8 Emulating Web Works Publisher drop-down hotspots on page 275

You can modify these macros for your own purposes.

37.10 Using macros to fine-tune HTML or XML output
You can use macros and macro variables to solve special HTML or XML problems that
are not addressed by the usual DITA2Go configuration settings. This section describes the
best approach.

USING MACROS TO FINE-TUNE HTML OR XML OUTPUT DITA2GO USER’S GUIDE

714 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Start from the HTML end. Take one of the output .htm files DITA2Go generates from
your DITA document and use a plain-text editor to modify the HTML code:

1. Look at the code DITA2Go produces, and decide what additional bits of code are
needed to achieve the effect you want; for example, <table> , <tr> , and <td> tags to
create a two-cell table around an in-line image and its adjacent text.

2. Add the bits of code to the HTML, on lines of their own where possible, and view the
result in a browser. You might have to experiment with variations until you get the
effect you want.

3. Include the successful HTML code in DITA2Go macro definitions. Make each
separate chunk of added code into one macro. For example (assuming the anchor for
each in-line image is at the very start of the adjacent text):

[GrInfoBefore]
; Start a table, row, and cell just before an in-li ne image:
<table class="GrInfo"><tr><td>\

[GrImgEnd]
; After an in-line image, start a new cell for the adjacent text:
</p></td><td><p class="Body">

[GrInfoAfter]
; After the adjacent text, end the cell, row, and t able:
</p></td></tr></table>

See §37.1.1 Defining macros on page 679.

4. Consider where your new HTML-code macros should go in the document flow. Do
they precede the opening of some type of paragraph? Follow the closing? Go at the
top or bottom of the page? Or just get plunked in at arbitrary points? You might have
to define some new paragraph formats to identify places to invoke the macros. For
example, if sometimes you have multiple paragraphs of text adjacent to an in-line
image, you might need three different format names for those paragraphs:

GrInfoStart — First paragraph
GrInfoEnd — Last paragraph
GrInfo — Sole paragraph

If you do not want to change format names, you could put HTML Macro PI markers
before and after each instance of adjacent text. The starting PI marker would contain:

 <$GrInfoBefore>

and the ending PI marker would contain:
 <$GrInfoAfter>

You would keep the same macros defined in Step 3, and get the same result.

5. Tell DITA2Go where to invoke the macros in the output, so the code gets inserted in
the right places automatically, by adding settings to the configuration file to invoke
your new macros. For example, to invoke the macros defined in Step 3 whenever
DITA2Go encounters paragraphs in the formats defined in Step 4:

[HTMLParaStyles]
; Assign code placement to each GrInfo* paragraph f ormat:
GrInfoStart=CodeBefore
GrInfoEnd=CodeAfter
GrInfo=CodeBefore CodeAfter

[ParaStyleCodeBefore]
; Starting and sole paragraphs need code just befor e them:
GrInfo*=<$GrInfoBefore>

37 WORKING WITH MACROS USING MACROS TO FINE-TUNE HTML OR XML OUTPUT

ALL RIGHTS RESERVED. MAY 19, 2013 715

[ParaStyleCodeAfter]
; Ending and sole paragraphs need code to follow th em:
GrInfo*=<$GrInfoAfter>

[GraphEndMacros]
; The image itself needs code to close its cell:
*=<$GrImgEnd>

See §37.1.2 Invoking a macro on page 683 and §37.9.3 Surrounding or replacing text
with code or macros on page 711.

6. Convert the file again, and see if the new code shows up where it is needed. Does the
code also pop up where it is not wanted? If so, you can include a test to prevent the
code from appearing in other places. For example, to avoid creating a table around a
graphic that does not have adjacent text, you could modify the macros in Step 3 to use
a macro variable and a conditional expression (both shown in boldface):

[GrInfoBefore]
<$$GrInf = 1>
<table class="GrInfo"><tr><td>\

[GrImgEnd]
<$_if ($$GrInf)> </p></td><td><p class="Body"> <$_endif>

[GrInfoAfter]
</p></td></tr></table>
<$$GrInf = 0>

[MacroVariables]
; Put any macro definition sections before this sec tion.
GrInf=0

See §37.3 Using macro variables on page 687 and §37.6.4.2 Using conditional
expressions on page 704.
(No illustrations)

USING MACROS TO FINE-TUNE HTML OR XML OUTPUT DITA2GO USER’S GUIDE

716 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 717

38 Working with processing instructions

DITA processing instructions provide a way to introduce HTML or RTF code and
DITA2Go configuration overrides into your document, without affecting the original
content or creating format dependencies. Topics include:

§38.1 Understanding DITA2Go PI markers on page 717
§38.2 Understanding effects of PI markers on page 718
§38.3 Adding attributes with PI markers on page 721
§38.4 Assigning properties to PI marker types on page 723
§38.5 Inserting code with PI markers on page 724

38.1 Understanding DITA2Go PI markers
To satisfy the need for a consistent way to specify presentation details for DITA
processing, DITA2Go supports including any of an extensive set of XML processing
instructions (PIs) in your DITA source files. See:

http://www.w3.org/TR/REC-xml/#sec-pi

In this section:
§38.1.1 Understanding DITA2Go PI marker syntax on page 717
§38.1.2 Including special characters in PI markers on page 718
§38.1.3 Deciding when to use PI markers on page 718

38.1.1 Understanding DITA2Go PI marker syntax

In DITA2Go a DITA processing instruction is called a PI marker. A PI marker has the
form:

<?dt xxx markertype=" markervalue" markertype2=" markervalue2" ... ?>

where:

You can include multiple key=" value" pseudo-attributes or tokens in the same PI
marker, separated by spaces. For example:

<?dthtm GraphWidth="80" GraphHeight="100" ?>

This PI syntax is supported by all XML editors, and is easily extended to specify any
instruction.

DITA2Go PI markers include the following output types:

xxx designates the output type

markertype names the type of instruction or value

markervalue is the actual instruction or value.

dthtm all HTML/XML outputs

dtrtf Word output

dtpdf print outputs, including such as DocBook dbfo

dtall all outputs

http://www.w3.org/TR/REC-xml/#sec-pi

UNDERSTANDING EFFECTS OF PI MARKERS DITA2GO USER’S GUIDE

718 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

38.1.2 Including special characters in PI markers

For quoting, you can use either ' or " . For quotes within the content, use the other:
<?dthtm Config="[Attributes]body= onload='prettyPri nt()'" ?>

You can also just escape whatever quote you used with a backslash within the quoted
material:

<?dthtm Config="[Attributes]body= onload=\"prettyPr int()\"" ?>

PI markers used to insert HTML code or macros, such as Code and HTML Macro PI
markers, must include an extra backslash in content to escape a required backslash, such
as in a Windows file path:

<?dthtm HTML Macro='<$(($.\\filename.htm after "<bo dy>") before
"</body>")>' ?>

Doubled backslashes come out as singles in macros; see §37.1.1.3 Escaping special
characters in macro definitions on page 680.

PI markers used for hypertext links might include backslashes in the content. In
HyperJump and HyperAnchor PI markers, the backslashes are simply stripped; whatever
followed them remains. In HyperLink PI markers, the backslashes remain also.

For PI markers of type HyperLink , make sure the file name is a URL, starting with
file:/// before an absolute path beginning with a drive letter (for Windows), like this:

<?dthtm HyperLink="file:///D:/oh/site/ohframe.htm" ?>

38.1.3 Deciding when to use PI markers

PI markers are to be used for things that cannot be specified in DITA, but need to be
specified for the output type you are producing. They complement the DITA code, and
under no conditions alter its meaning.

For example, you can use PI markers to do any of the following:

 • Designate split points and extract extents for HTML (see §27.3.1 Designating split
points on page 526).

 • Insert WAI markup (see §34 Generating WAI markup for HTML on page 649).
 • Provide ALink entries for Help systems (see §16.6 Providing related-topic links for

Help systems on page 258).
 • Identify context-sensitive help targets (see §16.10 Setting up Context Sensitive Help

(CSH) on page 277).
 • Assign alternate configuration values to individual tables, graphics, paragraphs, or

character spans (see §42.2.2 Overriding settings with configuration PI markers on
page 767).

 • Assign outputclass values to elements where outputclass is not allowed by the
DITA specification (for example, see §14.9.5 Mapping indexterms to variant indexes
on page 217).

Wherever you can use a rule (such as a configuration setting), do so; where you cannot,
use a PI marker.

38.2 Understanding effects of PI markers
Each of the PI marker types listed in Table 38-1 produces a predefined effect when
DITA2Go encounters a marker of that type in your document.

38 WORKING WITH PROCESSING INSTRUCTIONS UNDERSTANDING EFFECTS OF PI MARKERS

ALL RIGHTS RESERVED. MAY 19, 2013 719

Table 38-1 PI marker types with predefined effects

Marker type Purpose Effect

ALink Help-system associative link Content is the text of an ALink identifier

BorderFormat or
BorderType

Format property override Specifies a border subformat for the element

Branch Scoping in maps Names a section of a map as a branch

Break Presentation Inserts a line, column, or page break in the output

CellAttr Table mark-up for HTML and XML Content is the value of the HTML <td> tag or <th> tag attribute
named by Attr , for the enclosing cell

CellClass Table mark-up for HTML Content names the CSS class for a table cell

CellGroup Table mark-up for HTML Content specifies the group of a header cell

CellID Table mark-up for HTML Overrides generated WAI ID attributes for a cell

CellScope Table mark-up for HTML Content specifies the scope of a header cell

CellSpan Table mark-up for HTML Assigns the span property to a header cell

Code Insert HTML or RTF code Content is used as code; macros are expanded

Config Change configuration setting for
HTML or RTF

Content is a [Section] Key=Value or [Section]= Value setting
for HTML or RTF output

ConrefBranch Map branch processing Directs a conref to a named map branch

Delete No standalone purpose Deletes itself

DITA* Provide DITA mark-up See Table 24-2 on page 492

DocBook* Provide DocBook mark-up See Table 26-1 on page 521

EclipseAnchor Merge Eclipse Help projects Marks where a secondary TOC should be inserted

EclipseContext Context-sensitive help Content is the context ID for an infopop

EclipseLink Merge Eclipse Help projects Content includes path to secondary TOC file

ExtCodeEndChar Include text from external files Last character of external file to include

ExtCodeEndLine Include text from external files Last line of external file to include

ExtCodeFileEnc Include text from external files Encoding of external file

ExtCodeFileLen Include text from external files Length of external file in characters

ExtCodeStartChar Include text from external files First character of external file to include

ExtCodeStartLine Include text from external files First line of external file to include

ExtrBottom Extract files for HTML Content is the last item in the <body> of an extract

ExtrDisable Extract files for HTML Turns off extract processing

ExtrEnable Extract files for HTML Turns on extract processing

ExtrEnd Extract files for HTML Ends an extract

ExtrFinish Extract files for HTML Marks the last paragraph of an extract

ExtrHead Extract files for HTML Content is placed in the <head> of an extract

ExtrReplace Extract files for HTML Content replaces an extract in the original file

ExtrStart Extract files for HTML Marks the first paragraph of an extract

ExtrTop Extract files for HTML Content is the first item in the <body> of an extract

FileName Split or extract HTML files Content is the name of a split or extract file

UNDERSTANDING EFFECTS OF PI MARKERS DITA2GO USER’S GUIDE

720 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

GraphAttr Image mark-up for HTML and XML Content is the value of the HTML tag attribute named by Attr
for the next image

GraphDpi Image resolution Overrides any other DPI setting for the graphic

HelpMerge Merge Help files Marks where the named Help file should be inserted

HTMLComment Add comments to HTML Content is the text of an HTML comment

HTMConfig Change configuration setting for
HTML

Content is a [Section] Key=Value or [Section]= Value setting
for HTML

HyperAlert Produce a notice Content is the text of an HTML “alert” notice

HyperAnchor Provide an anchor for links Inserts a named <a> tag in HTML

HyperJump Link to an anchor Content is the HTML attribute

HyperLink Link to an external URI Content is the HTML attribute

HyperPopup Pop up a secondary window Pops up a temporary window in HTML

HyperTarget Specify a target window Specifies the window to use for a link destination

JH2PopProp JavaHelp window property Content is a JavaHelp 2 pop-up window parameter

JH2SecProp JavaHelp window property Content is a JavaHelp 2 secondary window parameter

KeyrefBranch Map branch processing Names the map branch to use to resolve the next keyref

Link Attr Link mark-up for HTML and XML Content is the value of the HTML tag attribute
named by Attr , for the next link

LinkClass Link mark-up for HTML Content names the CSS class for the next link

LocalTOCTitle Split files for HTML Content is the text of a local-TOC link

MetaType <meta> tag for HTML Content is the content value for a new
<meta name= Type content=...> tag

Print Conditional output Content determines whether current topic is for print output, only for
print output, or not for print output

RowAttr Table mark-up for HTML and XML Content is the value of the <tr> or <row> attribute named by Attr ,
for the row of the enclosing cell

RTFConfig Change configuration setting for RTF Content is a [Section] Key=Value or [Section]= Value setting
for RTF

Search Conditional output Content determines whether content is included in FTS

ShadeFormat or
ShadeType

Format property override Specifies a shading subformat for the element

SimpleTableRelCol Table properties Specifies relative or absolute column widths for tables

SimpleTableWidth Table properties Specifies the absolute width of a table

Split Split files for HTML Marks a split point in a DITA file

TableAttr Table mark-up for HTML and XML Content is the value of the HTML <table> tag attribute named by
Attr , for the enclosing table

Title Split or extract files for HTML Content is the page title of a split or extract file

TopicAlias Context-sensitive help Inserts a named CSH target in output

TopicStartCode <head> code for HTML Code is executed before topic content is processed

Window HTML Help secondary window Content names a window for jumps from contents or index

XrefBranch Map branch processing Directs a cross reference to a named map branch

Table 38-1 PI marker types with predefined effects (continued)

Marker type Purpose Effect

38 WORKING WITH PROCESSING INSTRUCTIONS ADDING ATTRIBUTES WITH PI MARKERS

ALL RIGHTS RESERVED. MAY 19, 2013 721

You can invent your own custom PI marker types. Any PI marker with a qualifying target
(dtrtf , dthtm , or dtall), where DITA2Go does not reserve the attribute name,
becomes a valid PI marker. The type is the attribute name, and the content is the attribute
value. For example:

<?dthtm zzTest="My test content" ?>

is a PI marker of type zzTest , and can be mapped in [MarkerTypes] , so you could
assign it other PI marker type properties:

[MarkerTypes]
zzTest = TopicStartCode

When you invent a new custom PI marker type, the name must not conflict with your use
of any of the predefined PI marker types listed in Table 38-1.

Avoid adding a custom PI marker type whose name has any of the following
characteristics:

 • Duplicates the name of a PI marker type listed in Table 38-1, if you intend to use PI
markers of that type for the purpose shown.

 • Begins with Cell , Char, Graph , Link , Meta, Para, Row, or Table if you are generating
HTML or XML, unless you end the name with a valid attribute name. All such PI
markers are assumed by DITA2Go to be attribute markers; see §38.3 Adding
attributes with PI markers on page 721.

 • Begins with JH2Pop or JH2Sec if you are generating JavaHelp 2, unless you end the
name with a valid JavaHelp 2 window-access object property; see §20.8.1.5
Overriding window-access properties with markers on page 407.

38.3 Adding attributes with PI markers
An attribute PI marker includes the name of the attribute as a suffix to the predefined PI
marker type name. The content of the marker becomes the value of the attribute for the
applicable element tag:

<elementname attributetype=" content">

For example, for HTML output, a Rowbgcolor PI marker with content yellow , placed
just before a DITA <entry> tag, would add the attribute bgcolor with value yellow to
the HTML <tr> tag for the current table row:

<?dthtm Rowbgcolor="yellow" ?>

results in:
<tr bgcolor="yellow">

Nonconforming
attribute markers

A few attribute PI markers do not conform exactly to this naming and usage convention;
for example, WAI support PI markers CellGroup and CellSpan . See §35.2.4 Assigning
table-cell attribute values with PI markers on page 666. Another nonconforming attribute
marker is MetaType . For HTML output, this marker causes a <meta> tag to be added to
the <head> element; Type becomes the value of the name attribute, and the content of the
marker becomes the value of the content attribute.

Concatenated
attribute markers

Although the text of a DITA PI marker is not limited in length, you can concatenate all PI
markers for the same attribute that are inserted before the next item to which they apply.
You can just add more PI markers of the same type, and continue the content. For
example:

<?dthtm tablesummary="This table shows the properti es" ?>
<?dthtm tablesummary=" you can use for thingamabobs ." ?>

Also:

ADDING ATTRIBUTES WITH PI MARKERS DITA2GO USER’S GUIDE

722 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 • Inserting another PI marker of a different type between two PI markers for the same
attribute does not prevent concatenation, even if the middle PI marker is a different
attribute PI marker for the same element.

 • If you want the content of two concatenated attribute PI markers to be separated by a
space in the attribute value, you must provide the space, either at the end of content in
the first PI marker or at the beginning of content in the second PI marker.

Extra attributes Using PI markers to add attributes can result in extra attributes for a given tag. Browsers
ignore extra attributes, but validators would not be pleased; see §22.14 Passing W3C
validation tests on page 445. (Of course validators would not be pleased with most of what
is on the Web, so that might be of little consequence.)

Duplicate
markers

If multiple attribute PI markers with identical names but different content apply to the
same element, DITA2Go uses the content of the last PI marker encountered as the value of
the attribute.

For HTML or XML output, DITA2Go treats any PI marker that has a name that begins
with Cell , Char, Graph , Link , Meta, Para, Row, or Table as an attribute PI marker. For
HTML (for example), DITA2Go inserts the attribute=" value" pair specified by each
of the attribute marker types as follows:

Table 38-2 lists the elements to which each attribute PI marker can apply for each output
type.

CellAttr In the <td> or <th> tag for the enclosing table cell.

CharAttr In the tag for the current or next inline element.

Graph Attr In the next tag.

Link Attr In the next link () tag.

MetaType In a <meta> tag; produces a new element, <meta name=" Type"
content=" content"> , in the <head> element.

ParaAttr In the tag for the current block element.

RowAttr In the <tr> tag for the current table row; best practice is to place the
marker in the first cell in the row.

TableAttr In the <table> tag, in the enclosing table; if not positioned in a table,
applies to the next table in the same flow.

Table 38-2 Elements to which attribute PI markers apply, by output type

Marker

Output type

HTML/XHTML Generic XML DITA XML DocBook XML

CellAttr <td> , <th> <td> , <th> <entry> ,
<stentry> ,
<choption> ,
<chdesc> ,
<proptype> ,
<propvalue> ,
<propdesc>

<td> , <th>

CharAttr inline elements inline elements inline elements inline elements

GraphAttr <image> <imagedata>

Link Attr <a> ((does not apply
to Help pop-ups,
secondary window
jumps, or footnote
cross references)

<a> (applies to the
AtagElement
setting; do not use
for name; overridden
by XMLLinkAttrs)

<xref> (can add to
or replace standard
href , type ,
format , and scope
attributes)

<xref> , <ulink>

38 WORKING WITH PROCESSING INSTRUCTIONS ASSIGNING PROPERTIES TO PI MARKER TYPES

ALL RIGHTS RESERVED. MAY 19, 2013 723

38.4 Assigning properties to PI marker types
You can define the behavior of a new PI marker type, or redefine the behavior of an
existing PI marker type, by assigning one or more properties to the PI marker type:

[MarkerTypes]
; PI marker type name = properties
Marker = Property1 Property2 ...

Which properties you can assign depends on whether you are converting to HTML or to
RTF. A few properties are common to both output types: Delete , Code, ALink , and
Config . The rest are specific to either HTML or RTF output. Table 38-3 lists all the
[MarkerTypes] properties, shows which output types apply, and describes the effect of
each property.

MetaType <meta> <meta>

ParaAttr block elements block elements block elements block elements

RowAttr <tr> <tr> <row> , <strow> ,
<chrow> ,
<property>

<tr> , <row>

TableAttr <table> <table> <table> ,
<simpletable> ,
<choicetable> ,
<properties>

<table>

Table 38-2 Elements to which attribute PI markers apply, by output type

Marker

Output type

HTML/XHTML Generic XML DITA XML DocBook XML

Table 38-3 Effects of [MarkerTypes] properties

Output Property Effect

RTF or
HTML

ALink Content is treated as a list of names of categories that apply to the current topic. Category
names should be single terms, separated by semicolons. Use spaces or other punctuation in the
names at your own risk. Available for WinHelp, MS HTML Help, OmniHelp, and Oracle Help for
Java.

Code Any macros in the marker are expanded, and the content is surrounded by any code specified
for the marker type in [MarkerTypeCodeBefore] and [MarkerTypeCodeAfter] ; see §38.5
Inserting code with PI markers on page 724 for more information. Cannot be combined with
HTMLComment.

Config Content is a configuration setting of the form [Section] Key=Value or [Section]= Value;
see §42.2 Overriding settings with PI markers or macros on page 766.

Delete The marker is removed entirely; DITA2Go applies this property last, after any other properties
you specify. Must be specified last.

RTF only RTFConfig Content is a configuration setting of the form [Section] Key=Value or [Section]= Value;
see §42.2 Overriding settings with PI markers or macros on page 766.

HTML only ANSI Specifies the Windows code page to use, default 1252; or 1250 for CE/EE, 1251 for Cyrillic,
1253 for Greek, 1254 for Turkish.

Extr* Each of these markers has the same effect as the corresponding
[HTMLParaStyles] parafmt=Extr* property; see §27.4.1 Enabling and disabling extract
processing on page 528. For ExtrDisable , ExtrEnable , ExtrEnd , and ExtrStart , any
content is ignored, unless you also specify other properties that use the content, such as Code.

ExtrBottom Content becomes the last item in the extract <body> .

ExtrDisable Turns extract processing off.

ExtrEnable Turns extract processing on.

INSERTING CODE WITH PI MARKERS DITA2GO USER’S GUIDE

724 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

38.5 Inserting code with PI markers
DITA2Go can insert the content of a PI marker directly in output, at the location where it
occurs in your DITA document. This is what happens by default to the content of any PI
marker of type Code . For example, you could include a literal in your HTML
output with:

<?dthtm code=" " ?>

If Code PI marker content includes DITA2Go macros, the macros are expanded.

To place PI marker content at a location in HTML or XML that is outside of any
paragraph, dedicate a paragraph format to this use (for example, MarkerOnly). Put the PI
marker in an otherwise empty element to which you have assigned the MarkerOnly
paragraph format, and assign the following property:

[HTMLParaStyles]
MarkerOnly = Raw

See §30.2.4 Stripping paragraph properties on page 568.

If you assign the Code property to a PI marker type (see §38.4 Assigning properties to PI
marker types on page 723), you can have DITA2Go surround the content with additional
“before” and “after” code, or replace the content with code:

[MarkerTypeCodeBefore]
; marker type name = macro
; for PI markers assigned the Code property in Mark erTypes.

ExtrEnd Ends a file extract, but is not part of the extract.

ExtrFinish Ends a file extract, and is the last part of the extract.

ExtrHead Content is placed in the <head> of the extract, after the <title> element.

ExtrReplace Content replaces an extract in the parent file.

ExtrStart Begins an extract. Must be specified before FileName or Title.

ExtrTop Content becomes the first item in the extract <body> .

FileName Marker content names the current split or extracted file; dangerous (see §43.3.2 Using PI
markers to name output files on page 782)

HelpMerge Marker content specifies another help file to be merged at the point of insertion

HTMConfig Content is a configuration setting of the form [Section] Key=Value or [Section]= Value;
see §42.2 Overriding settings with PI markers or macros on page 766.

HTMLComment Marker content is treated as an HTML comment, and enclosed within HTML comment
delimiters; or, if you specified XML as the output type, marker content is properly converted to an
XML comment. Cannot be combined with Code.

Split Marks a split point in a DITA file; has the same effect as [HTMLParaStyles] parafmt=Split ;
see §27.3.1 Designating split points on page 526. Any content is ignored, unless you also
specify other properties that use the content, such as Code. Must be specified before FileName
or Title.

Title Marker content becomes the page title attribute of the current split or extract file.

TopicStartCode Same as the Code property, except macros are expanded at the start of the topic. Any output the
macros create is available as predefined macro <$_TopicStartCode> , which can be used
anywhere in the current topic.

Window HTML Help only. Marker content names a secondary window as the target for jumps from the
paragraph containing the marker.

Table 38-3 Effects of [MarkerTypes] properties (continued)

Output Property Effect

38 WORKING WITH PROCESSING INSTRUCTIONS INSERTING CODE WITH PI MARKERS

ALL RIGHTS RESERVED. MAY 19, 2013 725

[MarkerTypeCodeAfter]
; marker type name = macro
; for PI markers assigned the Code property in Mark erTypes.

[MarkerTypeCodeReplace]
; marker type name = macro
; for PI markers assigned the Code property in Mark erTypes.

DITA2Go expands macros assigned in these sections. If the PI marker type is assigned the
Code property and PI marker content includes macros, those macros are expanded, also.

Suppose you need to provide code that must be processed at the start of a topic, before
anything has been written to the topic file; for example, variable content to be included in
the <head> element of each HTML topic.

Because the same variable can be assigned a different value multiple times in a document,
DITA2Go processes each assignment as it is encountered. Therefore, the assignment of a
particular value to a variable must ordinarily precede the point where the variable is used.
To get around this restriction, you can assign property TopicStartCode to a PI marker, to
have the code executed before the topic starts.

For example, to provide a Help keyword in an XML section of the <head> element, you
could assign property TopicStartCode to a custom PI marker:

[MarkerTypes]
F1Keyword = TopicStartCode

[MarkerTypeCodeBefore]
F1Keyword = <$$F1Key = "

[MarkerTypeCodeAfter]
F1Keyword = ">

[Inserts]
Head = <$KeyIndexF>

In macro <$KeyIndexF> , you would include code such as the following:
<Help:Keyword Index="F" Term="<$$F1Key>"/>

As another example, to include a variable number of keywords, each in its own <meta>
tag:

[MarkerTypes]
MetaKeys = TopicStartCode

[MarkerTypeCodeBefore]
MetaKeys = <$$KeyCount++><$$Keywords[$$KeyCount] = "

[MarkerTypeCodeAfter]
MetaKeys= ">

[Inserts]
Head = <$AddKeywords>

[AddKeywords]
<$_repeat ($$KeyCount)>
<meta name="Help.Keywords" content="<$$Keywords[$$_ count]>" />\n
<$_endrepeat><$$KeyCount=0>

[Macros]
OmitMacroReturns=Yes

[MacroVariables]
KeyCount=0

In this variation, you would use a counter ($$KeyCount) that starts at zero. As DITA2Go
processes the MetaKeys markers for the start of the topic, the counter is incremented

INSERTING CODE WITH PI MARKERS DITA2GO USER’S GUIDE

726 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

before each marker. The counter is used to index an array variable, into which the marker
content is stored. Each succeeding MetaKeys marker gets its own slot in the array.

When DITA2Go is ready to write the <head> of the topic, the <$_repeat> loop (see
§37.6.4.3 Using loop structures on page 705) writes as many <meta> tags as there were
MetaKeys markers, each with the content from one marker, and the counter is set back to
zero for the next file.

(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 727

39 Working with templates

This section explains how to use DITA2Go configuration templates. Topics include:
§39.1 Working with configuration templates on page 727
§39.2 Referencing configuration files and templates on page 731
§39.3 Including document-specific configuration files on page 732
§39.4 Deciding which configuration file to edit on page 734
§39.5 Creating your own configuration templates on page 741

39.1 Working with configuration templates
A configuration template is a configuration file that contains settings that can be
referenced by (and thus be included in) another configuration file. DITA2Go relies
heavily on configuration templates to supply settings that seldom vary from project to
project, or from one output type to another. This approach helps eliminate duplication of
settings, and reduces the clutter in your project configuration file by limiting the latter to
just those settings specific to your current project.

In this section:
§39.1.1 Understanding how templates are organized on page 727
§39.1.2 Understanding how templates are named on page 728
§39.1.3 Understanding how templates are chained together on page 728
§39.1.4 Understanding how macro libraries are organized on page 729
§39.1.5 Understanding how format templates are organized on page 730
§39.1.6 Understanding how language templates are organized on page 730

39.1.1 Understanding how templates are organized

Your DITA2Go distribution includes templates that are linked together by references that
extend through the chains, from your project configuration file through templates in
%OMSYSHOME%\d2g subdirectories, to the very end of the configuration chain at
%OMSYSHOME%\common\system\config\omsys.ini . See §39.1.3 Understanding
how templates are chained together on page 728

Configuration templates include the following groups:
General configuration settings, located in config directories
Macro definitions, located in macros directories
Output format definitions, located in formats directories
Output text settings by language, located in lang directories.

Each template in a system subdirectory is paired with an editable configuration file in the
corresponding local subdirectory. The system member of each pair contains default
settings. The local member of each pair starts out empty; you add settings to override the
default settings referenced in the system member. Your configuration files always
reference the local member. The local member references its system counterpart,
which in turn references the local member of the next template up the chain.

General
configuration

settings

The settings in general configuration templates establish default values for features that
are not likely to differ from one project to the next, or from one output type to the next.
General configuration templates are located in the following directories:

WORKING WITH CONFIGURATION TEMPLATES DITA2GO USER’S GUIDE

728 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

%OMSYSHOME%\d2g\system\config : default general configuration settings
%OMSYSHOME%\d2g\local\config : your overrides to the system settings

Macro definitions General-purpose macros are defined in macro library templates. Each configuration
section in these templates is the name of the macro being defined. Macro library templates
are located in the following directories:

%OMSYSHOME%\d2g\system\macros: definitions of general-purpose macros
%OMSYSHOME%\d2g\local\macros : definitions of your own macros

Output format
definitions

The presentation styles of paragraphs, characters, tables, and page layouts are governed by
format configuration templates. These templates provide an easy way to define how you
want the output to look. Format configuration templates are located in the following
directory:

%OMSYSHOME%\d2g\system\formats : default format definitions and page layouts
%OMSYSHOME%\d2g\local\formats : your format definitions and page layouts

Output text
settings by

language

DITA2Go generates several headings and labels that appear as text in your output. Each
language configuration template includes text for these headings and labels in one
language. Language configuration templates are located in the following directories:

%OMSYSHOME%\d2g\system\lang : text for generated headings and labels
%OMSYSHOME%\d2g\local\lang : your overrides to headings and labels

39.1.2 Understanding how templates are named

Template files in your DITA2Go distribution have names that follow a certain pattern.
Each name has a prefix that indicates the scope of the settings the template contains,
followed by the type of template (config , formats , lang , or macro):

Most general configuration templates, language templates, format templates, and macro
libraries use this naming convention.

39.1.3 Understanding how templates are chained tog ether

Configuration templates are chained together in a series, each accessing all the settings in
the next, plus all the settings in all other templates farther up the chain. If a given setting
appears in more than one template in a chain, the instance of that setting closest to your
project configuration file takes precedence over any that are farther away.

Template name Editable file name Scope of settings
omsys.ini local_omsys.ini All Omni Systems projects

d2g_type.ini local_d2g _type. ini All DITA2Go projects
d2htm _type.ini local_d2htm _type. ini DITA2Go HTML and XML projects
d2rtf _type.ini local_ d2rtf _type. ini DITA2Go RTF projects

Table 39-1 Output-type-specific general configuration files

Output type Project configuration file Editable local configuration file

DITA _d2dita.ini local_d2dita_config.ini

DocBook _d2docbook.ini local_d2docbook_config.ini

Eclipse Help _d2eclipse.ini local_d2eclipse_config.ini

HTML _d2html.ini local_d2html_config.ini

MS HTML Help _d2htmlhelp.ini local_d2htmlhelp_config.ini

JavaHelp _d2javahelp.ini local_d2javahelp_config.ini

OmniHelp _d2omnihelp.ini local_d2omnihelp_config.ini

39 WORKING WITH TEMPLATES WORKING WITH CONFIGURATION TEMPLATES

ALL RIGHTS RESERVED. MAY 19, 2013 729

Each project configuration file references an output-type-specific local configuration file.
This editable local configuration file in turn references its system counterpart, which
references the next editable local configuration file in the chain, and so forth.

For example, the MS Word starting project configuration file _d2rtf.ini references this
chain of general configuration templates and files:

_d2rtf.ini ->
local_d2rtf_config.ini-> d2rtf_config.ini ->

local_d2g_config.ini -> d2g_config.ini ->
local_omsys.ini -> omsys.ini

The HTML starting project configuration file references this chain:
_d2html.ini ->

local_d2htm_config.ini -> d2htm_config.ini ->
local_d2g_config.ini -> d2g_config.ini ->

local_omsys.ini -> omsys.ini

Some chains are longer. For example, for OmniHelp output, the chain looks like this:
_d2omnihelp.ini ->

local_d2omnihelp_config.ini -> d2omnihelp_config.in i ->
local_d2help_config.ini -> d2help_config.ini ->

local_d2htm_config.ini -> d2htm_config.ini ->
local_d2g_config.ini -> d2g_config.ini ->

local_omsys.ini -> omsys.ini

All general configuration chains go through either d2htm_config.ini (for HTML or
XML output) or d2rtf_config.ini (for Word or WinHelp output). These two
configuration templates reference the format and macro configuration files and templates,
through side chains. Therefore, as long as your project configuration file references one of
the output-specific configuration files, you do not have to include settings in your project
configuration file to reference those other files.

See also:
§39.1.4 Understanding how macro libraries are organized on page 729
§39.1.5 Understanding how format templates are organized on page 730

39.1.4 Understanding how macro libraries are organ ized

Two DITA2Go general configuration templates, d2htm_config.ini and
d2rtf_config.ini , respectively reference local_d2htm_macros.ini and
local_d2rtf_macros.ini ; and these two editable macro library files in turn reference
d2htm_macros.ini and d2rtf_macros.ini , respectively.

For example, in d2htm_config.ini :
[Templates]
; Macros = path to macro library
Macros = %OMSYSHOME%\d2g\local\macros\local_d2htm_m acros.ini

Oracle Help _d2oraclehelp.ini local_d2oraclehelp_config.ini

WinHelp _d2winhelp.ini local_d2winhelp_config.ini

MS Word _d2rtf.ini local_d2rtf_config.ini

XHTML _d2xhtml.ini local_d2xhtml_config.ini

Table 39-1 Output-type-specific general configuration files (continued)

Output type Project configuration file Editable local configuration file

WORKING WITH CONFIGURATION TEMPLATES DITA2GO USER’S GUIDE

730 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Therefore you do not have to include a setting for Macros in your starting project
configuration file, unless you wish to include an additional macro library in the chain. See
§37.2.4 Including macro definitions in your own macro library on page 685.

39.1.5 Understanding how format templates are orga nized

Your DITA2Go distribution includes the output-format configuration templates and files
listed in Table 39-7 on page 739. These files form their own side chain, branching from
the general configuration chain of templates and files. To access this chain, the two
DITA2Go output-category configuration templates, d2htm_config.ini and
d2rtf_config.ini , respectively reference local_d2htm_formats.ini and
local_d2rtf_formats.ini ; and the latter in turn reference their template
counterparts, then the rest of the format configuration chain.

For example, in d2rtf_config.ini :
[Templates]
Formats = %OMSYSHOME%\d2g\local\formats\local_d2rtf _formats.ini

Because the formats chain is referenced from the DITA2Go general configuration chain,
you do not have to include a setting for Formats in your starting project configuration
file, unless you are supplying your own separate formats configuration file(s).

Each of the main format configuration templates references a subformat configuration file
and a table format configuration file. For example:

[Templates]
Subformats = %OMSYSHOME%\d2g\local\formats\local_d2 htm_subformats.ini
Tables = %OMSYSHOME%\d2g\local\formats\local_d2htm_ tables.ini

The RTF formats configuration template also references a subformat and a page-layout
configuration file:

[Templates]
Subformats = %OMSYSHOME%\d2g\local\formats\local_d2 rtf_subformats.ini
Tables = %OMSYSHOME%\d2g\local\formats\local_d2rtf_ tables.ini
Pages = %OMSYSHOME%\d2g\local\formats\local_d2rtf_p ages.ini

Table, subformat, and page-layout configuration files can be referenced only from a
formats template, not from a general configuration template, nor from your project
configuration file. DITA2Go ignores any such out-of-chain references to these files.

See §7.2 Working with format configuration files on page 110.

39.1.6 Understanding how language templates are or ganized

Your DITA2Go distribution includes the language configuration templates and files listed
in Table 39-8 on page 740. The top-level DITA2Go general configuration template,
d2g_config.ini , references the editable English language configuration file:
local_d2g_lang_en.ini :

[Templates]
Languages = %OMSYSHOME%\d2g\local\lang\local_d2g_la ng_en.ini

If you expect to produce output in English, because the English language file is referenced
from the DITA2Go general configuration chain, you do not have to include a setting for
Languages in your starting project configuration file. However, to produce output with
labels and headings in German (for example), in your project configuration file you would
include the following setting:

[Templates]
Languages = %OMSYSHOME%\d2g\local\lang\local_d2g_la ng_de.ini

39 WORKING WITH TEMPLATES REFERENCING CONFIGURATION FILES AND TEMPLATES

ALL RIGHTS RESERVED. MAY 19, 2013 731

You can copy any of these language templates and modify the copy to create a regional
language variation. Give your new language template a name of the form
d2g_lang_ LLRR.ini , where:

To determine an appropriate abbreviation, see:
http://www.w3.org/TR/REC-html40/struct/dirlang.html
http://www.ietf.org/rfc/rfc1766.txt

For example, to provide regional differences for the English language, you could prepare
the following variants:

Your project configuration file could reference one of these variants; each variant should
point in turn to d2g_lang_en.ini for common values.

It is a good idea to keep your language configuration files in directory

%OMSYSHOME%\d2g\local\lang , and name them as indicated; if an instance of

@xml:lang in your DITA document references a language other than the default,

DITA2Go can find the relevant language string.

However, within a referenced language configuration template you can include another
[Templates]Languages setting, to make a chain of language configuration templates
to be searched; the chain can be any length. All files in the chain must have distinct names;
the chain stops if DITA2Go finds a repeat. See §39.2 Referencing configuration files and
templates on page 731.

DITA2Go resets the language to the default at the start of each topic and map, and also
before writing Related Links. For each instance of @xml:lang in your DITA document,
DITA2Go sets the designated language for that element, and then restores the previous
language at the end of the element. If @xml:lang="" , DITA2Go treats this as a request
for the default language.

See §8.9 Localizing output headings, labels, and names on page 157.

39.2 Referencing configuration files and templates
To reference a DITA2Go -provided general configuration file or template:

[Templates]
Configs = %OMSYSHOME%\path\ to\ sometemplate.ini

Your DITA2Go distribution includes configuration templates already chained together
through references like this; see §39.1.3 Understanding how templates are chained
together on page 728.

When DITA2Go creates a starting configuration file for a new project, that file includes
the first link in the chain. For example, a starting project configuration file for Word
output includes this reference:

[Templates]
Configs = %OMSYSHOME%\d2g\local\config\local_d2rtf_ config.ini

LL is the language abbreviation (such as en for English)
RR is the optional region abbreviation (such as us for United States).

local_d2g_lang_enus.ini United States

local_d2g_lang_enuk.ini United Kingdom

local_d2g_lang_enoz.ini Australia

local_d2g_lang_ennz.ini New Zealand

http://www.w3.org/TR/REC-html40/struct/dirlang.html
http://www.ietf.org/rfc/rfc1766.txt

INCLUDING DOCUMENT-SPECIFIC CONFIGURATION FILES DITA2GO USER’S GUIDE

732 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

If you want to insert another configuration file (for example, myspecial.ini) in the
chain between the project configuration file and local_d2rtf_config.ini , you would
copy this reference into myspecial.ini , and replace it with the following reference in
the project configuration file:

[Templates]
Configs = relative\path\to\myspecial.ini

Make paths to your own configuration files relative to the referencing configuration file.
You can chain configuration files together by including in each a [Templates]Configs
setting that references yet another template or configuration file. You can have as many
referenced files chained as you please; each overrides the one it references, and all others
that precede the referenced template in the chain. The most specific configuration rules.
See §39.5 Creating your own configuration templates on page 741.

Settings that specify paths to configuration templates, or to any other files in the
DITA2Go distribution directory structure, should use absolute paths that begin with
environment variable %OMSYSHOME%; for example:

Configs = %omsyshome%\d2g\local\config\local_d2htm_ config.ini

If you specify a relative path for any setting in configuration section [Templates] , that
path is considered to be relative to the configuration file in which the setting occurs.

Precedence of
settings

If the same setting has different values in a referenced template or configuration file and in
a file that references that template, the value in the referencing file takes precedence,
allowing you to override the template when necessary:

 • The last referenced file in the chain overrides DITA2Go internal default values.
 • A referenced configuration file overrides, in turn, any files it references.
 • A document-specific configuration file overrides any files it references, and also

overrides any other files the starting project configuration file references
 • The starting project configuration file overrides any files it references.

See §42.1.2 Understanding precedence of configuration settings on page 765.

39.3 Including document-specific configuration fil es
In addition to a general chain of configuration files and templates, your project
configuration file references a chain of configuration files containing settings that apply
only to the current DITA document (though possibly to multiple output types from that
document).

In this section:
§39.3.1 Referencing a document-specific configuration file on page 732
§39.3.2 Deciding where to keep document-specific configuration files on page 733
§39.3.3 Indicating the intended scope of a configuration file on page 734

39.3.1 Referencing a document-specific configurati on file

To reference a document-specific configuration file:
[Templates]
; Document = path to document-specific configuratio n file
Document = %OMSYSHOME%\d2g\documents\ mydocname_doc.ini

Or:

39 WORKING WITH TEMPLATES INCLUDING DOCUMENT-SPECIFIC CONFIGURATION FILES

ALL RIGHTS RESERVED. MAY 19, 2013 733

[Templates]
; Document = path to local document-specific config uration file
Document = mydocsource_config\ outputtype_doc.ini

It is a matter of preference whether you keep document-specific configuration files for all
documents in one central location (for example, the %OMSYSHOME%\d2g\documents
directory included in your DITA2Go distribution for this purpose) or in a _config
subdirectory under your DITA source directory; see §39.3.2 Deciding where to keep
document-specific configuration files on page 733.

DITA2Go processes the entire Document chain before continuing with the Configs
chain. The Document chain is interpolated between your starting project configuration
file and the Configs chain that your project configuration file references. Settings in the
Document chain override settings in the Configs chain.

Although it cannot reference general configuration files, a document-specific
configuration file can reference other types of configuration files via the following
[Templates] settings:

Settings in files referenced by a document-specific configuration file override settings in
other types of files referenced by your project configuration file. Settings in your project
configuration file override settings in the Document chain.

39.3.2 Deciding where to keep document-specific co nfiguration files

You can establish a default location for configuration files that contain settings that apply
to all conversion projects for a particular DITA document; for example, settings that name
the document itself, or that reference values that occur only in that document. You can use
a different location for each source document, and you can change the location for each
project. Choose a default that applies to most of your projects, depending on which of
several possible scenarios is most likely:

Single output type per document
Multiple output types per document
Multiple documents per output type
Configurations shared on a network
Lone writer
Need for portability.

Regardless of which default you choose, you will be able to specify a different choice for
each project, when you configure default settings; see §2.3 Configuring default DITA2Go
project settings on page 40.

Single output type
per document

If you expect to produce only one output type from each DITA document, and no one else
will be working on the same document, you really do not need a document-specific

Document Other document-specific configurations

Macros Macro libraries

Formats Output formats

Lang Text of headings and labels

Table 39-2 Configuration options determined at run time

Configuration section Option Ref.

Setup FileSuffix 4.1.6

HelpOptions MakeCombinedCnt 17.2.6

DECIDING WHICH CONFIGURATION FILE TO EDIT DITA2GO USER’S GUIDE

734 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

configuration file at all; your project configuration file can include all the needed
settings.the best place is Local ; configuration files specific to a given document will be
stored in a directory adjacent to the output directory for each project.

Multiple output
types per

document

If you expect to produce more than one output type from each DITA document, the best
place is Local ; configuration files specific to a given document will be stored in a
directory adjacent to the output directory for each project.

Multiple
documents per

output type

If you expect to produce the same output type from multiple source documents, you might
want to keep source-specific configuration files for all documents in the same directory
tree, for easy comparison; this would be a reason to choose Central , and use the Browse
dialog to specify a parent directory for document-specific subdirectories. The default
parent directory is %OMSYSHOME%\d2g\document. You select or create a subdirectory
for each source document, at the time you create a conversion project for that document.

Configurations
shared on a

network

If %OMSYSHOME% is located on a network drive (not advisable), and more than one person
will need to access document-specific settings for the same document, you might want to
choose Central .

Lone writer If you are the only person working on your projects, Central is probably easier: you have
all the document-specific configuration files in one area, and if you want to see how you
did something in another project, you can easily find the configuration file for that project.

Need for
portability

If you need to be able to move entire projects from one machine to another, or if you might
have to pack up a project and send it to someone else, choose Local ; configuration files
specific to a given document will be stored in a subdirectory adjacent to the output
directory for each project.

39.3.3 Indicating the intended scope of a configur ation file

To show the intended scope of settings in a configuration file, you can include the
following setting:

[Templates]
; Scope = Intended scope, such as "All Word guides for Product A"
Scope = Statement of intended scope

The value of Scope is displayed by the Configuration Manager. If you add a Scope
setting to a configuration file included in your DITA2Go distribution, that value overrides
any internal Scope value maintained by the Configuration Manager.

39.4 Deciding which configuration file to edit
Each DITA2Go project includes one or more chains of configuration files and templates,
all ultimately referenced from the project configuration file in the project directory. Which
file you work with depends on the type and scope of settings you wish to add, delete, or
modify.

In this section:
§39.4.1 Understanding what configuration files are available on page 735
§39.4.2 Editing a project configuration file on page 737
§39.4.3 Editing a document-specific configuration file on page 738
§39.4.4 Editing an output-specific configuration file on page 738
§39.4.5 Editing a format configuration file on page 739
§39.4.6 Editing a language configuration file on page 740
§39.4.7 Editing a macro configuration file on page 740

39 WORKING WITH TEMPLATES DECIDING WHICH CONFIGURATION FILE TO EDIT

ALL RIGHTS RESERVED. MAY 19, 2013 735

§39.4.8 Indicating the intended scope of a configuration file on page 741

See also:
§1.3.7 Establish system-wide configuration settings on page 33
§42.1 Using a different configuration for selected files on page 765

39.4.1 Understanding what configuration files are available

Most of the supplied DITA2Go configuration files available for editing are located in
subdirectories of %OMSYSHOME%\d2g\local, with the following exceptions:

 • Starting project configuration file, copied by DITA2Go the DITA2Go Project
Manager from %OMSYSHOME%\d2g\local\starts (or from
%OMSYSHOME%\d2g\system\starts) to your project directory

 • Document-specific configuration files in the document _config subdirectory; see
§39.3.2 Deciding where to keep document-specific configuration files on page 733

 • Specialization-supporting configuration files in subdirectories of
%OMSYSHOME%\d2g\specializations

 • Site-specific configuration file local_omsys.ini , located in
%OMSYSHOME%\common\local\config .

Table 39-3 lists the types of configuration files, shows where the files are located, and
indicates the intended scope of settings for each type.

Each configuration file in a \d2g\local subdirectory references an eponymous
configuration template in a \d2g\system subdirectory that contains default settings. Do
not edit those referenced templates, because they will be overwritten whenever you update
DITA2Go . Instead, override settings in the corresponding \local configuration file.

Table 39-4 shows a sample hierarchy of configuration files for an HTML Help project,
with the most widely applicable configuration at the top of the chain, and the most
narrowly applicable (the project configuration file) at the bottom. With the exception of
the document-specific configuration file (shown in green), each file in Table 39-4
references the file above it. The project configuration file at the bottom references both the
document-specific file and the next configuration file above that.

Table 39-3 Intended scope of settings by configuration type

Type Orientation Location of file(s) Intended scope of settings

General Project-specific Project directory Current project only

Source-specific d2g\documents or
.._config (parallel to
project directory)

All or most outputs to be generated from a
given DITA source document

Output-specific d2g\local\config All or most DITA source documents to be
converted to a given output type

Specialization-
specific

d2g\specializations\.
..

All DITA sources that include the
specialization

DITA2Go-wide d2g\local\config All DITA2Go projects for all documents
and outputs

Site-wide common\local\config All Omni Systems projects

Format Output category d2g\local\formats All or most DITA source documents to be
converted to a set of output types

Language Usually universal d2g\local\lang All or most DITA source documents

Macro Usually output-
specific

d2g\local\macros All or most outputs of a given output type
or set of output types

DECIDING WHICH CONFIGURATION FILE TO EDIT DITA2GO USER’S GUIDE

736 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Each configuration file in the chain can override settings in all those above it in
Table 39-4. This is true even for a document-specific configuration file that does not
reference any of the other configuration files, because it is treated as though it were right
above the project configuration file. If a document-specific configuration file does
reference other configuration files, DITA2Go treats all their settings as overruling any
files above the project configuration file in the main chain.

Note: Edit only the files shaded in blue or green; the others are system files.

General
configuration

settings

If you have just one DITA document to convert to a single output type, most general
configuration settings can go in the project configuration file; see §39.4.2 Editing a project
configuration file on page 737.

If you think you might want to produce other types of output from the same source
document, settings that are the same for all output types (but that would be different for
other source documents) can go in a document-specific configuration file; that way you
avoid duplicating the settings in every project configuration file. See §39.4.3 Editing a
document-specific configuration file on page 738.

If you have many DITA documents to convert to a single output type, settings that are
specific to that output type and the same for every document (but that would be different
for other output types) can go in the appropriate output-specific configuration file; see
§39.4.4 Editing an output-specific configuration file on page 738.

Format
configuration files

To override DITA2Go default format configuration settings, redefine output formats by
adding the definitions you prefer to the appropriate output-oriented format configuration
files in d2g\local\formats . See §39.4.5 Editing a format configuration file on
page 739.

Language
configuration files

To override DITA2Go default text values for the output language you wish to use, specify
settings for alternate text in the appropriate language configuration file in
d2g\local\lang . See §39.4.6 Editing a language configuration file on page 740.

Macro
configuration files

You can add macros to editable source-specific, output-specific, or project configuration
files, as needed. Or you can add them to a macro library configuration file in
d2g\local\macros . See §39.4.7 Editing a macro configuration file on page 740.

Table 39-4 Chain of general configuration files for HTML Help output

Scope of settings General configuration file

All Omni
Systems
projects

System: %OMSYSHOME%\common\system\config\omsys.ini

Local site: %OMSYSHOME%\common\local\config\local_omsys.ini

All DITA2Go
projects

System: %OMSYSHOME%\d2g\system\config\d2g_config.ini

Local site: %OMSYSHOME%\d2g\local\config\local_d2g_config.ini

All HTML/XML
projects

System: %OMSYSHOME%\d2g\system\config\d2htm_config.ini

Local site: %OMSYSHOME%\d2g\local\config\local_d2htm_config.ini

All Help
projects

System: %OMSYSHOME%\d2g\system\config\d2help_config.ini

Local site: %OMSYSHOME%\d2g\local\config\local_d2help_config.in i

All HTML Help
projects

System: %OMSYSHOME%\d2g\system\config\d2htmlhelp_config.ini

Local site: %OMSYSHOME%\d2g\local\config\local_d2htmlhelp_confi g.ini

All output types from this
source document

.._config\ docname_document.ini (under source directory) -- or --
%OMSYSHOME%\d2g\documents\docname_document.ini

This project only _d2htmlhelp.ini (in project directory)

39 WORKING WITH TEMPLATES DECIDING WHICH CONFIGURATION FILE TO EDIT

ALL RIGHTS RESERVED. MAY 19, 2013 737

39.4.2 Editing a project configuration file

DITA2Go maintains a set of annotated templates for starting project configuration files, in
directory %OMSYSHOME%\d2g\system\starts , to accommodate settings intended to
apply only or primarily to individual conversion projects. Do not modify these templates;
they will be overwritten each time you update DITA2Go . Instead, if you want to
customize a starting project configuration file for your particular operating environment,
copy the appropriate file to %OMSYSHOME%\d2g\local\starts and edit it there.

To modify settings for an individual conversion project, edit the project configuration file
located in the project directory.

When you set up a new conversion project, the DITA2Go Project Manager copies a
starting project configuration file, named for the output type you specified, into your
project directory. This new file is copied from:

 • local\starts if a configuration file with the correct name is present; any files here
are starting project configuration files you have customized to suit your operating
environment.

 • system\starts if there is no file with the correct name in the local\starts
directory.

The output type you want to produce determines which starting project configuration file
the DITA2Go Project Manager copies to the project directory. Table 39-5 lists the names
of these files.

Near the top of each starting project configuration file you will find a setting that links that
file to an output-specific configuration file. For example, for Word output:

[Templates]
; Where the rest of the configuration settings are:
Configs = %omsyshome%\d2g\local\config\local_d2rtf_ config.ini

Avoid disturbing this setting, or you might break the chain that leads to all the other
configuration settings that apply to your conversion project. If you are using a source-
specific configuration file, your starting project configuration file will also include a
setting that links to that file; for example:

[Templates]
Document = g:\omnisys\ug_config\m2gug_htm_document .ini

Table 39-5 Output types and starting project configuration files

Category Output type Project configuration file Ref.

HTML-based
Help

Eclipse Help _d2eclipse.ini 21

Microsoft HTML Help _d2htmlhelp.ini 18

JavaHelp _d2javahelp.ini 20

OmniHelp _d2omnihelp.ini 19

Oracle Help for Java _d2oraclehelp.ini 20

HTML Standard HTML 4.0 _d2html.ini 22

XHTML 1.0 _d2xhtml.ini 22

XML DITA XML _d2dita.ini 24

Docbook XML _d2docbook.ini 26

Generic XML _d2xml.ini 23

RTF WinHelp _d2winhelp.ini 17

Print RTF _d2rtf.ini 15

DECIDING WHICH CONFIGURATION FILE TO EDIT DITA2GO USER’S GUIDE

738 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

See §39.4.3 Editing a document-specific configuration file on page 738 and §39.4.4
Editing an output-specific configuration file on page 738.

The DITA2Go Project Manager helps you specify additional settings for both starting and
source-specific configurations.

39.4.3 Editing a document-specific configuration f ile

For settings that are specific to your DITA source document and that apply to a group of
output types, DITA2Go maintains one or more document-specific configuration files. By
default, document-specific configuration files for all your DITA documents are located in
directory %OMSYSHOME%\d2g\documents. However, you can choose to keep such files
elsewhere; see §39.3.2 Deciding where to keep document-specific configuration files on
page 733.

When you set up a new project, DITA2Go places in your project configuration file a
reference to the appropriate document-specific configuration file:

[Templates]
Document = Path\ to\ mysourcedir_config\ mydocname_htm_document.ini

The DITA2Go project manager sets up the document-specific configuration file for you
the first time you create a conversion project for a particular document. This file is named
for the map file you specify when you create the project. Later conversion projects for the
same document use the same source-specific configuration file.

The starting project configuration file for each project references the document-specific
configuration file for the document you are converting. The document-specific
configuration file typically does not reference any other configuration files. However, a
document-specific configuration file can reference other document-specific files (via
[Templates]Document) and macro libraries (via [Templates]Macros). But a
document-specific configuration file cannot reference general configuration files. See
§39.3 Including document-specific configuration files on page 732.

39.4.4 Editing an output-specific configuration fi le

For settings that are specific to an output type or a group of output types, but that apply to
all or most of your DITA source documents, DITA2Go maintains user-modifiable output-
specific general configuration files in directory %OMSYSHOME%\d2g\local\config .
You can customize these files with settings that are appropriate for your particular
environment. Table 39-6 lists the output-specific general configuration files you can edit.

Table 39-6 Editable local output-specific configuration files

Category Output type Editable configuration file Ref.

HTML-based Help All HTML-based Help outputs local_d2help_config.ini 16

Eclipse Help local_d2eclipse31_config.ini
local_d2eclipse33_config.ini

21

Microsoft HTML Help local_d2htmlhelp_config.ini 18

JavaHelp local_d2javahelp_config.ini 20

OmniHelp local_d2omnihelp_config.ini 19

Oracle Help for Java local_d2oraclehelp_config.ini 20

HTML All HTML-based outputs local_d2html_config.ini 22

XHTML 1.0 local_d2xhtml_config.ini 22

39 WORKING WITH TEMPLATES DECIDING WHICH CONFIGURATION FILE TO EDIT

ALL RIGHTS RESERVED. MAY 19, 2013 739

Near the top of each configuration file you will find a setting that links that file to an
eponymous configuration template in \d2g\system\config that contains settings
commonly needed for the output type you selected. Do not edit the referenced templates;
they will be overwritten each time you update DITA2Go . Instead, override settings as
needed in the editable configuration files.

For example, in local_d2xhtml_config.ini :
[Templates]
; Where the rest of the configuration settings are:
Configs=%omsyshome%\d2g\system\config\d2xhtml_confi g.ini

Avoid disturbing this setting, or you might break the chain that leads to all the other
configuration settings for your conversion project.

39.4.5 Editing a format configuration file

For settings that define output formats, DITA2Go maintains user-modifiable format
configuration files in directory %OMSYSHOME%\d2g\local\formats . You can
customize these files with settings that are appropriate to your particular needs. Table 39-7
lists the format configuration files you can modify.

The main format configuration files (those with _formats in their names) are referenced
from output-specific general configuration files. The main format files reference
subformat and table configuration files, and for Word output, a page-layout configuration
file.

Near the top of each editable format configuration file you will find a setting that links that
file to an eponymous configuration template in a \d2g\system\formats that contains
settings commonly needed for the output type you selected. Do not edit the referenced

XML DITA XML local_d2dita_config.ini 24

Docbook XML local_d2docbook_config.ini 26

Generic XML local_d2xml_config.ini 23

RTF WinHelp local_d2winhelp_config.ini 17

All RTF-based outputs local_d2rtf_config.ini 15

Table 39-6 Editable local output-specific configuration files (continued)

Category Output type Editable configuration file Ref.

Table 39-7 Output types and format configuration files

Output type Editable format configuration file

HTML local_d2htm_formats.ini

local_d2htm_subformats.ini

local_d2htm_tables.ini

local_d2oraclehelp_tables.ini

RTF local_d2rtf_formats.ini

local_d2rtf_subformats.ini

local_d2rtf_tables.ini

local_d2rtf_pages.ini

local_d2winhelp_formats.ini

local_d2winhelp_tables.ini

DECIDING WHICH CONFIGURATION FILE TO EDIT DITA2GO USER’S GUIDE

740 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

templates; they will be overwritten each time you update DITA2Go . Instead, override
settings as needed in the editable format configuration files in \d2g\local\formats .

Each format configuration file contains settings commonly needed for the output type
indicated by the name of the file. Near the top of each format configuration file you will
find a setting that links that file to other format configuration files. For example, in
local_d2rtf_formats.ini :

[Templates]
; Where the rest of the format configuration settin gs are:
Formats=%omsyshome%\d2g\system\formats\d2rtf_format s.ini

Avoid disturbing this setting, or you might break the chain that connects to all the other
format settings for your conversion project.

Before you add settings to the editable format configuration files, see:
§7 Configuring output formats on page 109
§8 Configuring format components on page 141.

39.4.6 Editing a language configuration file

DITA2Go provides a collection of language configuration files that contain settings for
the text of various output headings, labels, and names, in different languages. These files
are located in %OMSYSHOME%\d2g\local\lang . You can customize these files with
values that are appropriate to your particular needs. Table 39-8 lists the language
configuration files you can edit.

The English language configuration file is referenced by the configuration template at the
top of the general-configuration chain: %OMSYSHOME%\d2g\system\d2g_config.ini :

[Templates]
Languages=%omsyshome%\d2g\local\lang\local_d2g_lang _en.ini

If you plan to produce output in a language other than English, you can include a reference
in your starting configuration file to point to a different language-specific template. For
example, to reference the German version, add this setting:

[Templates]
; Languages = path to main language configuration t emplate
Languages = %OMSYSHOME%\d2g\local\lang\local_d2g_la ng_de.ini

This setting will override the default setting in d2g_config.ini .

See §8.9 Localizing output headings, labels, and names on page 157.

39.4.7 Editing a macro configuration file

DITA2Go provides several macro libraries in the form of macro configuration files,
organized by output type. These files are located in %OMSYSHOME%\d2g\local\macros .

Table 39-8 Language configuration files

Language Editable language configuration file

Czech local_d2g_lang_cz.ini

German local_d2g_lang_de.ini

English local_d2g_lang_en.ini

Spanish local_d2g_lang_es.ini

French local_d2g_lang_fr.ini

Russian local_d2g_lang_ru.ini

39 WORKING WITH TEMPLATES CREATING YOUR OWN CONFIGURATION TEMPLATES

ALL RIGHTS RESERVED. MAY 19, 2013 741

You can add your own macros, and override macros in the default macro libraries they
reference. Table 39-9 lists the macro configuration files you can edit.

Macro libraries are referenced from output-specific configuration files; they can also be
referenced from document-specific configuration files. Each editable macro library in turn
references an eponymous macro library that contains all the macros distributed with
DITA2Go . Do not edit those referenced libraries; they will be overwritten every time you
update DITA2Go . To change a distributed macro, override it with a new definition in the
appropriate \local\macros library.

39.4.8 Indicating the intended scope of a configur ation file

To show the intended scope of settings in a configuration file, you can include the
following setting:

[Templates]
; Scope = Intended scope, such as "All Word guides for Product A"
Scope = Statement of intended scope

The value of Scope is displayed by the Configuration Manager. If you add a Scope
setting to a configuration file included in your DITA2Go distribution, that value overrides
any internal Scope value maintained for that file by the Configuration Manager.

39.5 Creating your own configuration templates
Besides using the configuration templates supplied with your DITA2Go distribution, you
can create templates of your own to insert additional or alternate settings anywhere in the
chains of templates that such settings are valid.

In this section:
§39.5.1 Creating a template from a project configuration file on page 741
§39.5.2 Deciding what to include in a general configuration template on page 742
§39.5.3 Chaining configuration templates on page 743

See also:
§3.1 Working with DITA2Go configuration files on page 49
§39.2 Referencing configuration files and templates on page 731
§42.1 Using a different configuration for selected files on page 765

39.5.1 Creating a template from a project configur ation file

To create a general configuration template:

1. Copy one of your configuration files (one that has the most commonly used settings)
to another directory, and give it a different name with extension .ini ; for example
MyTemplate.ini .

2. Delete from MyTemplate.ini any settings that apply only to the particular project
from which you copied the configuration file. Also delete all macro definitions.

Table 39-9 Macro configuration files

Output type Editable macro configuration file

HTML local_d2g_d2htm_macros.ini

Print RTF local_d2g_d2rtf_macros.ini

WinHelp local_d2g_d2winhelp_macros.ini

CREATING YOUR OWN CONFIGURATION TEMPLATES DITA2GO USER’S GUIDE

742 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

3. Delete from all your project configuration files any unused sections that have settings
in MyTemplate.ini .

4. Delete from all your project configuration files any settings that occur in
MyTemplate.ini , unless a setting has a different value. Settings in a project
configuration file override those in a configuration template.

5. In your project configuration file, specify the following to reference the template:
[Templates]
; Configs = path to configuration template file
Configs= path\to\MyTemplate.ini

Because you originally copied MyTemplate.ini from your project configuration file,
MyTemplate.ini still has a setting referencing the next configuration template in the
chain supplied by DITA2Go ; so the template chain remains unbroken.

The idea is to have as little as possible in individual project configuration files, and keep
most common settings in the template. However, there are a few settings that can appear
only in the project configuration file; see §39.5.2 Deciding what to include in a general
configuration template on page 742.

39.5.2 Deciding what to include in a general confi guration template

A configuration template should include settings and values that you normally use in most
or all projects for a given type of output. The settings in the template file apply to any
configuration file that references that template, reducing the need to add the same settings
to every project configuration file.

DITA2Go supplies an extensive collection of templates already chained together. You can
insert other templates in this chain, between your starting project configuration file and the
the first DITA2Go -supplied file in the chain. However, you might prefer to add settings to
the appropriate editable configuration file supplied in the existing chain; see §39.4
Deciding which configuration file to edit on page 734.

Project overrides
template

If a setting has a value in a template file that is different from its value in the project
configuration file, the value in the project configuration file takes precedence, allowing
you to override the template when necessary; see §42.1.2 Understanding precedence of
configuration settings on page 765.

Define macros
elsewhere

Do not include macro definitions in a general configuration template; keep macro
definitions in a separate library file; see §37.2.4 Including macro definitions in your own
macro library on page 685 and §39.1.4 Understanding how macro libraries are organized
on page 729.

Define output
formats

elsewhere

Do not include output format definitions in a general configuration template; those must
be added to a template specifically for formats, and referenced via one of the following
settings:

[Templates]
Formats = path/to/myformats.ini
Tables = path/to/mytables.ini
; For RTF output only:
Pages = path/to/mypages.ini

See §7.2 Working with format configuration files on page 110 and §39.1.5 Understanding
how format templates are organized on page 730.

Some settings are
duplicated

Although the settings in Table 39-2 can be included in a configuration template, some will
end up in the project configuration file anyway; either because DITA2Go originates them,
or because their values can be changed at run time. If you remove one of these settings

39 WORKING WITH TEMPLATES CREATING YOUR OWN CONFIGURATION TEMPLATES

ALL RIGHTS RESERVED. MAY 19, 2013 743

from the project configuration file, DITA2Go will put it back in, at the end of the section
where it belongs. If the section itself is missing, DITA2Go places the section and the
setting near the end of the project configuration file.

39.5.3 Chaining configuration templates

A configuration template can include a setting for [Templates]Configs , specifying yet
another template file. This allows you to create a chain of templates for DITA2Go to
search for settings. The chain can be any length. All files in the chain must have distinct
names; the search stops if DITA2Go finds a repeated template name. The settings in all
templates in a chain are applied to your project configuration in a cascade, at run time.

Precedence of
templates

In a chain of templates, if the same setting appears in more than one template file but has a
different value in each file, the value for that setting in a template closer in the chain to the
project configuration file overrides the value in any template farther away in the chain
from the project configuration file; and a value for that same setting in the project
configuration file overrides the closest template value. See §42.1.2 Understanding
precedence of configuration settings on page 765.

(No illustrations)

CREATING YOUR OWN CONFIGURATION TEMPLATES DITA2GO USER’S GUIDE

744 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 745

40 Working with graphics

This section tells how to manage the graphics referenced by your DITA document, and
control their appearance in the output produced by DITA2Go . Topics include:

§40.1 Choosing an appropriate graphics format on page 745
§40.2 Replacing and relocating graphics files on page 746
§40.3 Specifying custom settings for individual graphics on page 752

See also:
§15.7 Managing graphics for print RTF on page 234
§17.6 Managing graphics for WinHelp on page 292
§32 Including graphics in HTML on page 611
§44.7 Placing graphics files for distribution on page 796

40.1 Choosing an appropriate graphics format
Some graphics formats work better than others in each kind of output. For best
appearance, you might have to prepare an alternate set of graphics files, and set some
configuration-file options.

In this section:
§40.1.1 Graphics formats for Word documents on page 745
§40.1.2 Graphics formats for WinHelp on page 745
§40.1.3 WMF format limitations on page 746
§40.1.4 Graphics formats for HTML on page 746

40.1.1 Graphics formats for Word documents
WMF or BMP Use WMF or BMP for bitmap graphics for Word. If you choose WMF, see §40.1.3 WMF

format limitations on page 746.

256 colors Word graphics typically use 256 colors, sometimes more. It is best to stick with 256
colors, because the size increase for 24-bit color (“true color”, the only other real option)
is more than 10 times, which can make files too big for Word to load.

40.1.2 Graphics formats for WinHelp
WMF or BMP WinHelp graphics must be in WMF or BMP format. Graphics are viewed at screen

resolution, typically 96 DPI. Normally you want to use WMF, because WMF graphics
have a much sharper image than BMP graphics. However, the WMF format has some
drawbacks; see §40.1.3 WMF format limitations on page 746.

For very large graphics, BMP can be a better choice.

256 colors for
WinHelp 4

WinHelp 4 allows 256-color bitmaps; the added space for 256 colors is relatively small,
and the graphics usually look better than with 16 colors. WinHelp 3 allows only 16-color
bitmaps (unless you use add-on DLLs). For any WinHelp use, 24-bit color (“true color”) is
a very bad idea; it often crashes the Help Compiler during processing.

REPLACING AND RELOCATING GRAPHICS FILES DITA2GO USER’S GUIDE

746 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

40.1.3 WMF format limitations

WMF graphics are like scripts for the Windows GDI. A WMF graphic can include vector
elements, text, and bitmaps (with up to 24-bit resolution).

The WMF graphic format has limitations:
Bezier curves become polylines
Dashed line width is ignored

Bezier curves
become polylines

WMF does not support Bezier curves. WMF does support ellipses and elliptic arcs, with
radii or chords available for the arcs. Bezier curves are represented by polyline segments.

Dashed line width
is ignored

For dashed lines and other non-solid lines, MicroSoft code for WMF images sets line
thickness to 1 (one), which is nominally 1.0 twip (1/20 pt) or 0.01 mm. This value is
affected by scaling, so you always get the thinnest line drawable. If you try to use a
different thickness for a non-solid line, you get the thickness you specified, but the line
becomes solid.

40.1.4 Graphics formats for HTML
JPEG, GIF, PNG Graphics formats that work well on the Web are JPEG, PNG, and GIF. We suggest JPEG

for Web use. JPEG is universally supported by browsers, and we have yet to see an
instance of a graphic where it behaved badly compared to other formats. Other formats
might be useful in particular situations, but they are not universally supported by Web
browsers.

See also:
§32 Including graphics in HTML on page 611

40.2 Replacing and relocating graphics files
You might want to replace one or more referenced or exported graphics with others that
are in a more appropriate format. If you have created an alternate set of graphics files, you
might need to direct DITA2Go to look for them in a directory different from the location
referenced in DITA.

Changing referenced file names and locations for DITA2Go requires different settings,
depending on whether you are converting to RTF (Word or WinHelp) or to HTML.

This section discusses the following topics:
§40.2.1 Changing graphics files for HTML output on page 746
§40.2.2 Changing graphics files for RTF output on page 748

40.2.1 Changing graphics files for HTML output

In this section:
§40.2.1.1 Specifying graphics location for HTML on page 747
§40.2.1.2 Substituting graphics files for HTML on page 747
§40.2.1.3 Overriding path specifications for referenced graphics on page 748

See also:
§32 Including graphics in HTML on page 611

40 WORKING WITH GRAPHICS REPLACING AND RELOCATING GRAPHICS FILES

ALL RIGHTS RESERVED. MAY 19, 2013 747

40.2.1.1 Specifying graphics location for HTML

Graphics files for HTML usually should be in the same directory as the HTML files, or in
a related directory. Their location relative to the HTML files might not be the same as their
location relative to DITA files. Therefore, you must specify where they will be when your
HTML output is deployed on a Web server, in a Help system, or on a production system
different from your conversion system.

Note: Some HTML output types restrict placement of graphics; see §32.1 Locating
graphics files for HTML on page 611.

Graphics in
directory with

HTML files

To remove any path information from graphics file names, so that a browser or Help
viewer will look for graphics in the same directory as the HTML files that reference those
graphics:

[Graphics]
; StripGraphPath = No (default)
; or Yes (remove path from graphics references)
StripGraphPath = Yes

Graphics in a
different directory

To specify where a browser or Help viewer should look for graphics:
[Graphics]
; GraphPath = path to use (replacing any previous) for all graphics
GraphPath = relative/path/to/graphics/files

The location specified by GraphPath is relative to the wrap directory.

Move graphics to
the referenced

directory

To move graphics to the specified directory, do one of the following:

 • Have DITA2Go copy the graphics after conversion; see §44.7.1 Copying referenced
graphics to a distribution directory on page 796.

 • Copy the graphics yourself, outside of the conversion process.

See also:
§44.7.4 Synchronizing graphics settings for HTML output on page 799
§32.1 Locating graphics files for HTML on page 611
§18.3.9 Locating graphics files for HTML Help on page 318
§19.3.8 Getting OmniHelp supporting files in the right place on page 360
§20.3.6.3 Locating graphics files for JavaHelp and Oracle Help on page 391

40.2.1.2 Substituting graphics files for HTML

You can tell DITA2Go to use a specific named graphic in place of the original graphic.
For example:

[GraphFiles]
; GraphicID (with or without extension) = new name (with extension)
; new name overrides any [Graphics]GraphPath spec ified
ch01f853.gif = tuner.gif

If your DITA document references graphics in non-Web formats (such as TIFF) and you
plan to replace those graphics with matching Web-usable images in the same directory,
you can specify a new extension for the replacement files. For example:

[Graphics]
; GraphSuffix = suffix to use for replacement graph ics
GraphSuffix = jpg

If some referenced graphics are in a different format (for example GIF), specify the
exceptions. For example:

[GraphSuffix]
; old suffix = new suffix, overrides [Graphics]Grap hSuffix

REPLACING AND RELOCATING GRAPHICS FILES DITA2GO USER’S GUIDE

748 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; jpg = jpg leaves all .jpgs alone even if GraphS uffix=gif
; wmf = png .wmfs are being made into .pngs using a third-party tool
gif = gif

40.2.1.3 Overriding path specifications for refere nced graphics

To override path settings in [GraphFiles] and in configuration markers (see §42.2.9.4
Overriding graphic properties for HTML on page 774):

[Graphics]
; GraphPathOverrides = No (default) or Yes (overrid es any path
; in Config markers and in [GraphFiles], adding Gra phPath
; and using FixGraphSpaces)
GraphPathOverrides=Yes

When GraphPathOverrides=Yes , DITA2Go uses the path to graphics specified by
GraphPath (see §32.1 Locating graphics files for HTML on page 611) instead of any
path (or lack of a path) specified in [GraphFiles] (see §40.2.1.2 Substituting graphics
files for HTML on page 747) or in a *Config PI marker that has content:

[GraphFiles]= filename

Also, DITA2Go replaces with underscores any spaces in file names of referenced
graphics.

You can have DITA2Go eliminate spaces from the names of those original files, to make
the names valid in all environments:

[Graphics]
; FixGraphSpaces = Yes (default, replace space with underscore) or No
FixGraphSpaces = Yes

40.2.2 Changing graphics files for RTF output

For print RTF or WinHelp output, you can direct DITA2Go to use graphics files different
from those referenced in DITA, or exclude graphics altogether.

In this section:
§40.2.2.1 Substituting graphics files for RTF on page 748
§40.2.2.2 Using already converted graphics for RTF on page 751
§40.2.2.3 Excluding graphics from RTF output on page 751

40.2.2.1 Substituting graphics files for RTF

If any graphics referenced in your DITA document are not BMP or WMF, unless you map
those graphics to replacements, DITA2Go puts them in an INCLUDEPICTURE field for
Word output, and omits them from WinHelp output.

In this section:
§40.2.2.1.1 Substituting files with different extensions on page 748
§40.2.2.1.2 Substituting files with different names or locations on page 749
§40.2.2.1.3 Understanding replacement examples on page 750

40.2.2.1.1 Substituting files with different exten sions

The simplest way to substitute graphics in a different format is as follows:

 • give all the replacement graphics the same base names as the originals
 • put all the replacement graphics in the project directory.

Then you can simply map the old extension to the new extension, as follows:

40 WORKING WITH GRAPHICS REPLACING AND RELOCATING GRAPHICS FILES

ALL RIGHTS RESERVED. MAY 19, 2013 749

[Graphics]
FileNames=Map
FilePaths=None

[GraphFiles]
oldext=newext

Do not include a leading dot when you map extensions. For example:
[GraphFiles]
jpg=bmp

However, if some of your replacement graphics have different base names or are in other
directories, mapping old to new files becomes more complex. See §40.2.2.1.2 Substituting
files with different names or locations on page 749.

40.2.2.1.2 Substituting files with different names or locations

You can tell DITA2Go to look for replacement files that differ from the original files in
any or all of the following respects:

 • different location (file path)
 • different base file name
 • different file extension.

To map referenced graphics to replacements:
[Graphics]
; FileNames = Retain (default) or Map (in the Graph Files section)
; FilePaths (for graphics) = Retain (default) or No ne (strip off)
FileNames=Map

To specify different file paths, different names, or different extensions, when
FileNames=Map :

[GraphFiles]
; types to map, replace extension, old=new for refe renced graphics
; specific filenames to replace, old = new, overrid es type setting

Note: When you specify paths in [GraphFiles] , use forward slashes for separators.

Table 40-1 shows where DITA2Go expects to find replacement files for various
combinations of FileNames and FilePaths values and [GraphFiles] settings.

FileNames=Map When FileNames=Map , DITA2Go uses the settings in [GraphFiles] to find
replacements.

Table 40-1 RTF replacement graphics file mappings and locations

FileNames

Valid [GraphFiles] mappings

Replacement
directory when
FilePaths =

Original graphics
file(s) = Replacement file(s) Retain None

Retain Ignored Original Output

Map ext = ext Original Output

filename.ext = filename.ext Output Output

path/filename.ext = filename.ext Output Output

filename.ext = path/filename.ext Per [GraphFiles] path

path/filename.ext = path/filename.ext Per [GraphFiles] path

REPLACING AND RELOCATING GRAPHICS FILES DITA2GO USER’S GUIDE

750 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

FileNames=
Retain

When FileNames=Retain , DITA2Go ignores the settings in [GraphFiles] , and looks
for replacements in one of two places (determined by the FilePaths setting): the same
directory as the original graphics, or the project directory.

FilePaths=None When FilePaths=None , DITA2Go ignores the path component of the file references in
DITA. Unless you specify FileNames=Map and a different path in [GraphFiles] ,
DITA2Go looks for replacements only in the project directory.

You can use FilePaths=None when you are converting on a system different from the
system used for authoring or editing, to avoid replicating the directory structure. This
setting prevents problems with attempted access to drives (such as network drives) that do
not exist on the system used for conversions, but do exist on the systems used for
authoring or editing.

FilePaths=Retain When FilePaths=Retain , unless you specify FileNames=Map and different paths for
both original and replacement files in [GraphFiles] , DITA2Go looks for replacement
graphics only in the same directory as the original files.

Avoid specifying
original file paths

It is best to use FilePaths=None , and put the replacements in the project directory. This
is because specifying original file paths in [GraphFiles] is problematic; success
depends on exactly matching the paths in DITA, whether they are absolute or relative.

40.2.2.1.3 Understanding replacement examples

If replacement graphics have the same base names as the originals, and are located in the
same directory with the originals, and you are replacing some or all GIFs with BMPs:

[Graphics]
FilePaths=Retain
FileNames=Map

[GraphFiles]
gif=bmp

If all replacement graphics are in the project directory, and you are replacing GIFs with
BMPs, and in one instance replacing an existing BMP with a new one:

[Graphics]
FilePaths=None
FileNames=Map

[GraphFiles]
gif=bmp
oldpic.bmp=newpic.bmp

If some replacement graphics are not with originals and not in the project directory, you
must specify paths to the replacement files:

[Graphics]
FilePaths=None
FileNames=Map

[GraphFiles]
oldpic.bmp=D:/Graphics/Beta/newpic.bmp

If some of the replacement graphics are in the same directory as the original graphics, but
some of the base file names are different, you must specify both the original and the
replacement path:

[Graphics]
FilePaths=Retain
FileNames=Map

[GraphFiles]
D:/Graphics/oldpic.bmp=D:/Graphics/newpic.bmp

40 WORKING WITH GRAPHICS REPLACING AND RELOCATING GRAPHICS FILES

ALL RIGHTS RESERVED. MAY 19, 2013 751

Because path references in DITA could be relative or absolute, it is better to avoid
specifying paths to the left of the equals sign in [GraphFiles] ; instead, move or copy
the replacement graphics to the project directory, and set FilePaths=None .

40.2.2.2 Using already converted graphics for RTF

To instruct DITA2Go to use graphics you have already converted to another format, do
the following:

1. Make sure each converted graphic has the same name as the graphic it replaces, except
for the file extension.

For example, if the original graphics were named:
screen01.tif
screen02.tif
screen03.tif

and you converted them to WMF format, name the WMF replacements:
screen01.wmf
screen02.wmf
screen03.wmf

2. Put the converted graphics in one of these directories:

 • the same directory as the original graphics
 • the project directory with the RTF files.

3. Specify settings in your project configuration file, d2rtf.ini .
3.1. Specify file-name treatment and replacement-file location:

[Graphics]
FileNames=Map

If you put the converted graphics in the same directory as the original graphics:
FilePaths=Retain

If you put the converted files in the project directory with the RTF files:
FilePaths=None

3.2. Map the original file extension to the new file extension; for example:
[GraphFiles]
tif=bmp (if you converted TIFF graphics to BMP format)
eps=wmf (if you converted EPS graphics to WMF format)

40.2.2.3 Excluding graphics from RTF output

To strip all graphics from the files you are converting to RTF, for either Word or WinHelp:
[Graphics]
; RemoveGraphics = No (default) or Yes (strip all g raphics from doc)
RemoveGraphics=Yes

You can keep empty frames, remove them, or identify them by having DITA2Go write the
name of the missing graphic visibly in the empty frame. For example, to display in RTF
output only file names and not the graphics themselves:

[WordOptions] or [HelpOptions]
; EmptyFrames = Standard (retain), Remove, or Ident ify (missing file)
EmptyFrames=Identify

SPECIFYING CUSTOM SETTINGS FOR INDIVIDUAL GRAPHICS DITA2GO USER’S GUIDE

752 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

40.3 Specifying custom settings for individual gra phics
Many of the graphics settings you can specify in the configuration file apply to all the
graphics in your document. However, if the right setting for one graphic is wrong for
another, you might be able to override the configuration value for an individual graphic,
with a PI marker.

You can use PI markers to insert configuration overrides in your DITA document. For RTF
output, use a Config or RTFConfig PI marker for this purpose; for HTML output, a Config
or HTMConfig PI marker. See §42.2.2 Overriding settings with configuration PI markers
on page 767. The following tables show which settings can be overridden:

Table 42-2 Fixed-key configuration sections subject to overrides on page 770
Table 42-6 HTML graphic sections subject to overrides on page 775

Fixed-key overrides persist until the end of the file, or until changed by another override;
variable-key overrides apply only to the next graphic (see §42.2.7 Understanding fixed-
key vs. variable-key settings on page 769).

See also:To override a setting for a given graphic, place the marker just before the
<image> tag. For marker text, supply the setting you want to change.

§38 Working with processing instructions on page 717
§42.2 Overriding settings with PI markers or macros on page 766

ALL RIGHTS RESERVED. MAY 19, 2013 753

41 Working with content models

DITA2Go provides built-in configurations for content models for DITA and DocBook.
This section shows how to modify or replace a built-in content model, or generate a new
content model from a valid DITA or DocBook DTD (Document Type Definition). Topics
include:

§41.1 Understanding DITA2Go content models on page 753
§41.2 Modifying or replacing a content model on page 753
§41.3 Preparing a content model for use with DITA2Go on page 755
§41.4 Understanding content-model configurations on page 756
§41.5 Understanding how DITA2Go uses content models on page 759
§41.6 Inspecting and correcting element types on page 760
§41.7 Specializing or modifying DITA topic types on page 761
§41.8 Extracting content-model debug information on page 764

See also:
§24 Converting to DITA XML on page 455
§26 Converting to DocBook XML on page 499
§C Content model configuration on page 833

41.1 Understanding DITA2Go content models
A DITA2Go content model is a configuration-style representation of a DTD. A content-
model configuration summarizes DTD information in a form DITA2Go can use to
produce XML output that conforms to the DTD. DITA2Go provides built-in content
models for basic DITA version 1.0 and 1.1 topic types, and for DocBook version 4.5. You
do not have to include anything special in your DITA2Go conversion project to use these
content models.

The DITA2Go built-in content models were derived from:
http://docs.oasis-open.org/dita/v1.0.1/dtd/ for DITA version 1.0
http://docs.oasis-open.org/dita/v1.1/CS01/dtd/ for DITA version 1.1
http://www.oasis-open.org/docbook/xml/4.5/ for DocBook 4.5.

These content models are complete. You should not need to modify any of them, except
possibly to correct element type assignments; see §41.6 Inspecting and correcting element
types on page 760. Each built-in content model has a matching configuration file.

The DTD for DITA version 1.2 is available here:
http://docs.oasis-open.org/dita/v1.2/cs01/dtd1.2/

You can use utility program dtd2ini to abstract content models from this and other
DTDs; see §41.2.2 Generating a content model from a DTD on page 754.

41.2 Modifying or replacing a content model
To modify a DITA2Go built-in content-model, first locate and extract the appropriate
content-model configuration file.

To replace a built-in content model, or to add a content model for a new DITA topic type,
generate a content-model configuration file from an appropriate DTD.

http://docs.oasis-open.org/dita/v1.0.1/dtd/
http://docs.oasis-open.org/dita/v1.1/CS01/dtd/
http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd
http://docs.oasis-open.org/dita/v1.2/cs01/dtd1.2/

MODIFYING OR REPLACING A CONTENT MODEL DITA2GO USER’S GUIDE

754 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

In this section:
§41.2.1 Obtaining a copy of a built-in content-model on page 754
§41.2.2 Generating a content model from a DTD on page 754

41.2.1 Obtaining a copy of a built-in content-mode l

If you need to modify one of the DITA2Go built-in content models to correct an element
type assignment (see §41.6 Inspecting and correcting element types on page 760), you
must first extract a configuration file for the content model from the appropriate content-
model archive. You can download these archives from the Omni Systems Web site.

Archives of content models are available for the following DTDs:

Each archive contains both content-model configuration files and the DTD-to-model
configuration files used by utility program dtd2ini to generate the content models.
Table 41-1 lists the configuration files in each archive. Extract from the relevant archive
the content-model configuration file you wish to modify.

41.2.2 Generating a content model from a DTD

Utility program dtd2ini can produce, from a valid DTD, a content-model configuration
file to use with DITA2Go for DITA or DocBook XML output.

Because dtd2ini is GPL software (GNU General Public License), this utility cannot be
packaged with any non-GPL software. Therefore dtd2ini is not included in your
DITA2Go distribution. However, you can download dtd2ini NNwin.zip from the Omni
Systems Web site:

http://www.dita2go.com

DTD Content model archive
DITA version 1.0 dita10contentmods.zip

DITA version 1.1 dita11contentmods.zip

DocBook version 4.5 docbook45contentmods.zip

Table 41-1 Configuration files for DITA2Go built-in content models

Content model archive
Content model
configurations

DTD-to-model
configurations

dita10contentmods.zip ditaconcept10.ini dtd2concept10 .ini

ditamap10.ini dtd2map10.ini

ditareference10.ini dtd2reference10.ini

ditatask10.ini dtd2task10.ini

ditatopic10.ini dtd2topic10.ini

dita11contentmods.zip ditabookmap11.ini dtd2bookmap11 .ini

ditaconcept11.ini dtd2concept11.ini

ditaglossary11.ini dtd2glossary11.ini

ditamap11.ini dtd2map11.ini

ditareference11.ini dtd2reference11.ini

ditatask11.ini dtd2task11.ini

ditatopic11.ini dtd2topic11.ini

docbook45contentmods.zip docbook45a.ini docbook45a.in i

docbook45b.ini docbook45b.ini

http://www.dita2go.com

41 WORKING WITH CONTENT MODELS PREPARING A CONTENT MODEL FOR USE WITH DITA2GO

ALL RIGHTS RESERVED. MAY 19, 2013 755

where NN is the dtd2ini version number.

To generate a content-model configuration file:

1. Extract the following files from archive dtd2ini NNwin.zip :
dtd2ini.exe (program)
dtd2ini.txt (instructions)
dtd2ditatopic.ini (for a DITA specialization), or
dtd2docbook.ini (for a DocBook DTD).

2. Edit the dtd2*.ini file you extracted, and save it as dtd2ini.ini .

3. Copy dtd2ini.exe to %OMSYSHOME%\common\bin.

4. Follow the instructions in dtd2ini.txt to produce a content-model configuration
file, one of the following:

41.3 Preparing a content model for use with DITA2G o
If you plan to use a built-in content model as is, you do not need to do anything described
in this section.

To prepare a new, modified, or replacement content-model configuration for use with
DITA2Go :

1. Inspect and (if necessary) change element type assignments; see §41.6 Inspecting and
correcting element types on page 760.

2. For DITA only, if you are adding or replacing a content model, provide information
needed by DITA2Go that is not available in the DTD:

 • Most settings in section [Topic] except for TopicRoot ; see §41.4.1 Content
model [Topic] settings on page 757.

If you generated the content model from a DTD and you plan to rerun dtd2ini , also
include in configuration file dtd2ini.ini as overrides any [Topic] and [*Table]
settings you add. See dtd2ini.txt for instructions.

3. Include the following setting in the content-model configuration file:
[Topic]
; ModelName = name of type (usually a built-in) to be replaced
; after this file loads, effective only when this fi le is
; specified in [DITAContentModels] or
; [DocBookOptions]ContentModel in the project config uration file;
; overrides the default use of the filename (without "DITA").
ModelName = contentmodelname

ModelName specifies either the name of an existing content model to be replaced by
the current content model, or a name for the new content model to be added.

If you are replacing a built-in content model, the value for ModelName must be one of
the following, depending on the output type:

DITA DITAtopictype.ini , where topictype is the name of the topic
type you are adding or replacing; this is also the name of the content
model

DocBook contentmodel.ini , where contentmodel is any name you
choose.

Output
type Built-in content model to be replaced by current mo del

DITA 1.0 topic , concept , task , reference , or map

UNDERSTANDING CONTENT-MODEL CONFIGURATIONS DITA2GO USER’S GUIDE

756 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

If you assign any other value to ModelName, DITA2Go adds the new name to the list
of models. For example, to add a new DITA topic type widget defined in content-
model configuration file DITAwidget.ini , in DITAwidget.ini you would include
the following setting:

[Topic]
ModelName = widget

To replace the built-in DITA reference content model with a model you have
defined in content-model configuration file DITAmyref.ini , in DITAmyref.ini
you would include the following setting:

[Topic]
ModelName = reference

4. Place the new or modified content-model configuration file in your DITA or DocBook
project directory.

5. Specify the base name of the content-model configuration file in your project
configuration file:

For DITA, add the base name of each new or modified content-model configuration:
[DITAContentModels]
; Topic type name = any text (not used)
DITAtopictype = replaced or new topictype content model

For DocBook, specify the base name of the new or modified content-model
configuration:

[DocBookOptions]
; ContentModel = name of content-model .ini, withou t extension,
; with which to replace the built-in DocBook 4.5 con tent model.
ContentModel = otherdocbookmodel

41.4 Understanding content-model configurations
A content-model configuration file includes the following sections:

DITA 1.1 topic , concept , task , reference , map, glossary , or bookmap

DocBook book or article

Output
type Built-in content model to be replaced by current mo del

[Topic] Lists the root element used to generate the content model.
Also includes PUBLIC and SYSTEM identifiers for DITA or
DocBook, and the starting topic and body element for DITA
topic types. See §41.4.1 Content model [Topic] settings on
page 757.

[ElementSets] Groups elements into sets for assignment in sections
[TopicParents] and [TopicFirst] . See §41.4.2 Content
model [ElementSets] settings on page 758

[TopicParents] Lists the valid parent element(s) of each element. See §41.4.3
Content model [TopicParents] settings on page 758.

[TopicFirst] Lists parent elements for which a given element must be the
first child. See §41.4.4 Content model [TopicFirst] settings on
page 758.

[TopicLevels] Specifies required levels for certain elements. See §41.4.5
Content model [TopicLevels] settings on page 759.

41 WORKING WITH CONTENT MODELS UNDERSTANDING CONTENT-MODEL CONFIGURATIONS

ALL RIGHTS RESERVED. MAY 19, 2013 757

In this section:
§41.4.1 Content model [Topic] settings on page 757
§41.4.2 Content model [ElementSets] settings on page 758
§41.4.3 Content model [TopicParents] settings on page 758
§41.4.4 Content model [TopicFirst] settings on page 758
§41.4.5 Content model [TopicLevels] settings on page 759

41.4.1 Content model [Topic] settings

The following content-model settings specify information for either a DITA or a DocBook
content model:

[Topic]
; TopicRoot = name of root element for this content model.
TopicRoot = concept
; PrologDType = PUBLIC name used in DOCTYPE header.
PrologDType = "-//OASIS//DTD DITA Concept//EN"
; PrologDTD = SYSTEM name, such as "concept.dtd", c an include a path.
PrologDTD ="http://docs.oasis-open.org/dita/v1.1/CD 01/dtd/concept.dtd"
; ModelName = name of content model.
ModelName = contentmodelname

Root element TopicRoot is the name of the root element for the content model. For DITA, TopicRoot
is the name of one of the built-in topic types: topic , concept , task , reference , map,
or (for DITA version 1.1) glossary .

Identifiers Double quotes are required for the PUBLIC name and the SYSTEM name. If the SYSTEM
name is less than 16 characters long, you must prefix the name with two spaces. For
example:

PrologDTD= "xyz-topic.dtd"

DITA2Go always removes the first space after the equals sign, and retains any subsequent
spaces. DOCTYPE styles differ: some require an indent, some prohibit an indent, some want
a return, some do not. DITA2Go includes a return automatically if (and only if) the
SYSTEM name is more than 16 characters long. Therefore a shorter SYSTEM name requires
a leading space, to separate it from the preceding PUBLIC name when the DOCTYPE header
is generated.

Replaced content
model

If you are providing a replacement content model, ModelName specifies the name of the
built-in content model to be replaced by the current content model. ModelName is
effective only when the current content model is listed in [DITAContentModels] , or
specified for [DocBookOptions]ContentModel , in your project configuration file.

DITA-only
settings

The following settings apply only to DITA content models:
[Topic]
; TopicStart = name of element that starts topic, s uch as "glossterm"
; (for glossary) or "title" (for every other type).
TopicStart = title
; TopicBody = name for its body element, such as co nbody for concept.
TopicBody = conbody
; TopicDerivation = name of type from which it is d erived.
TopicDerivation = topictype

See §41.7 Specializing or modifying DITA topic types on page 761.

[ElementTypes] Classifies each element as to whether it is block or inline,
whether it allows text, and whether it is preformatted. See
§41.6 Inspecting and correcting element types on page 760.

UNDERSTANDING CONTENT-MODEL CONFIGURATIONS DITA2GO USER’S GUIDE

758 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

41.4.2 Content model [ElementSets] settings

To specify groups of elements as the values for certain settings, content-model
configuration files define sets of elements:

[ElementSets]
; Name for set = list of elements and element sets, separated by
; spaces.
*setname = element1 element2 *otherset

Set names start with “* ”. Sets can include other sets. Included sets must be defined in
[ElementSets] above the sets that include them. Within each set, the elements are
alphabetical; that is for convenience in human look-up, and need not be preserved. They
do have to be one line each; do not use an editor that wraps the lines in [ElementSets] .

Each set has an alphanumeric name prefixed with an asterisk. Names of members of the
set are listed to the right of the equals sign, separated by spaces. A member of an element
set can be either of the following:

 • the name of an element
 • the name of a previously defined element set.

This allows elements to be grouped for use on the right side of the equals sign in
[TopicParents] and [TopicFirst] , so that the same set of parents can be used in
more than one setting.

Element sets are roughly equivalent to the parameter entities used in DTDs.

41.4.3 Content model [TopicParents] settings

These settings specify the possible parents of each element:
[TopicParents]
; element = single parent or single *elementset or Any or No

All elements are listed to the left of the equals sign, other than (for DITA) the topic type
itself and the topic body type. If an element has more than one possible parent, those
parents are defined as a single set, listed in [ElementSets] ; see §41.4.2 Content model
[ElementSets] settings on page 758.

Each of the items listed to the right of the equals sign is one of the following:

 • an element name (single parent)
 • an element set name (set of possible parents)
 • either of two reserved parent names:

41.4.4 Content model [TopicFirst] settings

If an element must be the first child of its parents, the element is listed here:
[TopicFirst]
; Child element = parents, where child must be the first child of the
 ; specified parents.

If an element must be the first child of more than one possible parent, those parents are
defined as a single set, listed in [ElementSets] ; see §41.4.2 Content model
[ElementSets] settings on page 758.

Any Any parent is acceptable; mainly for inline elements
No No parent is acceptable; for DITA, this includes elements present in the

derived-from type that are excluded from the specialized type.

41 WORKING WITH CONTENT MODELS UNDERSTANDING HOW DITA2GO USES CONTENT MODELS

ALL RIGHTS RESERVED. MAY 19, 2013 759

One of the following is assigned to each child element that must be the first child, either of
a single parent or of any member of a set of parents:

 • an element name (single parent)
 • an element set name (set of possible parents)
 • either of two reserved parent names:

For any child element listed to the left of the equals sign that is not the first child of a
specified parent, when processing your DITA document DITA2Go closes the current
parent and opens a new instance of that parent.

Settings in [TopicFirst] are used mainly for lists, and for the DITA <title> element.

41.4.5 Content model [TopicLevels] settings

Each element that must be at a specific level is listed here:
[TopicLevels]
; Element name = required level in topic

Levels are specified only for elements that must be at a specific level, such as DITA
shortdesc , prolog , body , and related-links at level 1, and DITA example and
metadata at level 2.

The content models generated by dtd2ini name only level 1 elements in this section.

See also:
§24.5.12 Specifying DITA element levels on page 479
§26.5.11 Specifying DocBook element levels on page 518

41.5 Understanding how DITA2Go uses content models
Where there are multiple possible parent elements of a given DITA XML element, a set is
defined for those parent elements in the [ElementSets] section of the content model
configuration file; see §41.1 Understanding DITA2Go content models on page 753. The
*Part N sets in this section are computer generated to keep the lengths of the individual
sets short enough to be editable; they have no other special purpose. Within each set,
elements are listed alphabetically for convenience in human look-up.

For example:
[TopicParents]
data=data=*data

[ElementSets]
*data=data-about *Part2 *Part6 *Part9 *Part10

. . .
*Part2=b cite codeblock codeph data i lq note p ph pre q screen
shortdesc sub sup title tt u xref

. . .
*Part6=abstract dd ddhd desc draft-comment dt dthd entry example fn
itemgroup li lines linkinfo pd pt section sli stent ry

. . .
*Part9=alt author brand category copyrholder filepa th index-base
index-see index-see-also index-sort-as indexterm ms gblock msgph
prodname publisher source systemoutput uicontrol us erinput

Any Must be the first child of every possible parent
No Must not be the first child of any parent; for DITA, this includes

elements present in the derived-from topic type that are excluded from
the specialized topic type.

INSPECTING AND CORRECTING ELEMENT TYPES DITA2GO USER’S GUIDE

760 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

. . .
*Part10=body component coords delim featnum fig fra gref linktext
metadata navtitle oper platform prognum prolog reps ep searchtitle sep
series var

DITA2Go uses a complex algorithm to determine which element to interpolate in places
in your document where a parent element is required. When DITA2Go processes your
document and encounters text that you have mapped to a <data> element (for example),
DITA2Go searches the above element sets, in sequence, for the current parent element. If
the parent is not found, DITA2Go performs a graph analysis, breadth-first, of possible
parent series that could fit under the current parent. In each case, DITA2Go takes the first
of those candidate parents with equal-length sequences and interpolates it between the
<data> element and its current parent.

This means that you could change the usage priority of interpolated parents by altering the
order of items in a content-model element set. (The full collection of algorithms is rather
more complex; for example, DITA2Go also considers closing existing parents to find a
better solution to the graph problem.)

Suppose you want to tell DITA2Go not to use certain elements; for example, “forget about
<data> ” or “never use <fn> in a <fig> ”. If you delete data from all element sets, this
element will never be interpolated into your DITA XML output. If you delete fig from all
element sets that contain possible parents of fn , fig will never be interpolated as a parent
of fn . However, we advise not adding or removing any items, because doing so can result
in invalid DITA XML. (Removal is safer than addition.)

41.6 Inspecting and correcting element types
Utility program dtd2ini cannot always determine from a DTD the correct type of an
element. Examine the classifications in section [ElementTypes] of the content-model
configuration file, and correct any that are not right.

Element types are as follows:

The default element type is Block without Text .

Block and Inline properties determine whether returns are inserted before start tags and
after end tags. The Text property determines whether an attempt is made to wrap any
invalid text (in an element that does not allow Text) in a valid container element, such as
<ph> for DITA. Preform determines whether whitespace within the element is retained
as is. Preform elements are always Block elements, and they always allow Text .

If you generated the content model from a DTD and you plan to rerun dtd2ini , include
any changed [ElementTypes] settings as overrides in configuration file dtd2ini.ini .
You can override the Block , Inline , and Preform properties, but not the Text property.

Getting the Block vs. Inline typing wrong for an element is not a major disaster. The
element type primarily affects the way XML output is formatted. Most XML processors
ignore the formatting, except for preformatted elements.

Block Block element that does not allow text content

Block Text Block element that allows text content

Block Text Preform Block element with preformatted text

Inline Inline element that does not allow text content

Inline Text Inline element that allows text content

41 WORKING WITH CONTENT MODELS SPECIALIZING OR MODIFYING DITA TOPIC TYPES

ALL RIGHTS RESERVED. MAY 19, 2013 761

DITA only: If your DTD defines a block element with no text (for example, to include just
PI markers in the paragraphs from which the element is mapped), also map the no-text
block element to No in [DITAParaTags] , in your configuration file; see §24.4.3.1
Assigning DITA elements to paragraph formats on page 461. That way you will not be
forced to use CodeBefore and CodeAfter settings to insert the tags for such an element.

41.7 Specializing or modifying DITA topic types
To include custom specialized topic types or maps in your DITA project, you must provide
a separate content-model configuration file for each new topic type or modified map or
bookmap DTD. You can derive a new type from any of the built-in topic types topic ,
concept , task , reference , map, or glossary (DITA 1.1 only), or from another
specialized type for which you provide a DTD.

To produce the constraints supported by DITA 1.2, you can run utility program dtd2ini
(see §41.2.2 Generating a content model from a DTD on page 754) on a local document
type shell, and reference the result in your project configuration chain.

In this section:
§41.7.1 Creating a content model for a specialized topic type on page 761
§41.7.2 Overriding settings in a DITA content model on page 762
§41.7.4 Overriding declarations in a DITA map content model on page 763
§41.7.5 Listing DITA topic type configuration files on page 763
§41.7.6 Locating DITA topic type configuration files on page 764

41.7.1 Creating a content model for a specialized topic type

To create a content model for a specialized DITA topic type:

1. Run utility program dtd2ini with the DTD file for your specialized type as input.
Specify for output a content-model configuration file with a name of the form
DITAnewtype.ini , where newtype is the name of the new topic type you are
defining. See §41.2.2 Generating a content model from a DTD on page 754.

2. Add the following settings to DITAnewtype.ini :
[Topic]
; TopicStart = name of element that starts topic, s uch as
; "glossterm" (for glossary) or "title" (for every o ther type).
TopicStart = title
; TopicBody = name for its body element, such as co nbody for
; concept.
TopicBody = conbody

The required starting element is <title> for all built-in DITA topic types (including
map), except for glossary . For glossary topics, the starting element is
<glossterm> . For a specialized topic type, your DTD specifies the starting element.

When the format mapped to the TopicStart element in [DITAParaTags] is also
mapped to level 1 in [DITALevels] , that format always starts a new topic of the
specialized type. See §24.5.12 Specifying DITA element levels on page 479.

3. In your project configuration file, list the name of your new topic type:
[DITAContentModels]
DITAnewtype = any text here (ignored)

See §41.7.5 Listing DITA topic type configuration files on page 763.

SPECIALIZING OR MODIFYING DITA TOPIC TYPES DITA2GO USER’S GUIDE

762 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

4. Place DITAnewtype.ini where DITA2Go can find it; see §41.7.6 Locating DITA
topic type configuration files on page 764.

41.7.2 Overriding settings in a DITA content model

You can override features of a built-in or previously defined DITA content model without
creating a specialized type, by providing a content-model configuration file that lists only
the differences from the original model. You can use this method to modify maps as well
as topic types; see §41.7.4 Overriding declarations in a DITA map content model on
page 763.

To override settings in a DITA content model:

1. Create a new DITAtopictype.ini configuration file from scratch, named for the
topic type you are overriding. Do not use dtd2ini to generate this file from a DTD.

2. In configuration file DITAtopictype.ini , specify the name of the topic type you
are overriding:

[Topic]
; TopicDerivation = name of type from which it is d erived,
; either one of the defined types (topic, concept, t ask,
; reference, glossary, or map) or another specialize d type
; for which an .ini is available.
TopicDerivation = topictype

TopicDerivation can be any of the built-in topic types (topic , concept , task ,
reference , glossary , map, or bookmap), or any specialized type for which a
content-model configuration file named DITAtopictype.ini is available (see §41.7
Specializing or modifying DITA topic types on page 761). Do not use
TopicDerivation in content-model configuration files generated by dtd2ini ;
those content models are always complete.

3. Other than a value for TopicDerivation , include settings in DITAtopictype.ini
only for elements you are adding or modifying.

4. In your project configuration file, list the name of the topic type you are overriding:
[DITAContentModels]
topictype = any text here (ignored)

See §41.7.5 Listing DITA topic type configuration files on page 763.

5. Place DITAtopictype.ini where DITA2Go can find it; see §41.7.6 Locating DITA
topic type configuration files on page 764.

For example, to change the PUBLIC declaration for glossary topics (to conform to
XMetaL requirements) without changing the declaration for any other topic type:

[Topic]
ModelName = glossary
TopicDerivation = glossary
TopicRoot = glossentry
PrologDType = "-//OASIS//DTD DITA Composite//EN"
PrologDTD = "ditabase.dtd"

In your project configuration file:
[DITAContentModels]
glossary = my modified model for XMetaL (a comment)

41 WORKING WITH CONTENT MODELS SPECIALIZING OR MODIFYING DITA TOPIC TYPES

ALL RIGHTS RESERVED. MAY 19, 2013 763

41.7.3 Eliminating elements from a DITA content mo del

If you want to be able to tell DITA2Go not to use certain elements, you can adjust the
content model to remove those elements from the element sets, or alter their priority by
listing them last in each element set. Bear in mind that the same set can be used for many
elements. We advise not adding or removing any items, because that can result in invalid
DITA. However, removal is safer than addition.

41.7.4 Overriding declarations in a DITA map conte nt model

You can override the PUBLIC and SYSTEM IDs for a specialized map or bookmap the same
way as for other topic types; see §41.7.2 Overriding settings in a DITA content model on
page 762. However, for the maps DITA2Go generates, these declarations are about all you
can change; the rest is hardwired.

To override declarations in a DITA map content model, create a new empty
DITAmap.ini configuration file. In this new configuration file specify the PUBLIC and
SYSTEM IDs for a your specialized map. For example:

[Topic]
ModelName = map
TopicDerivation = map
PrologDType = "-//MYCO//DTD DITA MYCO Map//EN"
PrologDTD = "myco-map.dtd"

Also include the following setting in your project configuration file:
[DITAContentModels]
map = my company’s modified map model (a comment)

See §41.7.5 Listing DITA topic type configuration files on page 763.

41.7.5 Listing DITA topic type configuration files

When you provide a DITAtopictype.ini configuration file, you must list the name of
the topic type in your project configuration file, so DITA2Go knows you are specializing,
and knows to look for the name of the specialized configuration file.

To list specialized topic types, in your project configuration file specify the following:
[DITAContentModels]
DITAopictype = any text here (ignored)

Give each new type any alphanumeric name, except the name of a built-in type; that is,
you may not name a new type topic , concept , task , reference , map, or (for DITA
version 1.1) glossary . List the name of a built-in topic type only if you are overriding a
feature of that topic type.

You can put whatever you want to the right of the equals sign; DITA2Go reads only the
topic type name to the left of the equals sign.

Provide a DITAtopictype.ini configuration file named for each topic type you list; see
§41.2.2 Generating a content model from a DTD on page 754. or §41.7.2 Overriding
settings in a DITA content model on page 762. DITA2Go loads each listed
DITAtopictype.ini configuration file at start-up, after initializing internal values for
the built-in base topic types.

You do not have to list a topic type if the type is explicitly requested through an
assignment to [DITAOptions]DefTopic (see §24.8.2.2 Specifying a default DITA topic
type on page 486), or in a DITATopic PI marker, in which case the corresponding

EXTRACTING CONTENT-MODEL DEBUG INFORMATION DITA2GO USER’S GUIDE

764 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

DITAtopictype.ini configuration file loads on demand. If the topic type information
replaces one or more of the built-in types, this is the best way to load it.

If you create a new topic type that is derived from another new type, you can optionally
list only the last topic type in the chain to get the whole batch loaded. Listing all types in
the chain is harmless, but unnecessary.

41.7.6 Locating DITA topic type configuration file s

By default, DITA2Go expects to find DITA*.ini configuration files in the project
directory. To specify a different location for DITA*.ini configuration files for your
project, include the following setting in your project configuration file:

[DITAOptions]
; SpecIniDir = path to add to names of specialized .inis,
; default "./"
SpecIniDir = D:/path/to/myproj/config/

You can specify either a relative path or an absolute path for SpecIniDir . A relative path
is relative to the project directory.

41.8 Extracting content-model debug information
You can have DITA2Go save tag-set information from a content model, for debugging
purposes. The default is not to dump tag-set information. If the tag set is used more than
once in processing a DITA file, it is dumped only the first time.

To see what the tag set looks like for a content model:
[Topic]
; DumpToFile = name with optional path of file in w hich to dump the
; tagset information (including error lists) after l oading.
DumpToFile = anyname.txt

You can specify any file name for DumpToFile , and optionally include a path. If you do
not include a path, DITA2Go places the dump file in the project directory.

(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 765

42 Overriding configuration settings

You can provide different configuration settings for individual ditamap files, and you can
also override configuration settings for one or more paragraphs, character spans, tables,
graphics, or cross references assigned to DITA elements. Topics include:

§42.1 Using a different configuration for selected files on page 765
§42.2 Overriding settings with PI markers or macros on page 766
§42.3 Overriding configuration settings with text on page 776

See also:
§31.6.2 Changing CSS files in the middle of a document on page 598

42.1 Using a different configuration for selected files
If you need different configuration settings for one or more ditamap files, you can create
individual, file-specific configuration files.

In this section:
§42.1.1 Providing configuration files for individual ditamaps on page 765
§42.1.2 Understanding precedence of configuration settings on page 765

42.1.1 Providing configuration files for individua l ditamaps

To provide individual configuration files:

 • Name each configuration file the same as the ditamap file name, with extension .ini .
 • Place individual configuration files in the same directory as the main configuration

file for the project.
 • Include in these ditamap-specific configuration files only those settings that are

different from settings in the main project configuration file.

When you run DITA2Go from the top-level map file, the individual configuration files
work in concert with the main configuration file; settings in an individual configuration
file override the corresponding settings in the main configuration file, for that ditamap file.

42.1.2 Understanding precedence of configuration s ettings

At run time DITA2Go builds a configuration for the starting map file in your project,
beginning with the most specific settings: those in any map-specific configuration file, if
there is one. Next come settings in the project configuration file.

Chain of
configuration

templates

Next, if the map-specific configuration file includes a value for [Templates]Configs
(see §39.2 Referencing configuration files and templates on page 731), settings in the
referenced configuration template (and any additional templates chained to it) are applied.
If the map-specific configuration file does not reference a configuration template, next
come settings in any configuration template referenced by the project configuration file;
then on up the chain from that template. Table 42-1 shows the precedence of settings in
configuration files and templates.

OVERRIDING SETTINGS WITH PI MARKERS OR MACROS DITA2GO USER’S GUIDE

766 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

A chain of configuration templates, if any, is applied to the source either from
ditamap.ini (preferentially) or from the project configuration file, but not from both. In
either case, settings from the templates are applied after settings from the project
configuration file, which are applied after settings from the chapter configuration file. For
the same setting with different values in different configuration files or templates, the
value in the most specific file takes precedence. See §39.5.3 Chaining configuration
templates on page 743.

42.2 Overriding settings with PI markers or macros
To change the value of a configuration setting partway through a DITA file, you assign a
new value to a configuration variable. You can insert a PI marker that contains the
assignment or (for some settings) define a DITA2Go macro that includes the assignment.
Both methods allow you to shift configuration values back and forth within the same
DITA file.

In this section:
§42.2.1 Determining the extent of a configuration override on page 766
§42.2.2 Overriding settings with configuration PI markers on page 767
§42.2.3 Overriding settings with macros on page 767
§42.2.4 Assigning values to configuration variables on page 768
§42.2.5 Adding a new configuration setting on the fly on page 768
§42.2.6 Assigning a macro or variable to a configuration variable on page 768
§42.2.7 Understanding fixed-key vs. variable-key settings on page 769
§42.2.8 Overriding fixed-key configuration settings on page 770
§42.2.9 Overriding variable-key configuration settings on page 771
§42.2.10 Assigning HTML table and graphic groups with overrides on page 775

42.2.1 Determining the extent of a configuration o verride

An override to a configuration setting can affect either a single item in your document (a
temporary override), or a series of items (a persistent override), depending on the syntax

Table 42-1 Precedence of settings in configuration files and templates

Precedence Configuration file Description

Highest ditamap.ini Configuration file (if any) for a single DITA map file

_d2*.ini Project configuration file

chaptemplate.ini or Template referenced by ditamap.ini , if any

doctemplate.in i Template referenced by _d2*.ini via
[Templates]Document if no such template is
referenced by ditamap.ini (or no ditamap.ini is
present)

projtemplate.in i Template referenced by _d2*.ini if no template is
referenced by ditamap.ini (or no ditamap.ini is
present)

commontemplate1.ini Template referenced by chaptemplate.ini or by
projtemplate..ini , whichever is used

commontemplateN.ini Template referenced by commontemplateN-1.ini

Lowest Default value Whatever the DITA2Go default value is for the setting
in question

42 OVERRIDING CONFIGURATION SETTINGS OVERRIDING SETTINGS WITH PI MARKERS OR MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 767

you use for the override; see §42.2.4 Assigning values to configuration variables on
page 768. DITA2Go does not store either persistent or temporary overrides in your
configuration file. The configuration file always retains the original values of the settings.

Persistent
overrides

A persistent override stays in effect until changed by another override of the same setting,
or until the end of the DITA file in which the override occurs, whichever comes first. To
apply a persistent override, insert a PI marker in your document just before the place
where you want the override to take effect; and (optionally) later, another PI marker to
reverse the effect. For certain fixed-key settings, you can include a configuration override
in a regular DITA2Go macro instead of in a PI marker; see §42.2.3 Overriding settings
with macros on page 767.

Temporary
overrides

A temporary override affects only one instance of the item (text, table, or graphic) to
which the setting applies. To apply a temporary override, you insert a PI marker just
before the item to which the override should apply. Temporary overrides can be applied
only to variable-key settings; see §42.2.7 Understanding fixed-key vs. variable-key
settings on page 769.

42.2.2 Overriding settings with configuration PI m arkers

To change a configuration setting mid-document with a configuration PI marker, you can
use one of the following PI marker types:

To change the value of a configuration setting partway through your document, insert a
configuration PI marker (Config , HTMConfig , or RTFConfig) at the place where you want
the value to change, and supply a configuration-variable assignment as content for the
marker, according to the syntax and usage described in §42.2.4 Assigning values to
configuration variables on page 768.

42.2.3 Overriding settings with macros

To change a configuration setting mid-document with a macro, you must include a
configuration-variable assignment either in a code-type PI marker or (for persistent
overrides only) in a configuration macro included in your configuration file or macro
library.

The macro override choices apply as follows:

To change the value of a configuration setting with a macro in a PI marker, insert a PI
marker of type Code or HTML Code at the place where you want the value to change, and
supply as content for the marker a configuration-variable assignment constructed as
described in §42.2.4 Assigning values to configuration variables on page 768.

For persistent overrides only, you can include the configuration-variable assignment in a
configuration macro that applies the directive based on some condition; see §42.2.1
Determining the extent of a configuration override on page 766.

Config applies either to HTML or to RTF, wherever the setting is applicable

HTMConfig applies only to HTML output; ignored for RTF output

RTFConfig applies only to RTF output; ignored for HTML output.

HTML Code PI marker HTML output only; ignored for RTF output

Code PI marker HTML or RTF output, wherever the setting is applicable

DITA2Go macro HTML or RTF output, wherever the setting is applicable,
but only for persistent overrides.

OVERRIDING SETTINGS WITH PI MARKERS OR MACROS DITA2GO USER’S GUIDE

768 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

42.2.4 Assigning values to configuration variables

A configuration-variable assignment can be any of the following, depending on the
context and the extent of the configuration override:

where the components of the assignment are as follows: :

When you assign a value to a configuration variable, observe the following:

 • Spaces around [Section] are optional.
 • Section is not case sensitive.
 • In a macro, [Section] must be prefixed with $$; in a *Config PI marker, the prefix

is optional.
 • Include Key only for a persistent override; see §42.2.1 Determining the extent of a

configuration override on page 766.
 • Key is case sensitive for variable-key settings.
 • Key may not use wildcards.
 • Key must be enclosed in quotes if Key contains any spaces or non-alphanumeric

characters.
 • If Key requires an on/off value, DITA2Go recognizes “1” (numeral one), “Yes”, and

“True” as on, and “0” (zero), “No”, and “False” as off.
 • In a macro, if Value is a text string, Value must be enclosed in quotes. In a *Config

PI marker, quotes around text values are optional; if present, DITA2Go removes
them. Therefore, if the value to be assigned actually contains quotes at both ends, you
must double them for assignment in a *Config PI marker. For example:

HTMConfig : [StyleTextStore]= "" a quoted phrase""

 • If Value includes the name of a macro or macro variable, whether that name should
be enclosed in quotes depends on the context; see §42.2.6 Assigning a macro or
variable to a configuration variable on page 768.

42.2.5 Adding a new configuration setting on the f ly

Besides overriding existing settings in the configuration file, you can use a configuration-
variable assignment to specify a persistent override for a setting that is not even present in
your configuration file, provided both of the following are true:

 • [Section] is listed as subject to overrides in one of Table 42-2 through Table 42-6.
 • Key is a valid key for the section.

If the section is not listed, or the key is not valid for the section, the setting you specify is
treated instead as an error, with value “0” (zero).

42.2.6 Assigning a macro or variable to a configur ation variable

When you assign a value to a configuration variable, and the value includes the name of a
macro or a macro variable, whether or not that name should be enclosed in quotes depends
on the context:

Context Persistent override Temporary override
*Config PI marker [Section] Key=Value [Section]= Value

DITA2Go macro $$[Section] Key=Value $$[Section]= Value

Section Name of the configuration-file section where the setting belongs
Key Keyword whose value you want to change, or the format or object

whose properties you want to change; omit for temporary overrides
Value New value for the setting.

42 OVERRIDING CONFIGURATION SETTINGS OVERRIDING SETTINGS WITH PI MARKERS OR MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 769

 • In a *Config PI marker, a value is always assigned literally, as is, so you can either
include or omit quotes around the name of a macro or variable.

 • In a macro, a value is assigned literally only if it is enclosed in quotes. If the value
includes a macro name, the entire value should be quoted. Such a value may not
contain a quote.

For example:
HTMConfig : [ParaStyleCodeAfter]=<$ macafter>

HTML Macro : <$$[ParaStyleCodeAfter]="<$ macafter>">

Angle brackets
get processed in

a macro

When you assign a value to a configuration variable in a macro, and the value contains any
< or > characters (angle brackets), absent enclosing quotes DITA2Go processes each
angle bracket as the start or end of a macro, instead of assigning the entire value as a
string. That is, DITA2Go would try to figure out if maybe the string is something else
first. When the value includes a > character that it is not in quotes, the macro ends
prematurely. In this example:

<$$[ParaStyleCodeAfter]=<hr>>

DITA2Go would assign only <hr to the configuration variable, because the > after <hr
would be taken as the end of the macro; and then DITA2Go would drop the real ending >
into the current text.

Unquoted
variables are

evaluated in a
macro

When you assign a macro variable to a configuration variable in a macro:

 • Enclose the macro variable name in quotes if you want the macro variable to be
evaluated later, at run time.

 • Do not enclose the macro variable name in quotes if you want the macro variable to be
evaluated immediately, so the configuration setting gets the current value of the macro
variable instead of just its name.

42.2.7 Understanding fixed-key vs. variable-key se ttings

The settings in some DITA2Go configuration sections are global in scope, and use fixed
keys: predefined keywords to which you can assign values. The settings in other
configuration sections use variable keys: the names of formats, tables, or graphics in your
document. You can override some settings in most fixed-key sections, and all settings in
most variable-key sections.

Fixed-key
configuration

sections

Configuration sections such as [HTMLOptions] have a set of predefined keywords, and
the value you assign to a given keyword usually applies to the entire document. You can
change the value of a fixed-key setting only with a persistent override, where you name
the key whose value is to be overridden. Temporary overrides do not apply to fixed-key
settings; see §42.2.1 Determining the extent of a configuration override on page 766.
Table 42-2 on page 770 lists the fixed-key configuration sections that include settings
subject to override.

Variable-key
configuration

sections

Configuration sections such as [HelpStyles] use format names or object identifiers as
keys, where the key name is one of the following:

 • a character, paragraph, or cross-reference format name; the value applies only to text
in the named format

 • a graphic ID, table ID, or table format name, or a named group of graphics or tables;
the value applies only to the named table, graphic, or group.

You can use either persistent overrides or temporary overrides for most variable-key
settings. You can override settings in the variable-key sections listed in the following
tables:

Table 42-3 Text configuration sections subject to overrides on page 772

OVERRIDING SETTINGS WITH PI MARKERS OR MACROS DITA2GO USER’S GUIDE

770 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Table 42-4 Cross-reference sections subject to overrides on page 773
Table 42-5 HTML table sections subject to overrides on page 774
Table 42-6 HTML graphic sections subject to overrides on page 775

42.2.8 Overriding fixed-key configuration settings

An override to a fixed-key configuration setting stays in effect until the end of the current
DITA file, or until changed again by another configuration PI marker or configuration-
variable assignment to the same setting. You can override some (but not all) settings in the
configuration sections listed in Table 42-2 on page 770. For example, to switch mid-file to
turning on revision tracking in Word:

Only persistent overrides work for fixed-key settings; temporary overrides do not work.
Also, persistent overrides work only for fixed-key settings that do not have to apply to an
entire DITA file. For instance, it would make no sense to try to change, in the middle of a
file, the value of [Setup]ApplyTemplateFile ; applying a conversion template is a
one-time function that takes place before DITA2Go processes the file content. Other
settings such as [WordOptions]SideHeads affect margins, and must apply to an entire
file.

If you are producing HTML output, the only way to specify attributes for <body> is with
a configuration override. For example, placing a PI marker at the beginning of the second
topic:

<?dthtm config="[Attributes]body= onload='prettyPri nt()'" ?>

Then at the beginning of the fourth topic:
<?dthtm config="[Attributes]body=" ?>

The effect would appear in HTML output for the second and third topics, but not the
fourth. The PI marker affects the output file for the topic in which it is included (right after
the root), and continues until set otherwise.

You can also override a fixed-key setting with a configuration-variable assignment in a
regular DITA2Go macro instead of in a PI marker. See §37.9.3 Surrounding or replacing
text with code or macros on page 711.

Configuration setting RTFConfig override
[WordOptions]
RevTrack = No

[WordOptions]RevTrack=Yes

Table 42-2 Fixed-key configuration sections subject to overrides

Fixed-key configuration section * HTML/XML Word WinHel p

[Attributes] Yes

[Base] Yes

[CharClasses] Yes

[Defaults] Yes Yes

[Setup] Yes Yes Yes

[Graphics] Yes Yes Yes

[HelpBrowse] Yes

[HelpContents] Yes

[HelpOptions] Yes

[HTMLOptions] Yes

* Some settings cannot be overridden in these sections; you might have to experiment.

42 OVERRIDING CONFIGURATION SETTINGS OVERRIDING SETTINGS WITH PI MARKERS OR MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 771

42.2.9 Overriding variable-key configuration setti ngs

In this section:
§42.2.9.1 Overriding paragraph and character format properties on page 771
§42.2.9.2 Overriding cross-reference properties on page 773
§42.2.9.3 Overriding table properties for HTML on page 773
§42.2.9.4 Overriding graphic properties for HTML on page 774

42.2.9.1 Overriding paragraph and character format properties

You can override character and paragraph format settings in the configuration sections
listed in Table 42-3. For example, to specify new properties for a single paragraph in
HTML, you could insert in the paragraph an HTMConfig PI marker with content different
from the default:

<?dthtm HTMConfig="[HTMLParaStyles]Size5 Bold" ?>

In a macro, you would specify:
<$$[HTMLParaStyles]Size5 Bold>

Temporary
overrides

Most configuration settings for text properties can apply to either a paragraph format or a
character format. Temporary overrides lack a key to name the format to be affected;
therefore, for a temporary override, where in the text you place the configuration PI
marker with respect to paragraph and character formats is critical:

 • A temporary-override PI marker placed in a block element affects the entire element,
including any contained inline elements, and therefore any formats assigned to the
current instance of the block or inline elements.

 • A temporary-override PI marker placed in an inline element affects only the character
format assigned to that instance of the element.

Persistent
overrides

A persistent override affects the next instance of an element to which the paragraph or
character format named by the Key in [Section] Key=Value is assigned, or the current
instance if the PI marker is placed in an element to which a matching paragraph or
character format is assigned; plus all subsequent instances in the same DITA file, unless
changed again by a later override.

PI markers in
replaced text are

ignored

For [ParaStyleCodeReplace] , if placement code is already in effect because it was
specified in the configuration file, any configuration PI marker in the replaced text is

[Inserts] Yes Yes Yes

[JavaHelpOptions] Yes

[Macros] Yes

[MSHtmlHelpOptions] Yes

[OmniHelpOptions] Yes

[Options] Yes Yes Yes

[ParaClasses] Yes

[Tables] Yes

[Trails] Yes

[WordOptions] Yes

Table 42-2 Fixed-key configuration sections subject to overrides (continued)

Fixed-key configuration section * HTML/XML Word WinHel p

* Some settings cannot be overridden in these sections; you might have to experiment.

OVERRIDING SETTINGS WITH PI MARKERS OR MACROS DITA2GO USER’S GUIDE

772 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ignored. This means you cannot use a temporary override in a configuration PI marker for
the replacement; instead you must use a persistent override that names the format to be
replaced, and insert the configuration PI marker before the text to be replaced.

Place overrides to
code with care

For [HTMLParaStyles] and [HTMLCharStyles] , temporary overrides to Delete
assignments must be inserted before the first text in the affected element to which the
paragraph or character is assigned. Persistent overrides should be placed before the
affected block or inline element.

Table 42-3 Text configuration sections subject to overrides

Text configuration section HTML/XML Word WinHelp

[AnumCodeAfter] Yes Yes Yes

[AnumCodeBefore] Yes Yes Yes

[CharStyleCodeAfter] Yes Yes Yes

[CharStyleCodeBefore] Yes Yes Yes

[CharStyleCodeEnd] Yes Yes Yes

[CharStyleCodeReplace] Yes Yes Yes

[CharStyleCodeStart] Yes Yes Yes

[CharStyleCSS] Yes

[CharTags] Yes

[ExtrBottom] Yes

[ExtrHead] Yes

[ExtrReplace] Yes

[ExtrTitle] Yes

[ExtrTop] Yes

[HelpBrowsePrefixStyles] Yes

[HelpCntStyles] Yes

[HelpContentsLevels] Yes

[HelpJumpFileStyles] Yes

[HelpKeywordStyles] Yes

[HelpMacroStyles] Yes

[HelpReplacements] Yes

[HelpStyles] Yes

[HelpSuffixStyles] Yes

[HelpTitleSufStyles] Yes

[HelpTopicBuildStyles] Yes

[HelpWindowStyles] Yes

[HTMLCharStyles] Yes

[HTMLParaStyles] Yes

[ParaStyleCodeAfter] Yes Yes Yes

[ParaStyleCodeBefore] Yes Yes Yes

[ParaStyleCodeEnd] Yes Yes Yes

[ParaStyleCodeReplace] Yes Yes Yes

[ParaStyleCodeStart] Yes Yes Yes

[ParaStyleCSS] Yes

[ParaTags] Yes

[SecWindows] Yes

42 OVERRIDING CONFIGURATION SETTINGS OVERRIDING SETTINGS WITH PI MARKERS OR MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 773

42.2.9.2 Overriding cross-reference properties

You can use configuration PI markers and configuration-variable assignments to override
settings in [XrefStyles] and in the HTML [XrefStyleLinkSrc] section; see
Table 42-4.

A temporary override to a cross-reference format affects the next cross reference after the
configuration PI marker.

A persistent override affects the next cross reference in the format named by the Key in
[Section] Key=Value, and all subsequent instances in the same DITA file, unless
changed again by a later override.

42.2.9.3 Overriding table properties for HTML

You can use configuration PI markers and configuration-variable assignments to override
settings in the HTML [Table*] sections listed in Table 42-5.

A temporary override to a table affects the entire table within which a configuration PI
marker is placed; or the next table, if the PI marker is not in a table.

A persistent override affects the next table with the ID or table format, or in the table
group, named by the Key in [Section] Key=Value; or the current instance, if the PI

[StyleCellAbbr] Yes

[StyleCellAttribute] Yes

[StyleCellAxis] Yes

[StyleCellScope] Yes

[StyleCodeStore] Yes Yes Yes

[StyleFilePrefix] Yes

[StyleFileSuffix] Yes

[StyleLinkSrc] Yes

[StyleMetaName] Yes

[StyleParaLinkClass] Yes

[StyleRowAttribute] Yes

[StyleTextStore] Yes

[StyleTitlePrefix] Yes

[StyleTitleSuffix] Yes

[StyleTrailPrefix] Yes

[StyleTrailSuffix] Yes

[Targets] Yes

[TrailLevels] Yes

[WordReplacements] Yes

[WordStyles] Yes

Table 42-3 Text configuration sections subject to overrides (continued)

Text configuration section HTML/XML Word WinHelp

Table 42-4 Cross-reference sections subject to overrides

Cross-reference section HTML/XML Word WinHelp

[XrefStyleLinkSrc] Yes

[XrefStyles] Yes Yes Yes

OVERRIDING SETTINGS WITH PI MARKERS OR MACROS DITA2GO USER’S GUIDE

774 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

marker is placed in a matching table. For table formats and groups, the override also
affects all subsequent matching instances in the same DITA file, unless changed again by a
later override.

See also:
§42.2.10 Assigning HTML table and graphic groups with overrides on page 775

42.2.9.4 Overriding graphic properties for HTML

You can use configuration PI markers and configuration-variable assignments to override
any variable-key settings and some fixed-key settings in the HTML [Graph*] sections
listed in Table 42-6.

A temporary override to a graphic affects the next graphic after the point in your document
where you insert the PI marker.

A persistent override affects the next graphic with the ID or in the graphic group named by
the Key in [Section] Key=Value; and for graphic groups, all subsequent matching
instances in the same DITA file, unless changed again by a later override.

One additional section, [GraphGroup] , is handled differently from the rest. For
[GraphGroup] , the directive assigns the graphic to a named graphic group. You can use
only a temporary setting applied with a *Config PI marker, not a macro, to specify the
graphic group.

Overriding the
overrides

To override path settings both in [GraphFiles] and in configuration PI markers with
whatever you specify for [Graphics]GraphPath :

[Graphics]
; GraphPathOverrides = No (default) or Yes (overrid es any path
; in Config markers and in [GraphFiles], adding Gra phPath
; and using FixGraphSpaces)
GraphPathOverrides=Yes

Table 42-5 HTML table sections subject to overrides

Table configuration section

[TableAccess]

[TableAfterMacros]

[TableAttributes]

[TableBeforeMacros]

[TableBodyAttributes]

[TableCellAttributes]

[TableCellEndMacros]

[TableCellStartMacros]

[TableEndMacros]

[TableFooterAttributes]

[TableGroup]

[TableHeaderAttributes]

[TableReplaceMacros]

[TableRowAttributes]

[TableRowEndMacros]

[TableRowStartMacros]

[TableSizing]

[TableStartMacros]

42 OVERRIDING CONFIGURATION SETTINGS OVERRIDING SETTINGS WITH PI MARKERS OR MACROS

ALL RIGHTS RESERVED. MAY 19, 2013 775

When GraphPathOverrides=Yes , DITA2Go uses the path to graphics specified by
GraphPath (see §40.2.1.1 Specifying graphics location for HTML on page 747) instead
of any path (or lack of a path) specified in [GraphFiles] (see §40.2.1.2 Substituting
graphics files for HTML on page 747) or in a *Config PI marker with content:

[GraphFiles]= filename

Also, DITA2Go replaces with underscores any spaces in file names of referenced
graphics.

See also:
§32.6 Specifying HTML image attributes on page 619
§42.2.10 Assigning HTML table and graphic groups with overrides on page 775

42.2.10 Assigning HTML table and graphic groups wi th overrides

Two variable-key configuration sections, [TableGroup] and [GraphGroup] , are
handled differently from the rest. For [TableGroup] and [GraphGroup] , a
configuration PI marker assigns the table or graphic to a named group. You can use only a
temporary override applied with a *Config PI marker, not a macro, to specify the group
name. Any key included in the PI marker is ignored.

Table groups If you put a [TableGroup] configuration PI marker in each table that should be assigned
to a given group, you can specify settings for all members of that table group in a
[Table*] section in the configuration file.

Note: Each table can belong to only one table group.

See also:
§33.2.1 Creating table groups on page 626
§42.2.9.3 Overriding table properties for HTML on page 773

Graphic groups If you put a [GraphGroup] configuration PI marker just before each graphic that should
be assigned to a given group, you can specify settings for all members of that graphic
group in a [Graph*] section in the configuration file.

Note: Each graphic can belong to only one graphic group.

See also:
§32.4.1.2 Using PI markers to assign properties to graphics on page 614
§42.2.9.4 Overriding graphic properties for HTML on page 774

Table 42-6 HTML graphic sections subject to overrides

Graphic configuration section

[GraphALT]

[GraphAttr]

[GraphEndMacros]

[GraphFiles]

[GraphHigh]

[GraphReplaceMacros]

[GraphScale]

[GraphStartMacros]

[GraphWide]

OVERRIDING CONFIGURATION SETTINGS WITH TEXT DITA2GO USER’S GUIDE

776 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

42.3 Overriding configuration settings with text
To override configuration settings on the fly, you can include a configuration setting in
your document as text, give it a unique paragraph format, and assign that format a special
property. This method is an alternative to inserting Config or HTMConfig or RTFConfig PI
markers in your document, and it works the same way. See §42.2.2 Overriding settings
with configuration PI markers on page 767.

To make a paragraph act as a configuration override:
[HTMLParaStyles] or [WordStyles] or [HelpStyles]
; Config (and HTMConfig or RTFConfig) use the conte nts of the para as
; though it is a set of Config markers, each ending with a hard
; return, but also allow the normal .ini syntax with [Sections] on
; their own lines, and comments.
ParaFmt = Config Delete

Property HTMConfig is effective only in HTML output types, property RTFConfig is
effective only in RTF output types, and where applicable, property Config is effective in
both.

When you also assign property Delete , DITA2Go removes the paragraph from the actual
text stream, so the text does not appear in the output.

The content of each paragraph in a format assigned the Config (or HTMConfig or
RTFConfig) property is treated as a configuration override, or a series of configuration
overrides, provided the content:

 • conforms to configuration syntax
 • specifies settings that are subject to overrides.

See §42.2.7 Understanding fixed-key vs. variable-key settings on page 769.

You have two choices of syntax for *Config paragraph content; you can intermix them in
the same paragraph:

For example, a *Config paragraph that precedes an anchored frame that contains a
graphic might provide the name of a different graphic to substitute for the one in your
document:

[GraphFiles]
=Screen1.gif

The content of the paragraph could just as well look like this:
[GraphFiles]=Screen1.gif

The result works exactly like the same content put in PI markers at the same location in
your document.

(No illustrations)

File
syntax:

Make the paragraph look like a configuration-file section, with a hard return at
the end of each line (although a hard return is not required after the last line).
You can include multiple configuration sections, and also include comment
lines that start with a semicolon; see §3.4 Understanding the rules for
configuration settings on page 62.

Marker
syntax:

Use the same syntax as for *Config PI markers; see §42.2.4 Assigning values
to configuration variables on page 768. Place a hard return at the end of each
override.

ALL RIGHTS RESERVED. MAY 19, 2013 777

43 Automating DITA2Go conversions

DITA2Go supports several techniques for automating conversion workflow. This section
includes the following topics:

§43.1 Executing operating-system commands on page 777
§43.2 Converting autonumbers for database systems on page 780
§43.3 Renaming output files for automated systems on page 781

See also:
§44 Producing deliverable results on page 787
§45 Converting via DCL on page 809

43.1 Executing operating-system commands
Suppose you always check files out of a source-control system before you convert them,
and check them back in afterward; or suppose you always copy generated files to multiple
locations after conversion. DITA2Go can perform these kinds of chores automatically by
executing operating-system commands that you specify in the project configuration file.

§43.1.1 Specifying system commands on page 777
§43.1.3 Monitoring system command execution on page 778
§43.1.4 Supplying system commands in a .bat file on page 779
§43.1.5 Supplying system commands in a macro on page 779

43.1.1 Specifying system commands

To specify a command (or a macro) to execute before or after a document is converted
(and optionally compiled and/or archived):

[Automation]
; SystemStartCommand = command line to run at start of processing
; SystemWrapCommand = command line to run at end, b efore compiling
; and archiving
; SystemEndCommand = command line to run at end, af ter compiling
; and archiving

Use only commands that can run without interaction.

The value you assign to one of the System*Command keywords is an actual Windows
system command, just as you would have typed it at a Windows command prompt. For
example:

[Automation]
SystemEndCommand = copy /Y G:\MyProj_wrap*.xml D: \xml\backups

If you specify a relative path in a system command, that path is considered to be relative to
the project directory. For example, the following command renames a file located in the
wrap directory (see §44.2 Activating and logging production of deliverables on page 788):

[Automation]
SystemEndCommand = rename .\wrap\ugdita2go.htm _ugd ita2go.htm

Assign only one command to each keyword; the command must be all one line. If you
need multiple commands or multiple lines per keyword, see the following:

§43.1.4 Supplying system commands in a .bat file on page 779
§43.1.5 Supplying system commands in a macro on page 779.

EXECUTING OPERATING-SYSTEM COMMANDS DITA2GO USER’S GUIDE

778 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

When you assign a system command (or a macro) to a System*Command, DITA2Go
generates one or more lines of code, each of which is a command to be run at a Windows
command prompt. DITA2Go writes these lines to a .bat file named for the keyword,
saves the file in your project directory, and causes Windows to execute the file.

Use backslashes
in file paths

When you specify a file path in a system command, use “\ ” as the separator character. For
example, suppose you want to make a backup copy of your book on another server before
you run each conversion, and then copy your result files to another directory:

[Automation]
SystemStartCommand = copy <$$_prjpath>*.fm x:\back up
SystemEndCommand = copy <$$_currpath>*.htm \outcop y

Start commands
work only when

you convert

If your configuration file includes the following setting:
[Automation]
OnlyAuto = Yes

commands assigned to SystemWrapCommand and to SystemEndCommand are executed;
however, commands assigned to SystemStartCommand are ignored. When you set
OnlyAuto=Yes , you are deploying an existing set of output files, and you do not want
that set disturbed; see §44.13 Postprocessing separately from converting on page 807.

43.1.2 Including macros and variables in system co mmands

System commands can include the following:

 • DITA2Go macro expressions
 • macro variables you have defined in [MacroVariables] .
 • the following predefined macro variables (see §37.3.4 Using predefined macro

variables on page 691):

Predefined macro variables other than those listed here do not work in system commands.
Macro variable <$$_macroparam> can be used only within a macro; see §37.7 Passing a
parameter to a macro on page 709.

Include macro
expressions

You can use macro expressions in system commands: math and string manipulations,
conditional expressions, loops, formatted output, and so forth; see §37.6 Using
expressions in macros on page 700.

43.1.3 Monitoring system command execution

To make system commands (and Windows system responses) visible in a command-
prompt window while a conversion is running:

[Automation]
; SystemCommandWindow =
; Hide (default, no display),
; Show (show during execution only),
; Keep (show until user dismisses)
SystemCommandWindow = Show

<$$_basename> Base file name (without path or extension) of the current
DITA source file

<$$_currpath> Path (without trailing slash) to the current directory where
the configuration file resides

<$$_macroparam> Value of a parameter passed to the enclosing macro.
<$$_prjpath> Path (without trailing slash) to the directory where the

map file resides

43 AUTOMATING DITA2GO CONVERSIONS EXECUTING OPERATING-SYSTEM COMMANDS

ALL RIGHTS RESERVED. MAY 19, 2013 779

When you specify Show or Keep for SystemCommandWindow, the system-
command.bat file starts with the following lines:

REM For: path\to\sourcefilename
@ECHO Running batfilename
@ECHO ON

The @ECHO ON command causes the rest of the commands in the .bat file to be visible as
they are executed; however, the display might be very brief unless you have a huge
project. If there is an error, the error message displays even before the Running
batfilename line, an unavoidable Windows feature (because stderr cannot be
redirected to stdout).

The next line in the .bat file after your system command is:
@ECHO Finished batfilename

If SystemCommandWindow=Keep, the .bat file ends with:
@PAUSE

so that you can see what happened.

Note: Do not specify SystemCommandWindow=Keep for unattended use, because the
.bat file would wait forever for you to press a key.

The .bat file remains in the project directory, so you can see what it contains. The next
time you run the same kind of command, DITA2Go recycles the .bat file.

43.1.4 Supplying system commands in a .bat file

You can use a text editor to create a Windows .bat file, put system commands in that file,
and assign the file name (along with any required path and parameters) to a
System*Command keyword. For example:

[Automation]
SystemEndCommand = buildjh 40

The file buildjh.bat contains a series of commands to build release 40 of a JavaHelp
system. See Windows Help for the syntax required for a .bat file to process parameters.

Note: Because system commands in .bat files require Windows command syntax, you
cannot use DITA2Go variables in .bat files.

43.1.5 Supplying system commands in a macro

You can put system commands in a DITA2Go macro. A macro consists of a special
configuration-file section to which you give a unique name; you invoke the macro by
assigning its name, enclosed in <$ >, to a System*Command keyword. See §37.1
Defining and invoking macros on page 679.

For example, suppose your workflow requires backing up your DITA files to two servers.
You could define a macro to supply the two copy commands, and assign that macro to a
system command:

[Automation]
SystemStartCommand = <$backup>

[backup]
copy <$$_currpath>*.dita x:\\backup
copy <$$_currpath>*.dita "y:\\my other\\backup"

CONVERTING AUTONUMBERS FOR DATABASE SYSTEMS DITA2GO USER’S GUIDE

780 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Notice the doubled backslashes (required in DITA2Go macros, where backslash is used as
an escape character), and the quotes around the path that includes a space. See §37.1.1
Defining macros on page 679.

Comment out
commands in

macros

To omit running a particular system command without actually deleting the macro line
that executes the command, you can “comment out” the command by preceding it with a
semicolon. For example, suppose you do not always want to create a second backup:

[backup]
copy <$$_currpath>*.dita x:\\backup
; copy <$$_currpath>*.dita "y:\\my other\\backup"

43.2 Converting autonumbers for database systems
Suppose you use autonumbers for headings of the style you see in the DITA2Go User’s
Guide; and suppose you use an automated system to populate a database with the number
and text of each heading, from DITA2Go -generated HTML output. You could use macros
and macro variables to capture the numerical value of each autonumber, and perhaps
output the number as the name value of a tag, such as .

For example, suppose you have three heading format levels. In HTML output these
heading formats might look like the following:

2 This is a chapter title
13.5 This is a second-level heading
6.2.7 This is a third-level heading

To capture each autonumber as a six-digit number, with a leading zero (as needed) for
each level (for example, 060207), you could provide settings and macros such as the
following:

[HTMLParaStyles]
Chapter=Split Title CodeStore CodeAfter
Heading1=Split Title CodeStore CodeAfter
Heading2=Split Title CodeStore CodeAfter

[StyleCodeStore]
; Set aside in a macro variable the code generated for each heading:
*=Stored

[ParaStyleCodeAfter]
; Parse the autonumber of each heading format; inse rt the resulting
; six-digit number as , and then outp ut the stored
; heading itself:
Chapter=<$ParseAnum><a name="<$ChapNum>"><$$Stored>
Heading1=<$ParseAnum><a name="<$Hdg1Num>"><$$Stored >
Heading2=<$ParseAnum><a name="<$Hdg2Num>"><$$Stored >

[ChapNum]
; Chapter number followed by four zeros:
<$$Chap as %0.2d>0000\

[Hdg1Num]
; Chapter number, then Heading1 number, then two ze ros:
<$$Chap as %0.2d><$$Hdg1 as %0.2d>00\

[Hdg2Num]
; Chapter number, then Heading1 number, then Headin g2 number:
<$$Chap as %0.2d><$$Hdg1 as %0.2d><$$Hdg2 as %0.2d> \

[ParseAnum]
; Pick through the stored code to pull out successi ve pieces of
; the autonumber, and put them in separate macro var iables:
<$$Text = ($$Stored after "")>\

43 AUTOMATING DITA2GO CONVERSIONS RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS

ALL RIGHTS RESERVED. MAY 19, 2013 781

<$$Anum = ($$Text before " ")>\
<$$Chap = ($$Anum before ".")>\
<$$Anum2 = ($$Anum after ".")>\
<$$Hdg1 = ($$Anum2 before ".")>\
<$$Hdg2 = ($$Anum2 after ".")>\

Trailing backslashes in the macro code prevent hard line breaks from going into the
HTML output.

As each heading is processed, DITA2Go sets aside the generated HTML code in macro
variable $$Stored . DITA2Go parses the stored code as follows, to extract the
autonumber:

1. Skips everything in the stored code up through the tag.

2. Puts in $$Anum everything between the tag and the next space; this includes the
whole autonumber.

3. Stores in $$Chap the characters before the first period in $$Anum.

4. Puts in $$Anum2 the characters after the first period in $$Anum.

5. Stores in $$Hdg1 the characters before the first period in $$Anum2.

6. Stores in $$Hdg2 the characters after the first period in $$Anum2.

7. Assembles each six-digit number. The %0.2d format specifier takes care of any
dangling tags, and provides any needed leading zeros.

Back in the individual format settings in [ParaStyleCodeAfter] , DITA2Go puts out
the start of the <a> tag, and then whichever of the macro variables is needed. Finally,
DITA2Go adds the original stored heading itself to the output, and closes the <a> tag.

See §37 Working with macros on page 679.

43.3 Renaming output files for automated systems
For names of DITA2Go -generated files, DITA2Go is more restrictive than Windows.
Only alphanumeric characters and upper-ASCII accented characters are allowed; no
punctuation at all (except a leading underscore for starting topic files), and no spaces,
unless you explicitly override these restrictions. See §1.1.2 File, directory, and path names
on page 26.

The ability to respecify output file names is available for a single purpose: to allow
creation of files that external software tools need to have named a particular way. Doing so
works well for that purpose. Do not try to rename split files unless you are constructing
an automated system. Why? Because our experience shows there is a very high
probability of name collisions.

Note: Renaming an output file outside of DITA2Go breaks any links to that file;
however, see §28.6.2 Enabling links to renamed or relocated files on page 553.

In this section:
§43.3.1 Renaming individual output files on page 781
§43.3.2 Using PI markers to name output files on page 782
§43.3.3 Using paragraph formats to name output files on page 782

43.3.1 Renaming individual output files

Do not try to rename DITA2Go-generated files outside of DITA2Go.

RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS DITA2GO USER’S GUIDE

782 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To substitute a different name for a particular output file, map the original name to the new
name (without extension):

[HtmlFiles]
; original html filename = desired html filename
splitfilename = newname

We strongly advise all-lowercase file names, so that they work from a UNIX server, where
references are case sensitive. Do not include spaces or non-alphanumeric characters in file
names.

You cannot use the [HtmlFiles] section to rename files other than those produced by
splitting; not even the file before the first split point, which retains the original DITA
name. DITA2Go writes this file even if it is essentially empty.

See also:
§27.5.1 Understanding how split and extract files are named on page 530.

43.3.2 Using PI markers to name output files

To specify a file name via PI marker, you can use a PI marker type called FileName and
insert a FileName PI marker in the first paragraph of each part to be split or extracted.
Make the content of each FileName PI marker the name you want for the resulting file,
without path or extension.

Duplicated file
names are hard

to locate

Using FileName PI marker can result in two sections of your document having the same
name. When this happens the second file overwrites the first, and the first topic does not
appear in output. This error is almost impossible to find, unless you search very
specifically through all file-name settings and PI markers. Expect many problems of this
type if you use FileName PI markers to override DITA2Go -generated file names.

See also:

§38 Working with processing instructions on page 717
§27 Splitting and extracting files on page 523

43.3.3 Using paragraph formats to name output file s

According to DITA2Go developers, naming output files using paragraph content is a Very
Bad Idea. You are almost certain to have name conflicts that result in DITA2Go
overwriting one file with another, and you will not know it happened until users complain.

However, at your peril, you can assign file names based on the content of paragraphs:
either existing paragraphs (usually heading paragraphs whose formats designate split
points), or paragraphs in a special format that you dedicate to this purpose.

To help ensure uniqueness of file names, you can also specify a fixed or variable file-name
prefix or suffix, or both.

In this section:
§43.3.3.1 Constructing file names based on paragraph content on page 783
§43.3.3.2 Basing output file names on existing paragraph formats on page 784
§43.3.3.3 Creating special paragraph formats to name output files on page 784
§43.3.3.4 Specifying a file-name prefix or suffix on page 784
§43.3.3.5 Constructing file names from multiple paragraph formats on page 785
§43.3.3.6 Preventing duplicate file names based on paragraph formats on page 785

43 AUTOMATING DITA2GO CONVERSIONS RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS

ALL RIGHTS RESERVED. MAY 19, 2013 783

43.3.3.1 Constructing file names based on paragrap h content

You can specify names for HTML or XML output files by designating a paragraph format
to use for this purpose, and listing the format name in the [HTMLParaStyles] section.
The content of each paragraph in this format becomes the base name of a new split part:

 • prefixed with whatever you specify for [StyleFilePrefix] ,
 • suffixed with whatever you specify for [StyleFileSuffix] , and then
 • followed by the file extension.

To use a paragraph format to name split files, assign the FileName property to the format:
[HTMLParaStyles]
paratag = FileName

Object ID
replaces

unusable content

If the content of a paragraph to which you assign the FileName property is empty, or
consists only of characters that are not valid for file names, DITA2Go uses the internally
assigned object ID of the paragraph for the file name instead (see §27.5.1 Understanding
how split and extract files are named on page 530), along with any prefix or suffix you
specify for file names (see §43.3.3.4 Specifying a file-name prefix or suffix on page 784).

Ensure valid file
names

These cobbled-together split-file names are guaranteed to consist of valid file-name
characters only with the following default setting:

[HTMLOptions]
; UseRawName = No (default, make [HTMLParaStyles] F ileName valid)
; or Yes
UseRawName = No

When UseRawName=Yes, file names generated from paragraphs retain the full content of
the paragraph, including any whitespace and punctuation; that is, unless the paragraph
consists only of non-alphanumeric characters, in which case DITA2Go uses the internally
assigned object ID of the paragraph for the file name.

When UseRawName=No, all whitespace and punctuation are removed from the file name,
unless you set either or both of the following options to Yes; if you set either option, we
can no longer guarantee that the generated file names will be valid:

[HTMLOptions]
; When UseRawName=No, allow underscores and spaces to be passed
; through from headings with the FileName property as follows:
; KeepFileNameUnderscores = No (default, remove und erscores) or Yes
KeepFileNameUnderscores = Yes
; KeepFileNameSpaces = No (default, remove or chang e spaces) or Yes
KeepFileNameSpaces = Yes

When KeepFileNameSpaces=No , you can choose to replace each space in the file name
with some other character:

[HTMLOptions]
KeepFileNameSpaces = No
; ChangeFileNameSpaces = No (default; if not kept, remove) or
; Yes (if not kept, replace with the FileNameSpace Char, below)
ChangeFileNameSpaces = Yes
; FileNameSpaceChar = character with which to repla ce spaces,
; default '_', used if both KeepFileNameSpaces=No an d
; ChangeFileNameSpaces=Yes
FileNameSpaceChar = _

The default replacement character is an underscore. The setting for
FileNameSpaceChar takes effect only if both of the following are true:

 • KeepFileNameSpaces = No

 • ChangeFileNameSpaces = Yes .

RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS DITA2GO USER’S GUIDE

784 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

The only non-alphanumeric character replaced is the space. All other non-alphanumeric
characters are removed. For example:

Basic 40/41/42 Chipset

becomes:
Basic_404142_Chipset

The forward slashes are removed.

43.3.3.2 Basing output file names on existing para graph formats

If you have assigned a paragraph format to topic titles, and the paragraphs in this format
already contain appropriate text for output file names, you can assign the FileName
property to that format, and if necessary specify prefix and suffix (see §43.3.3.4
Specifying a file-name prefix or suffix on page 784). This is a simple way to use titles for
file names.

However, if you are creating HTML Help (see §18 Generating Microsoft HTML Help on
page 313) you would be asking for trouble. Most Help systems have files with identical
titles at several points; titles such as “Summary” or “Overview” often appear under several
topics, so using the title as the file name is almost certain to cause name collisions, unless
you also include a unique identifier in the prefix or suffix, such as a sequence number.

If you ever duplicate a FileName heading in the same file, you are in deep trouble with no
warning. The later file will silently overwrite the earlier. It is your responsibility to detect
and avoid potential collisions, by changing the text of duplicate headings, or insuring
uniqueness via sequence numbers. See §43.3.3.6 Preventing duplicate file names based on
paragraph formats on page 785 for another way to accomplish this. In a large Help system,
you might have to use a DBMS (Data Base Management System), such as SQL Server or
Access, for the names.

43.3.3.3 Creating special paragraph formats to nam e output files

A way to assign file names that is slightly less hazardous than using titles, but still unsafe,
is to specify a special paragraph format to hold the names. If paragraphs in this format are
used solely for naming files, most likely you do not want them to actually appear in the
output. To prevent their appearance, specify the Delete property:

[HTMLParaStyles]
ParaFmt = FileName Delete

Insert a new element with @outputclass named for ParaFmt anywhere after a split
heading and before the next split point. Although the element can be anywhere in the split
file, usually you would put it right after the heading that starts the split. DITA2Go uses the
content of that paragraph as the base part of the file name. The Delete property removes
the paragraph from the HTML output (see §30.2.6 Eliminating unwanted paragraphs on
page 569);.

43.3.3.4 Specifying a file-name prefix or suffix

You can specify a prefix, a suffix, or both, for format-based names of HTML output files:
[StyleFilePrefix]
; doc format = prefix to use (if any) for file name in para content
parafmt=splitfileprefix

[StyleFileSuffix]
; doc format = suffix to use (if any) for file name in para content
parafmt=splitfilesuffix

43 AUTOMATING DITA2GO CONVERSIONS RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS

ALL RIGHTS RESERVED. MAY 19, 2013 785

If you are splitting files at Heading1 paragraphs, for example, you could specify the
following properties:

[HTMLParaStyles]
Heading1=Split Title FileName

[StyleFilePrefix]
Heading1=ug

[StyleFileSuffix]
Heading1=03

If a given instance of Heading1 consists of the text “Getting Started”, the resulting HTML
filename would be ugGettingStarted03.htm .

You can use macros and macro variables (see §37.1 Defining and invoking macros on
page 679) in sections [StyleFilePrefix] and [StyleFileSuffix] .

43.3.3.5 Constructing file names from multiple par agraph formats

Suppose you split files on both Heading1 and Heading2 paragraph formats, and you want
each Heading2 split-file name to be prefixed by the content of the preceding Heading1
paragraph. You can use the TextStore property to capture the content of each succeeding
Heading1 paragraph, and make that content available to all Heading2 split files up to the
next Heading1 paragraph:

[HTMLParaStyles]
ChapterTitle = Split Title FileName
Heading1 = Split Title FileName TextStore
Heading2 = Split Title Filename

[StyleFilePrefix]
Heading2 = <$($$Heading1 replace " " with "_")>_

The TextStore property uses the format name by default for the name of the variable it
creates (see §37.3.5.1 Capturing paragraph content with the TextStore property on
page 692), so you can simply specify $$Heading1 in the prefix value. You can use a
macro expression to replace any spaces in Heading1 content; see §37.6.5 Specifying
substrings in expressions on page 706.

43.3.3.6 Preventing duplicate file names based on paragraph formats

To ensure uniqueness of file names without using a prefix or suffix, you can have
DITA2Go override a file name, by combining the two paragraph-based file-naming
methods:

1. Add an element with a special @outputclass to enable creation of a file name other
than from an existing paragraph, as described in §43.3.3.3 Creating special paragraph
formats to name output files on page 784.

2. Use the FileName property in [HTMLParaStyles] for both the existing paragraph
and the special paragraph formats. The file-name paragraph should follow (not
precede) the heading paragraph; the last name specified wins.

For example:
[HTMLParaStyles]
Heading1 = Split Title FileName
Splitname = FileName Delete

RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS DITA2GO USER’S GUIDE

786 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 787

44 Producing deliverable results

DITA2Go can automatically handle a certain amount of pre- and post-conversion
processing to prepare deliverables. This section describes the steps you can automate.
Topics include:

§44.1 Understanding DITA2Go pre- and post-processing on page 787
§44.2 Activating and logging production of deliverables on page 788
§44.3 Understanding path values for deliverables on page 788
§44.4 Clearing out old files before converting on page 789
§44.5 Gathering additional files before converting on page 791
§44.6 Assembling files for distribution on page 792
§44.7 Placing graphics files for distribution on page 796
§44.8 Placing CSS or XSL files for assembly on page 800
§44.9 Gathering files for an HTML project: an example on page 801
§44.10 Gathering and processing Help-system files on page 802
§44.11 Archiving deliverables on page 803
§44.12 Placing deliverables in a shipping directory on page 806
§44.13 Postprocessing separately from converting on page 807

See also:
§43 Automating DITA2Go conversions on page 777

44.1 Understanding DITA2Go pre- and post-processin g
When you convert a document, DITA2Go usually places all the files generated in the
course of the conversion in the project directory. As a result, the project directory
subsequently contains not only newly converted document files, but also configuration
files and generated conversion files that are not part of the converted document. It might
even contain obsolete output files from a previous conversion.

For many output types, when you prepare a converted document for distribution you need
to separate the wheat from the chaff. It is a good idea to copy the converted files, along
with any other files that must be distributed with the output, to a directory where they can
be accessed by others, or easily compiled or archived for distribution. In many cases
DITA2Go can handle the compiling or archiving for you.

Before generating output files, DITA2Go can do the following:

 • Delete prior output and conversion files from the project directory. Best not to leave
orphaned and obsolete files where they can be swept up into a new distribution.

 • Copy needed files into the project directory, such as configuration files and CSS files
that you keep in a central, safe location.

After generating output files, DITA2Go can do any or all of the following:

 • Assemble files for distribution:
 – Create a separate directory (or a directory structure) where results of a conversion,

along with ancillary files such as graphics, can be assembled for compiling,
archiving, distribution, or use. Or, use an existing directory (or directory structure)
you designate for this purpose.

 – Gather necessary files into the wrap directory (and subdirectories, if appropriate).
 • Compile or archive deliverables, or both:

ACTIVATING AND LOGGING PRODUCTION OF DELIVERABLES DITA2GO USER’S GUIDE

788 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

 – Create a separate “shipping” directory for compiled or archived results, or use an
existing directory you designate for this purpose.

 – Run a full-text-search indexing program (JavaHelp; putatively, Oracle Help for
Java).

 – Run a compiler (WinHelp or HTML Help).
 – Run an archiving program, and place the results in the shipping directory.

 • Log any operating-system commands executed in the course of assembling,
compiling, and archiving.

44.2 Activating and logging production of delivera bles
To have DITA2Go assemble files and optionally archive deliverables, specify the
following option in your project configuration file:

[Automation]
; WrapAndShip = No (default) or Yes (use WrapPath, ArchiveCommand,
; ShipPath, CopyGraphicsFrom, and CopyCssFrom)
WrapAndShip=Yes

When WrapAndShip=Yes , DITA2Go acts on all options in the [Automation] section
of the configuration file. To have DITA2Go place deliverables in a shipping directory, you
must also specify a value for ArchiveCommand ; see §44.11 Archiving deliverables on
page 803.

When WrapAndShip=No (the default), DITA2Go ignores most [Automation] settings,
unless you have DITA2Go run a compiler or indexer for a Help system (see §44.10
Gathering and processing Help-system files on page 802). Table 44-4 on page 803 shows
which [Automation] settings are activated when DITA2Go runs a compiler or indexer
for a Help system.

Note: If you specify CopyOriginalGraphics=Yes , graphics are copied regardless of
the value of WrapAndShip ; see §44.7.1 Copying referenced graphics to a
distribution directory on page 796.

Log the actions
taken

To have DITA2Go log the commands executed when WrapAndShip=Yes :
[Automation]
WrapAndShip=Yes
; LogAuto=No (default) or Yes (log all automation c ommands)
LogAuto=Yes

When LogAuto=Yes , each command DITA2Go executes to carry out an automation
option is recorded in the DITA2Go log file, provided logging is enabled; see §4.2 Logging
conversion events on page 74. LogAuto takes effect only when WrapAndShip=Yes .

44.3 Understanding path values for deliverables
When you set up a new conversion project, DITA2Go includes the following settings in
your new configuration file:

[Automation]
WrapAndShip = Yes
WrapPath = ._wrap
ShipPath = ..\.._ship

The default path for WrapPath is relative to the project directory for your project, and the
default path for ShipPath is relative to the WrapPath value; therefore, by default:

 • _wrap becomes a subdirectory of the project directory

44 PRODUCING DELIVERABLE RESULTS CLEARING OUT OLD FILES BEFORE CONVERTING

ALL RIGHTS RESERVED. MAY 19, 2013 789

 • _ship becomes a directory parallel to the project directory.

For example, if your DITA files are in d:\mydoc , and you specify d:\mydoc\myout as
the project directory, the default values of WrapPath and ShipPath would specify,
respectively, the following locations:

d:\mydoc\myout_wrap
d:\mydoc_ship

You can specify other names and locations for these directories. See:
§44.6.1 Specifying a wrap directory on page 792
§44.12.1 Specifying a shipping directory for deliverables on page 806

See also:
§3.5 Specifying file paths in configuration settings on page 64

44.4 Clearing out old files before converting
By the time you are ready to start a production run, typically you have already completed
one or more trial conversions, perhaps leaving conversion files and old output files in the
project directory. You can have DITA2Go remove these files before starting the next
conversion, so they do not slow down the process, and so obsolete and unneeded files do
not accidentally end up in a deliverable.

In this section:
§44.4.1 Specifying when to delete old files from the project directory on page 789
§44.4.2 Specifying which files to delete from the project directory on page 790
§44.4.3 Understanding when not to delete .ref and .htm files on page 791

See also:
§44.6.2 Emptying the wrap directory before copying on page 792

44.4.1 Specifying when to delete old files from th e project directory

To specify under which conditions certain old files should be deleted from the project
directory before conversion:

[Automation]
WrapAndShip=Yes
; EmptyOutputDir = Never (default),
; or File (for running a single-file project with n o external links).
EmptyOutputDir = Never

Values of EmptyOutputDir have the following effects:

To determine which files to delete before conversion, see:
§44.4.2 Specifying which files to delete from the project directory on page 790
§44.4.3 Understanding when not to delete .ref and .htm files on page 791.

Note: EmptyOutputDir takes effect not only when WrapAndShip=Yes , but also when
one of the following is true for the output type specified:

HTML Help: [Automation]CompileHelp=Yes

WinHelp: [Automation]CompileHelp=Yes

Never Default. DITA2Go does not delete any files from the project directory
before conversion.

File DITA2Go deletes the specified files before conversion.

CLEARING OUT OLD FILES BEFORE CONVERTING DITA2GO USER’S GUIDE

790 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

JavaHelp: [JavaHelpOptions]FTSCommand= path/to/indexer
Oracle Help: [OracleHelpOptions]FTSCommand= path/to/indexer

See §44.10 Gathering and processing Help-system files on page 802.

44.4.2 Specifying which files to delete from the p roject directory

To specify which files DITA2Go should delete from the project directory before
conversion:

[Automation]
WrapAndShip=Yes
; EmptyOutputFiles = list of files to delete, separ ated by spaces,
; wildcards allowed but not paths, no spaces within an item
EmptyOutputFiles = *.htm *.ref *.grx

If you do not include a setting for EmptyOutputFiles , depending on the value of
EmptyOutputDir (see §44.4.1 Specifying when to delete old files from the project
directory on page 789), by default DITA2Go deletes the following old files from the
project directory before conversion:

Note: If you list either *.dcl or *.dcb for EmptyOutputFiles , DITA2Go ignores
EmptyOutputDir and logs a warning. To delete .dcl and .dcb files, see §4.1.9
Reusing or discarding ASCII DCL files on page 73.

Use wildcards; do
not use paths

The file specifications you assign to EmptyOutputFiles must be separated by spaces,
and no spaces are allowed within a file specification. You can use wildcards in file
specifications, but you cannot include paths.

Warning: Do not specify *.* or *.ini , or you will lose your configuration file(s);
and for Help systems, you might lose a great deal more.

Depending on the value of EmptyOutputDir (see §44.4.1 Specifying when to delete old
files from the project directory on page 789), DITA2Go deletes the specified files before
conversion begins.

Files get deleted
on compiling and

indexing, also

Note: EmptyOutputFiles takes effect not only when WrapAndShip=Yes , but also
when one of the following is true for the output type specified:

HTML Help: [Automation]CompileHelp=Yes

WinHelp: [Automation]CompileHelp=Yes

JavaHelp: [JavaHelpOptions]FTSCommand= path/to/indexer
Oracle Help: [OracleHelpOptions]FTSCommand= path/to/indexer

See §44.10 Gathering and processing Help-system files on page 802.

See also:
§4.1.9 Reusing or discarding ASCII DCL files on page 73
§44.4.1 Specifying when to delete old files from the project directory on page 789
§44.4.3 Understanding when not to delete .ref and .htm files on page 791

Output type Default files deleted before conversion
HTML (all), XHTML *.htm *.html *.ref *.grx

XML *.xml *.ref *.grx

DITA *.dita *.ditamap *.bookmap .ref .grx

RTF *.rtf *.grx

44 PRODUCING DELIVERABLE RESULTS GATHERING ADDITIONAL FILES BEFORE CONVERTING

ALL RIGHTS RESERVED. MAY 19, 2013 791

44.4.3 Understanding when not to delete .ref and . htm files

If the files you are converting have no interfile links, you do not need.ref files. However,
if there are interfile links, .ref files are essential to make any links to split parts point to
the correct split file (see §27.3 Splitting files on page 526).

If you are converting to any HTML output type, in the following situation you must
provide an explicit setting for EmptyOutputFiles that does not include *.ref :

 • EmptyOutputDir =File , and you are converting a file that has interfile links.

External links
require keeping

.ref files

By default, DITA2Go deletes *.ref when EmptyOutputDir is in play (see §44.4.1
Specifying when to delete old files from the project directory on page 789) and there is no
explicit setting for EmptyOutputFiles (see §44.4.2 Specifying which files to delete
from the project directory on page 790). When reference files are removed, you lose the
information added from other files that were already converted. If you are running a series
of such conversions, you can delete *.ref files before the first conversion, but not
thereafter.

See also:
§44.4.1 Specifying when to delete old files from the project directory on page 789
§44.4.2 Specifying which files to delete from the project directory on page 790

44.5 Gathering additional files before converting
For safety, or for sharing with other writers, you might keep copies of ancillary files in a
location other than the project directory. You can have DITA2Go copy those files into the
project directory before beginning a conversion.

To copy files into the project directory:
[Automation]
; CopyBeforeFrom = path to directory containing fil es to add to the
; project directory before processing. For example:
CopyBeforeFrom = ..\..\keepers
; CopyBeforeFiles = list of files to copy from Copy BeforeFrom
; to the project directory, separated by spaces, wi ldcards and
; paths (relative and absolute) allowed, no spaces within an
; item, default is no files
CopyBeforeFiles = *.ini

You can specify either an absolute path or a path relative to the project directory for
CopyBeforeFrom . If the path contains spaces, you must enclose it in quotes.

CopyBeforeFiles lists the files to copy from the CopyBeforeFrom directory to your
project directory. Files are copied after any pre-conversion actions that delete files from
the project directory; see §44.4 Clearing out old files before converting on page 789.

The file specifications you assign to CopyBeforeFiles must be separated by spaces, but
no spaces are allowed within a file specification. You can use wildcards in file
specifications. File specifications can include absolute or relative paths to indicate where
files should be copied from; the default is from the CopyBeforeFrom directory, and
relative paths are relative to the CopyBeforeFrom directory. The destination is always
the project directory

See also:
§44.6.6 Listing extracurricular files to put in the wrap directory on page 795

ASSEMBLING FILES FOR DISTRIBUTION DITA2GO USER’S GUIDE

792 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

44.6 Assembling files for distribution
DITA2Go can create a “wrap” directory for assembling files, copy selected files to the
wrap directory for distribution, and optionally clear out the wrap directory first.

In this section:
§44.6.1 Specifying a wrap directory on page 792
§44.6.2 Emptying the wrap directory before copying on page 792
§44.6.3 Listing files to copy to the wrap directory on page 793
§44.6.4 Understanding when to use other file copy settings on page 794
§44.6.5 Understanding which files are copied from where on page 794
§44.6.6 Listing extracurricular files to put in the wrap directory on page 795

44.6.1 Specifying a wrap directory

To specify a wrap directory where DITA2Go can place files for distribution:
[Automation]
WrapAndShip = Yes
; WrapPath = path to dir to contain the files for d istribution,
; relative OK
WrapPath = path\to\wrap\directory

WrapPath can be an absolute path, or a path relative to the project directory. If the
directory specified by WrapPath does not exist, DITA2Go creates it.

When you first set up a conversion project, by default DITA2Go includes the following
setting for WrapPath in your new configuration file (see §44.3 Understanding path values
for deliverables on page 788):

WrapPath = ._wrap

This path is relative to the project directory. You can change this setting to specify a
different path, either relative or absolute. If the path contains spaces, you must enclose it
in quotes. If the directory named by WrapPath does not exist, DITA2Go creates the
directory.

To get rid of WrapPath entirely, you would have to set WrapPath to blank; if there is no
setting at all the default value is ._wrap , relative to the project directory.

Note: WrapPath takes effect not only when WrapAndShip=Yes , but also when one of
the following is true for the output type specified:

HTML Help: [Automation]CompileHelp=Yes

WinHelp: [Automation]CompileHelp=Yes

JavaHelp: [JavaHelpOptions]FTSCommand= path/to/indexer
Oracle Help: [OracleHelpOptions]FTSCommand= path/to/indexer

To make the wrap directory the same as your project directory, set WrapPath to blank:
[Automation]
WrapAndShip=Yes
WrapPath =

You might want to use this setting for HTML Help or for WinHelp; see §44.10 Gathering
and processing Help-system files on page 802.

44.6.2 Emptying the wrap directory before copying

To clear out the wrap directory before DITA2Go copies files:

44 PRODUCING DELIVERABLE RESULTS ASSEMBLING FILES FOR DISTRIBUTION

ALL RIGHTS RESERVED. MAY 19, 2013 793

[Automation]
WrapAndShip=Yes
; EmptyWrapPath = Yes (default, remove all files be fore copying)
; or No (leave old files in place in WrapPath direc tory)
EmptyWrapPath=Yes

When EmptyWrapPath=Yes , provided WrapPath does not point to the project directory,
DITA2Go deletes the entire contents of the WrapPath directory before copying files.
However, if either of the following is true, DITA2Go does not delete anything, regardless
of the value of EmptyWrapPath :

 • neither the configuration file nor any referenced template has a setting for WrapPath

 • WrapPath points to the project directory.

For HTML output types, if WrapPath points to the same directory as
[Graphics]GraphPath , DITA2Go does not delete files unless both EmptyWrapPath
and EmptyGraphPath are set to Yes; see §44.7 Placing graphics files for distribution on
page 796.

When EmptyWrapPath=No , DITA2Go leaves the prior contents of the WrapPath
directory in place. Orphaned and obsolete files from previous conversion runs could
accumulate and find their way into current deliverables. For this reason, it is better to
designate a directory for WrapPath that is different from the project directory, and set
EmptyWrapPath=Yes ; that way nothing important is lost, and nothing unwanted is
delivered.

Note: EmptyWrapPath takes effect not only when WrapAndShip=Yes , but also when
one of the following is true for the output type specified:

HTML Help: [Automation]CompileHelp=Yes

WinHelp: [Automation]CompileHelp=Yes

JavaHelp: [JavaHelpOptions]FTSCommand= path/to/indexer
Oracle Help: [OracleHelpOptions]FTSCommand= path/to/indexer

See §44.10 Gathering and processing Help-system files on page 802.

44.6.3 Listing files to copy to the wrap directory

To list files for DITA2Go to copy to the wrap directory (for example):
[Automation]
WrapAndShip=Yes
; WrapCopyFiles = list of files to copy, separated by spaces
WrapCopyFiles = *.htm *.js

The file specifications you assign to WrapCopyFiles must be separated by spaces, but no
spaces are allowed within a file specification. You can use wildcards in file specifications.
File specifications can include absolute or relative paths to indicate where files should be
copied from; the default is from the project directory, and relative paths are relative to the
project directory. The destination is always the WrapPath directory; see §44.6.1
Specifying a wrap directory on page 792.

Note: WrapCopyFiles takes effect not only when WrapAndShip=Yes , but also when
one of the following is true for the output type specified:

HTML Help: [Automation]CompileHelp=Yes

WinHelp: [Automation]CompileHelp=Yes

JavaHelp: [JavaHelpOptions]FTSCommand= path/to/indexer
Oracle Help: [OracleHelpOptions]FTSCommand= path/to/indexer

ASSEMBLING FILES FOR DISTRIBUTION DITA2GO USER’S GUIDE

794 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

See §44.10 Gathering and processing Help-system files on page 802.

If no setting for WrapCopyFiles is present, certain files are copied by default from the
project directory to the wrap directory. Table 44-1 lists the files that are copied by default
for each output type.

Note: Never move output files; the originals must remain in the project directory to
permit links to work from other files (whenever you convert less than a full
document) and from other projects (always).

44.6.4 Understanding when to use other file copy s ettings

Use settings other than WrapCopyFiles for the following:

 • JavaHelp and Oracle Help files; see §20.3.6.2 Letting DITA2Go set up the directory
structure and copy files on page 389.

 • Graphics files and CSS files; see §44.7 Placing graphics files for distribution on
page 796 and §44.8 Placing CSS or XSL files for assembly on page 800.

44.6.5 Understanding which files are copied from w here

If WrapPath has a value other than the project directory when you run a conversion, by
default DITA2Go does the following:

 • If the directory designated by WrapPath already exists, and EmptyWrapPath=Yes
(the default), DITA2Go deletes the prior contents; otherwise DITA2Go creates the
directory.

 • After converting your document, DITA2Go copies necessary files from the project
directory to the WrapPath directory (and to subdirectories, if appropriate). Table 44-2
lists the files that are copied by default.

For example, to have DITA2Go copy to the WrapPath directory only HTML files and
just one particular JavaScript file from the project directory, and all other JavaScript files
from another directory:

[Automation]
WrapAndShip=Yes
WrapPath=.\Done
WrapCopyFiles = *.htm justone.js ..\jsfiles*.js

With these settings, DITA2Go also copies graphics files and CSS files from the project
directory, unless you specify otherwise; see §44.7 Placing graphics files for distribution on
page 796 and §44.8 Placing CSS or XSL files for assembly on page 800.

Table 44-1 Default files copied from project directory to wrap directory

Output type Files copied by default from project to WrapPath directory

HTML, XHTML, XML *.htm *.html *.xhtm *.xhtml *.xml *.js *.dtd *.mod *.ent
*.xsd

DITA *.dita *.ditamap *.bookmap *.dtd *.mod *.ent *.xsd

Eclipse Help *.htm *.js *.xml

HTML Help *.htm *.js *.hh? *.h

OmniHelp *.htm *.js

WinHelp *.rtf *.hpj *.cnt *.h

Word *.rtf

44 PRODUCING DELIVERABLE RESULTS ASSEMBLING FILES FOR DISTRIBUTION

ALL RIGHTS RESERVED. MAY 19, 2013 795

For all output types, files specified by GraphCopyFiles (default *.gif , *.jpg , *.png ,
and *.svg for HTML, or *.bmp and *.wmf for RTF) are copied from the project
directory to the GraphPath directory; or to a subdirectory, for JavaHelp and Oracle Help;
see §44.7.1 Copying referenced graphics to a distribution directory on page 796.

For all HTML output types, files specified by CssCopyFiles (default *.css and
*.xsl) are copied from the project directory to the CssPath directory; see §44.8 Placing
CSS or XSL files for assembly on page 800.

44.6.6 Listing extracurricular files to put in the wrap directory

If your distribution should include other files in addition to those produced by DITA2Go ,
you can have those files copied into the wrap directory after conversion.

[Automation]
; CopyAfterFrom = path to directory containing file s to add to the
; wrap directory, after moving other files there; f or example:
CopyAfterFrom = ..\..\keepers
; CopyAfterFiles = list of files to copy from CopyA fterFrom
; to the wrap directory, default is no files; for e xample:
CopyAfterFiles = *.bookmap

For CopyAfterFrom you can specify either an absolute path or a path relative to the
project directory. If the path contains spaces, you must enclose it in quotes.

CopyAfterFiles lists the files to copy from the CopyAfterFrom directory to the wrap
directory, after all other files have been placed in the wrap directory.

The file specifications you assign to CopyAfterFiles must be separated by spaces, but
no spaces are allowed within a file specification. You can use wildcards in file
specifications. File specifications can include absolute or relative paths to indicate where
files should be copied from; the default is from the CopyAfterFrom directory, and
relative paths are relative to the CopyAfterFrom directory. The destination is always the
wrap directory.

Table 44-2 Files copied by default to the wrap directory

Output type

Files copied by default to the wrap directory, via:

WrapCopyFiles GraphCopyFiles CssCopyFiles

HTML, XHTML,
XML

*.htm *.html *.xml *.dtd
*.mod *.ent *.txt *.xsd
*.js

*.gif *.jpg *.png *.css *.xsl

DITA *.dita *.ditamap *.bookmap
*.dtd *.mod *.ent *.xsd

*.gif *.jpg *.png *.css *.xsl

HTML Help *.htm *.hh? *.h *.js *.gif *.jpg *.png *.css *.xsl

Eclipse Help *.htm *.js *.xml *.gif *.jpg *.png *.css *.xsl

JavaHelp,
Oracle Help *

*.xml *.hs *.jhm
*.htm *.js

*.gif *.jpg *.png *.css *.xsl

OmniHelp ** *.htm *.oh? *.gif *.jpg *.png *.css *.xsl

WinHelp *.rtf *.hpj *.cnt *.h *.bmp *.wmf Not applicable

Word *.rtf *.bmp *.wmf Not applicable

* Second group of files is copied to the HTML subdirectory. See §20.3.6 Creating a directory structure for
JavaHelp / Oracle Help on page 389.
** For OmniHelp, additional files are copied from a viewer directory; see §19.13 Assembling OmniHelp
files for viewing on page 380.

PLACING GRAPHICS FILES FOR DISTRIBUTION DITA2GO USER’S GUIDE

796 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

44.7 Placing graphics files for distribution
If graphics files referenced by your document are not already in the project directory, you
can have DITA2Go copy them there, or to a subdirectory, or to a wrap directory for
distribution. This is primarily an issue for HTML output; it is not usually necessary for
compiled WinHelp or for normal Word output. For some HTML output types, graphics
placement is restricted; see §32.1 Locating graphics files for HTML on page 611.

In this section:
§44.7.1 Copying referenced graphics to a distribution directory on page 796
§44.7.2 Selecting graphics to copy from arbitrary locations on page 797
§44.7.3 Deleting prior contents of the graphics destination directory on page 798
§44.7.4 Synchronizing graphics settings for HTML output on page 799
§44.7.5 Synchronizing graphics settings for RTF output on page 800

See also:
§44.6 Assembling files for distribution on page 792.

44.7.1 Copying referenced graphics to a distributi on directory

When you specify WrapAndShip=Yes or designate a WrapPath directory, for HTML
output DITA2Go automatically copies graphics files from the project directory to the
directory designated by [Graphics]GraphPath ; see §32.1 Locating graphics files for
HTML on page 611. DITA2Go can also copy graphics files from other locations.

To have DITA2Go copy the graphics files referenced by your document to a location
relative to the HTML files generated for distribution:

[Automation]
; CopyOriginalGraphics = No (default) or Yes (copy graphics to the
; location specified by GraphPath)
CopyOriginalGraphics = Yes

When CopyOriginalGraphics=Yes , DITA2Go copies graphics from wherever they
are referenced by your DITA document to one of the following destinations:

 • for JavaHelp and Oracle Help for Java, the directory designated by
[JavaHelpOptions]GraphSubdir (see §20.3.6.2 Letting DITA2Go set up the
directory structure and copy files on page 389)

 • for other HTML output types (and DCL output), the directory designated by
[Graphics]GraphPath , if any (see §44.7.4 Synchronizing graphics settings for
HTML output on page 799), otherwise the WrapPath directory

 • for RTF output types (and MIF output), the directory designated by WrapPath .

In other words, DITA2Go gathers referenced graphics by following the relevant links in
the source document; then, using the values of WrapPath and GraphPath , places those
graphics where links in the ready-for-distribution topic files expect to find them.

If your DITA document references graphics files that are in a format not suitable for
HTML output, and if you have provided alternates in the same directory with the same file
names but a different file extension, you can specify the extension to use for HTML
output. See §40.2.1.2 Substituting graphics files for HTML on page 747.

Note: If you specify [Automation]OnlyAuto=Yes (see §44.13 Postprocessing
separately from converting on page 807), and you are relying on
CopyOriginalGraphics to get your graphics files into the wrap directory, they
will not arrive; graphics files are not copied when OnlyAuto=Yes .

44 PRODUCING DELIVERABLE RESULTS PLACING GRAPHICS FILES FOR DISTRIBUTION

ALL RIGHTS RESERVED. MAY 19, 2013 797

44.7.2 Selecting graphics to copy from arbitrary l ocations

In addition to (or instead of) having DITA2Go gather up copies of the graphics files
referenced by your DITA document (see §44.7.1 Copying referenced graphics to a
distribution directory on page 796), you can have DITA2Go copy all or selected graphics
files from other locations.

The paths in your DITA document point to the images used during authoring. But different
output types require different image formats, so if an image is in the right format for
HTML, it is wrong for RTF. You can choose, on a per-project basis, which set of images
you want by selecting where to copy them from.

To specify which graphics files to copy and from where:
[Automation]
; CopyGraphicsFrom = path to dir containing graphic s files,
; relative OK
CopyGraphicsFrom = path\to\graphics\files
; GraphCopyFiles = list of files to copy from CopyG raphicsFrom,
; from project directory, and from arbitrary locatio ns.
GraphCopyFiles = *.gif *.jpg G:\special\images\logo .png

CopyGraphicsFrom and GraphCopyFiles take effect when WrapAndShip=Yes ,
CompileHelp=Yes , or FTSCommand=path\to\indexer (see §44.10 Gathering and
processing Help-system files on page 802).

Where to get
graphics files

When you specify a value for CopyGraphicsFrom , graphics files are copied first from
the project directory (unless it is the same as the destination directory), then from the
directory designated by CopyGraphicsFrom , to one of the destinations listed in §44.7.1
Copying referenced graphics to a distribution directory on page 796. If you specify a
relative path for CopyGraphicsFrom , that path is relative to the project directory.

Where to put
graphics files

The CopyGraphicsFrom command happens just before the CopyOriginalGraphics
command (see §44.7.1 Copying referenced graphics to a distribution directory on
page 796), and copies to the same place. When WrapAndShip=Yes , that place is the
concatenation of the wrap directory (if any) and the value of [Graphics]GraphPath . If
no value is specified for GraphPath , files are copied to the wrap directory; if no value is
specified for WrapPath , files are copied to a concatenation of the project directory and
GraphPath ; if neither is specified, files are copied to the project directory.

Which graphics
files to copy

You can use GraphCopyFiles to list files to be copied. Table 44-3 shows which graphics
files are copied by default for each output type. Files without paths assigned to
GraphCopyFiles are always copied first from the project directory, then from the
CopyGraphicsFrom directory (if any). If GraphCopyFiles is not specified, or is set to
nothing, all relevant graphics files are copied from the project directory and then from the
CopyGraphicsFrom directory (if any).

The file specifications you assign to GraphCopyFiles must be separated by spaces, and
no spaces are allowed within a file specification. You can use wildcards in file
specifications, and include absolute or relative paths to indicate where graphics files
should be copied from. If you do not specify a path, the default is first from the project

Table 44-3 Default graphics files copied for assembly

Output type Files copied by default from project dir ectory

DCL, MIF *.bmp *.wmf *.gif *.jpg *.png *.svg *.tif

HTML, XML types *.gif *.jpg *.png *.svg

RTF types *.bmp *.wmf

PLACING GRAPHICS FILES FOR DISTRIBUTION DITA2GO USER’S GUIDE

798 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

directory, then from the CopyGraphicsFrom directory (if any). If you specify a relative
path, the path is relative to the project directory.

For example, to have DITA2Go copy graphics files for standard HTML output from
directory MyGraphics , parallel to the project directory, to directory Images , a
subdirectory of the WrapPath directory:

[Automation]
WrapAndShip=Yes
; WrapPath is relative to the project directory:
WrapPath=.\Final
; CopyGraphicsFrom is relative to the project direc tory:
CopyGraphicsFrom=..\MyGraphics

[Graphics]
; GraphPath is relative to the WrapPath directory:
GraphPath=./images

If you use backslashes for GraphPath , DITA2Go changes them to forward slashes before
inserting references in HTML output, from HTML files to image files. See §32.1 Locating
graphics files for HTML on page 611.

Synchronize with
other settings

If you plan to use CopyGraphicsFrom , make sure other graphics settings in the
configuration file are consistent with the setting for WrapPath . See:

§44.7.4 Synchronizing graphics settings for HTML output on page 799
§44.7.5 Synchronizing graphics settings for RTF output on page 800

Use system
commands

instead

As an alternative, you can collect graphics from multiple locations with a series of system
commands in a DITA2Go macro. For example:

[Automation]
SystemWrapCommand=<$GetGraphics>

[GetGraphics]
cd <$$_currpath>\\wrap
copy "c:\\my graphics*.jpg"
copy "c:\\more graphics*.jpg"

Notice the doubled backslashes (required in DITA2Go macros, where backslash is used as
an escape character), and the quotes around paths that includes spaces; see §43.1.5
Supplying system commands in a macro on page 779.

44.7.3 Deleting prior contents of the graphics des tination directory

To empty the destination directory before copying graphics files for HTML:
[Automation]
WrapAndShip=Yes
; EmptyGraphPath = No (default, leave graphics file s in place)
; or Yes (empty GraphPath directory before copying) HTML only
EmptyGraphPath=Yes

Note: For JavaHelp and Oracle Help, alternate settings apply; see §20.3.6.2 Letting
DITA2Go set up the directory structure and copy files on page 389.

EmptyGraphPath takes effect when WrapAndShip=Yes , CompileHelp=Yes , or
FTSCommand=path\to\indexer (see §44.10 Gathering and processing Help-system
files on page 802).

When EmptyGraphPath=Yes , provided [Graphics]GraphPath does not point to the
project directory, DITA2Go deletes the entire contents of the GraphPath directory before
copying files into it. However, if either of the following is true, DITA2Go does not delete
anything, regardless of the value of EmptyGraphPath :

44 PRODUCING DELIVERABLE RESULTS PLACING GRAPHICS FILES FOR DISTRIBUTION

ALL RIGHTS RESERVED. MAY 19, 2013 799

 • No setting is present for GraphPath

 • GraphPath points to the project directory.

If WrapPath points to the same directory as GraphPath , DITA2Go does not delete files
unless both EmptyWrapPath and EmptyGraphPath are set to Yes; see §44.6
Assembling files for distribution on page 792.

When EmptyGraphPath=No (the default), DITA2Go leaves the prior contents of the
GraphPath directory in place.

44.7.4 Synchronizing graphics settings for HTML ou tput

For HTML output types, check configuration settings for the following options; their
values must reflect the destination, not the origin, of graphics to be copied for distribution:

[Graphics]
; StripGraphPath = No (default)
; or Yes (remove path from graphics references)
; GraphPath = path to use (replacing any previous) for all graphics
; GraphPathOverrides = No (default) or Yes (overrid es any path
; in Config markers and in [GraphFiles], adding Grap hPath
; GraphSuffix = file extension to use for replaceme nt graphics

[GraphFiles]
; Original name (with or without extension) = new n ame (with
; extension); new name overrides any [Graphics]Grap hPath specified

[GraphSuffix]
; old suffix = new suffix, overrides [Graphics]Grap hSuffix

Note: For JavaHelp and Oracle Help, alternate settings apply; see §20.3.6.2 Letting
DITA2Go set up the directory structure and copy files on page 389.

The value for GraphPath , if present, is ordinarily a path relative to the wrap directory
where the generated HTML files are located. This value is inserted in tags in your
HTML output, as references to graphics files on the server; see §32.1 Locating graphics
files for HTML on page 611. If your configuration file does not include a setting for
GraphPath , by default tags do not include a path, unless you specify a path in
[GraphFiles] (see §40.2.1.2 Substituting graphics files for HTML on page 747).

If WrapPath points to the project directory:

 • Set StripGraphPath=Yes

 • Remove or comment out any setting for GraphPath

 • Set GraphPathOverrides=No (see §40.2.1.3 Overriding path specifications for
referenced graphics on page 748)

 • Make sure [GraphFiles] entries and configuration markers do not include paths.

If WrapPath points to any directory except the project directory:

 • Set StripGraphPath=No

 • Set GraphPath to point to the WrapPath directory, or to a directory relative to the
WrapPath directory

 • Set GraphPathOverrides=Yes

See also:
§32.1 Locating graphics files for HTML on page 611
§40.2 Replacing and relocating graphics files on page 746
§42.2.9.4 Overriding graphic properties for HTML on page 774

PLACING CSS OR XSL FILES FOR ASSEMBLY DITA2GO USER’S GUIDE

800 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

44.7.5 Synchronizing graphics settings for RTF out put

For RTF output types, check configuration settings for the following options; their values
must reflect the destination, not the origin, of graphics to be copied to the WrapPath
directory:

[Graphics]
; FileNames = Retain (default) or Map (in the Graph Files section)
; FilePaths (for graphics) = Retain (default) or No ne (strip off)

[GraphFiles]
; types to map, replace extension, old=new for refe renced graphics
; specific filenames to replace, old = new, overrid es type setting

If WrapPath points to the project directory:

 • Set FileNames=Map

 • Set FilePaths=None

 • Make sure [GraphFiles] entries do not include paths.

If WrapPath points to any directory other than the project directory:

 • Set FileNames=Map

 • Set FilePaths=Retain

 • Make sure any paths in [GraphFiles] entries point to the WrapPath directory.

See §Table 40-1 RTF replacement graphics file mappings and locations on page 749.

See also:
§40.2 Replacing and relocating graphics files on page 746.

44.8 Placing CSS or XSL files for assembly
For HTML output types, when you specify WrapAndShip=Yes and designate a
WrapPath directory, DITA2Go automatically copies CSS or XSL files from the project
directory to the directory designated by [CSS]CssPath . DITA2Go can also
automatically copy CSS or XSL files from another directory you specify.

To have DITA2Go copy CSS or XSL files:
[Automation]
WrapAndShip=Yes
; CopyCssFrom = path to directory containing the .c ss files,
; relative OK
CopyCssFrom=..\css
; CssCopyFiles = list of files to copy from CopyCss From and output
; directories to the [CSS]CssPath (which defaults t o the WrapPath)
CssCopyFiles=*.css *.xsl

CopyCssFrom and CssCopyFiles take effect when WrapAndShip=Yes ,
CompileHelp=Yes , or FTSCommand=path\to\indexer (see §44.10 Gathering and
processing Help-system files on page 802).

Say where to get
CSS files

When you specify a value for CopyCssFrom , *.css and *.xsl files are copied first from
the project directory (unless it is the same as the destination directory), then from the
directory designated by CopyCssFrom , to one of the following destinations:

 • the directory designated by [CSS]CssPath , if any (see §31.4.2 Designating and
locating a CSS file on page 595); otherwise,

 • the directory designated by WrapPath (see §44.6 Assembling files for distribution on
page 792) or, for JavaHelp and Oracle Help, the .\html subdirectory.

44 PRODUCING DELIVERABLE RESULTS GATHERING FILES FOR AN HTML PROJECT: AN EXAMPLE

ALL RIGHTS RESERVED. MAY 19, 2013 801

If you specify a relative path for CopyCssFrom , that path is relative to the project
directory.

List CSS files to
be copied

You can use CssCopyFiles to list CSS or XSL files to be copied; the default files are
*.css and *.xsl . Files assigned to CssCopyFiles are always copied first from the
project directory to the directory designated by [CSS]CssPath , then from the
CopyCssFrom directory (if any). If CssCopyFiles is not present, or is set to nothing, all
*.css and *.xsl files are copied from the project directory and then from the
CopyCssFrom directory (if any).

The file specifications you assign to CssCopyFiles must be separated by spaces, and no
spaces are allowed within a file specification. You can use wildcards in file specifications,
and include absolute or relative paths to indicate where files should be copied from. If you
do not specify a path, the default is first from the project directory, then from the
CopyCssFrom directory. If you specify a relative path, the path is relative to the project
directory.

For example, to have DITA2Go copy CSS files from directory MyCSS, parallel to the
project directory, to directory Styles , a subdirectory of the WrapPath directory:

[Automation]
WrapAndShip=Yes
; WrapPath is relative to the project directory:
WrapPath=.\Final
; CopyCssFrom is relative to the project directory:
CopyCssFrom=..\MyCSS

[CSS]
; CssPath is relative to the WrapPath directory:
CssPath=.\Styles

44.9 Gathering files for an HTML project: an examp le
Suppose your file structure looks like this:

D:\AllDocs\CSS CSS files for all HTML projects
D:\MyDoc DITA files, projects file
D:\MyDoc\Graphics Graphics
D:\MyDoc\HTML DITA2Go output files and project configuration file

And you want the files for your HTML project assembled as follows:
D:\MyDoc\HTML_wrap HTML files should be copied here
D:\MyDoc\HTML_wrap\images Graphics files should be copied here
D:\MyDoc\HTML_wrap\styles CSS files should be copied here

Your projects file (.prj , in D:\MyDoc with your DITA files) would specify
D:\MyDoc\HTML as the path for DITA2Go to use for output. D:\MyDoc\HTML is also
where your project configuration file is located.

GATHERING AND PROCESSING HELP-SYSTEM FILES DITA2GO USER’S GUIDE

802 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To get all the files where you want them, in the configuration file you would specify the
following:

44.10 Gathering and processing Help-system files
Most Help systems require additional steps after DITA2Go generates output files from
your DITA document, and before archiving files for distribution. You can have DITA2Go
automatically do the following:

Compile WinHelp
or HTML Help

To direct DITA2Go to compile WinHelp or HTML Help:
[Automation]
; CompileHelp = No (default, run compiler separatel y),
; or Yes copy all needed files to the WrapPath, if given,
; then compile with hhc (HTML Help) or hcw (WinHelp).
CompileHelp = Yes

By default, CompileHelp=No . See:
§17.2.6 Setting basic WinHelp options in the configuration file on page 284
§18.13 Compiling and testing HTML Help on page 346

Section Setting
[Automation] WrapPath=._wrap

A location relative to the project directory. You could just as well use the absolute
path: WrapPath=D:\MyDoc\HTML_wrap . Notice the backslashes here, which are
required for Windows.

CopyCssFrom=D:\AllDocs\CSS

Where to find the CSS files for this project. Path separators are backslashes.
CopyGraphicsFrom=D:\MyDoc\Graphics

Where to find graphics for this project. Path separators are backslashes.

GraphCopyFiles=*.jpg *.gif

Files you want from the CopyGraphicsFrom directory.
[CSS] CssPath=.\styles

Where CSS files should be relative to the HTML files that use them (that is, relative
to the WrapPath directory). DITA2Go converts backslashes to forward slashes
before writing these references in the HTML files.

[Graphics] GraphPath=.\images

Where the graphics should be relative to the HTML files that reference them (that is,
relative to the WrapPath directory). DITA2Go converts backslashes to forward
slashes before writing these references in the HTML files.

WinHelp Run the WinHelp compiler; see §17.2.10 Compiling a WinHelp
project on page 285.

HTML Help Run the HTML Help compiler; see §18.13 Compiling and testing
HTML Help on page 346.

OmniHelp Copy viewer files to the WrapPath directory (needed only if they are
not already in the project directory); see §19.13 Assembling
OmniHelp files for viewing on page 380.

JavaHelp Run the full-text-search indexing program; see §20.5.2 Creating a
search index for JavaHelp on page 398.

Oracle Help
for Java

Run the full-text-search indexing program (although you might not get
a usable search index); see §20.5.3 Creating a search index for Oracle
Help on page 399.

Eclipse Help Archive topic files into doc.zip ; see §21.8 Packaging Eclipse Help
files on page 427.

44 PRODUCING DELIVERABLE RESULTS ARCHIVING DELIVERABLES

ALL RIGHTS RESERVED. MAY 19, 2013 803

Index JavaHelp or
Oracle Help

To direct DITA2Go to run the JavaHelp or Oracle Help indexer to create a search index:
[JavaHelpOptions] or [OracleHelpOptions]
FTSCommand = path/to/indexer

If FTSCommand is missing or is set to blank, DITA2Go does not run the indexer. See:
§20.5 Providing full-text search for JavaHelp / Oracle Help on page 397

Certain
automation
settings are

activated

When CompileHelp=Yes or FTSCommand=path/to/indexer, DITA2Go acts on
those [Automation] settings that need to be processed prior to compilation or indexing,
regardless of the setting for WrapAndShip. Then DITA2Go runs the appropriate compiler
or indexer. Table 44-4 shows which settings are activated.

Assemble files
without compiling

or indexing

When CompileHelp=No (the default for WinHelp and HTML Help), or FTSCommand is
not specified for JavaHelp or Oracle Help, you must run the compiler or indexer
separately. If WrapAndShip=Yes , uncompiled or unindexed Help-system files are
assembled for distribution; see §44.2 Activating and logging production of deliverables on
page 788. You might use this combination for WinHelp if you are sending files to be
branded by a subcontractor, or to be integrated with other WinHelp systems. For HTML
Help, you might send uncompiled files for use on a server.

Assembling and
archiving are

optional

For WinHelp or HTML Help, you can set the value of WrapPath for compiled Help
output to blank (or explicitly to the project directory), because the Help compilers rely on
a list of files to include in the compilation. Eliminating a separate wrap subdirectory
avoids creating a duplicate set of output files. Also, archiving is not always necessary for
compiled Help, because compilation itself creates a compressed deliverable.

44.11 Archiving deliverables
To archive output files assembled for distribution, DITA2Go can automatically run a
command-line archiving program such as pkzip.exe , or WinZip command-line add-on
wzzip.exe . DITA2Go composes and executes an archiving command based on values
you supply for the archiving program and its parameters. For example, for wzzip.exe the
command and basic parameters are as follows:

wzzip [options] zipfile [files...]

Table 44-4 Automation settings activated by CompileHelp or FTSCommand

[Automation] setting Action Ref.

CopyCssFrom Copy CSS files from the designated directory 44.8

CopyGraphicsFrom Copy graphics files from the designated directory 44.7.1

CssCopyFiles Select only specified CSS files for copying 44.8

EmptyGraphPath Delete prior copied graphics files before copying 44.7.3

EmptyOutputDir Delete files from the project directory before conversion 44.4.1

EmptyOutputFiles Select only specified files to delete from the project directory 44.4.2

EmptyWrapPath Delete all files from the WrapPath directory before copying 44.6

GraphCopyFiles Select only specified graphics files for copying 44.7.1

WrapCopyFiles Copy only specified files from the project directory 44.6

WrapPath Directory to which files are copied for compiling and
assembling for distribution

44.6

ShipPath Directory to which compiled or archived files are copied or
moved

44.12

ARCHIVING DELIVERABLES DITA2GO USER’S GUIDE

804 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

DITA2Go uses the following settings to put together the components of this command:

In this section:
§44.11.1 Specifying an archiving command on page 804
§44.11.2 Supplying parameters for the archiving command on page 804
§44.11.3 Specifying archive file name and optional version on page 805

44.11.1 Specifying an archiving command

To have DITA2Go archive files assembled for distribution:
[Automation]
WrapAndShip=Yes (or CompileHelp=Yes)
; ArchiveCommand = zip command, without parameters
ArchiveCommand= pkzip

ArchiveCommand must include the absolute path to the location of the archiving program
on your system, unless that location is already on the system PATH. If the path contains
spaces, you must enclose the path (including the command name) in quotes. For example,
the archiving command setting for the DITA2Go User’s Guide is:

ArchiveCommand = "g:\program files\winzip\wzzip"

ArchiveCommand has no default value; if you do not specify a value, DITA2Go does no
archiving, and the remaining Archive* settings are moot.

ArchiveCommand takes effect only when at least one of the following is true:

 • WrapAndShip=Yes (see §44.2 Activating and logging production of deliverables on
page 788)

 • OnlyAuto=Yes (see §44.13 Postprocessing separately from converting on page 807).

If WrapPath is set to blank, the archiving command works on whatever is in the project
directory; when this is the case, unless you include exactly the right parameters, you might
get a mess. See §44.11.2 Supplying parameters for the archiving command on page 804.

44.11.2 Supplying parameters for the archiving com mand

To provide values for parameters (other than the archive file name) required by the
archiving program:

[Automation]
; ArchiveStartParams = parameters preceding name of archive file
ArchiveStartParams= -add
; ArchiveEndParams = parameters following name of a rchive file
ArchiveEndParams= *.*

For parameters that are to be passed to an archiving program, observe the following:

 • Do not enclose parameter values in quotes.
 • Use backslashes as separators in path-name parameters.
 • Use a dash (“- ”) instead of a forward slash to prefix a command option.

Starting
parameters

ArchiveStartParams specifies any parameters to ArchiveCommand that must precede
the name of the archive file, such as command option -add for pkzip or -a (the default)

Component DITA2Go archive setting(s) Reference
wzzip ArchiveCommand 44.11.1
[options] ArchiveStartParams 44.11.2

zipfile ArchiveName , ArchiveVer , ArchiveExt 44.11.3
[files...] ArchiveEndParams 44.11.2

44 PRODUCING DELIVERABLE RESULTS ARCHIVING DELIVERABLES

ALL RIGHTS RESERVED. MAY 19, 2013 805

for wzzip . For example, the starting-parameter setting for the DITA2Go User’s Guide is
simply:

ArchiveStartParams =

Ending
parameters

ArchiveEndParams specifies any parameters to ArchiveCommand that must follow the
name of the archive file, such as *.* for pkzip or wzzip . For example, the ending-
parameter setting for the Eclipse Help version of the DITA2Go User’s Guide is:

ArchiveEndParams = doc.zip *.xml

Archiving directly
from the project

directory

If you are archiving from the project directory instead of from a separate directory
designated by WrapPath (see §44.6 Assembling files for distribution on page 792), it is
better to enumerate the files (at least by extension) to include in the archive. If you specify
ArchiveEndParams=*.* , you might end up with .ref , .ini , .grx , and other
unwanted files in the archive. For example, for an HTML project to be archived from the
project directory you might specify the following:

ArchiveEndParams = *.htm *.css *.gif *.jpg *.png

For the HTML Help version of the DITA2Go User’s Guide, which does not use a
WrapPath directory, the setting specifies each file to be included:

ArchiveEndParams = ugdita2go.chm

44.11.3 Specifying archive file name and optional version

To specify a name for the archive file:
[Automation]
; ArchiveName = base name for archive to be created
ArchiveName = MyProj
; ArchiveVer = version number (if any) to be append ed to ArchiveName,
; default is the system configuration output-type i dentifier
ArchiveVer = beta
; ArchiveExt = file extension to be appended, usual ly zip
ArchiveExt = zip

The full name of the archive file is a concatenation of the following:
Archive file base name
Archive version
A period (dot)
Archive file extension.

Archive file base
name

ArchiveName is the base file name of the archive to be created. For example, the base
name for the archive of the RTF version of the DITA2Go User’s Guide is:

ArchiveName = UGrtf

The value you specify for ArchiveName must not contain spaces. The default value of
ArchiveName depends on the output type. The default base name of any deliverable
(archive or compiled Help system) is the base name of the project. For most Help systems,
this is the Help project file name; for other output types, it is the base name of the map file.
Table 44-5 shows the source of the default base file name of the archive for each output
type.

PLACING DELIVERABLES IN A SHIPPING DIRECTORY DITA2GO USER’S GUIDE

806 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Archive version ArchiveVer is an optional version identifier to be appended to ArchiveName , and may
include any alphanumeric characters allowed in file names; see §1.1.2 File, directory, and
path names on page 26. If you do not specify a value for ArchiveVer , DITA2Go uses a
default output-type identifier as the value; for example, OH for OmniHelp. Output-type
identifier values are located in system configuration files for each output type.

Archive file
extension

ArchiveExt is the file extension for the type of archive to be created (without the leading
period); usually zip or jar . The default depends on the value of ArchiveCommand (see
§44.11.1 Specifying an archiving command on page 804). If ArchiveCommand contains
jar , the default extension is .jar ; otherwise the default extension is .zip . DITA2Go
provides the leading period.

44.12 Placing deliverables in a shipping directory
You can have DITA2Go copy or move deliverable files to a separate directory for
shipping, or sharing, or storage.

In this section:
§44.12.1 Specifying a shipping directory for deliverables on page 806
§44.12.2 Understanding which files are placed in the shipping directory on page 807
§44.12.3 Choosing whether to copy or move deliverables on page 807

44.12.1 Specifying a shipping directory for delive rables

To have DITA2Go place compiled or archived deliverables in a shipping directory:
[Automation]
WrapAndShip=Yes
; ShipPath = path to dir to contain final result fi le of archiving
; or of compilation (.chm, .jar, or .zip), may be th e same for
; several projects.
ShipPath= path\to\deliverables

ShipPath takes effect only when WrapAndShip=Yes , and only if you have specified a
value for ArchiveCommand . See §44.2 Activating and logging production of deliverables
on page 788.

You can change this setting to specify a different path. If the path contains spaces, you
must enclose it in quotes. If the directory specified by ShipPath does not exist,
DITA2Go creates this directory for you.

Table 44-5 Default base file name for deliverables archive

Output type Source of default base file name for arc hive Ref.

HTML Help [MSHtmlHelpOptions]HHPFileName 18.3.6

JavaHelp, Oracle Help [JavaHelpOptions]HSFileName 20.3.7

OmniHelp [OmniHelpOptions]ProjectName (without prefix or
suffix)

19.3.2

WinHelp [HelpOptions]HPJFileName 17.2.6

Eclipse Help plugin (literally) 21.8.3

All other output types Base name of project map file 2.3.5

All other output types Base name of the map

44 PRODUCING DELIVERABLE RESULTS POSTPROCESSING SEPARATELY FROM CONVERTING

ALL RIGHTS RESERVED. MAY 19, 2013 807

44.12.2 Understanding which files are placed in th e shipping directory

When WrapAndShip=Yes and you specify a value for ShipPath , which files get placed
in the ShipPath directory depends on the following factors:

 • whether or not you also specify a value for ArchiveCommand

 • the output type of your DITA2Go project.

If you specify a value for ArchiveCommand (see §44.11 Archiving deliverables on
page 803), DITA2Go copies (or moves) any resulting archive to the ShipPath directory
after all other processing is finished.

If you do not specify a value for ArchiveCommand , what gets placed in the ShipPath
directory depends on the output type. Compiled or JARred Help systems are copied or
moved; other output types are not:

44.12.3 Choosing whether to copy or move deliverab les

When WrapAndShip=Yes and a value is specified for ShipPath , by default DITA2Go
copies deliverables to the ShipPath directory, leaving the originals in the WrapPath
directory.

To have DITA2Go move deliverables instead of copying them:
[Automation]
WrapAndShip=Yes
; MoveArchive = No (default, copy archive to ShipPa th) or Yes (move
; archive to ShipPath instead of copying it)
MoveArchive=Yes

When MoveArchive=Yes , deliverables are moved to the ShipPath directory and the
originals are deleted from the WrapPath directory.

When MoveArchive=No , deliverables are copied to the ShipPath directory, and the
originals remain in the WrapPath directory.

MoveArchive takes effect only when WrapAndShip=Yes (see §44.2 Activating and
logging production of deliverables on page 788) and ShipPath has a non-blank value.

44.13 Postprocessing separately from converting
If you have already converted a document and the results are still in the project directory,
you can have DITA2Go carry out postprocessing steps without going through the entire
conversion again. These steps can include:

 • compiling for WinHelp or HTML Help
 • running a search indexer and creating a JAR file for JavaHelp or Oracle Help
 • any of the automation options available when you set WrapAndShip=Yes (see §44.2

Activating and logging production of deliverables on page 788) except
CopyOriginalGraphics ; see §44.7.1 Copying referenced graphics to a distribution
directory on page 796.

Output type
File(s) placed in ShipPath when
no ArchiveCommand is specified

HTML Help MyProj.chm

JavaHelp, Oracle Help MyProj.jar

WinHelp MyProj.hlp , MyProj.cnt

All other output types None

POSTPROCESSING SEPARATELY FROM CONVERTING DITA2GO USER’S GUIDE

808 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

To postprocess conversion results independently of conversion:
[Automation]
WrapAndShip=Yes
; OnlyAuto = No (default) or Yes (run only automati on commands,
; rather than the full conversion)
OnlyAuto = Yes

When OnlyAuto=Yes , DITA2Go processes options specified in the [Automation]
section of the configuration file, without first performing any document conversion.

Note: Commands assigned to SystemStartCommand are not run when
OnlyAuto=Yes ; see §43.1 Executing operating-system commands on page 777.

OnlyAuto=Yes takes effect only when at least one of the following is true:
 • WrapAndShip=Yes
 • CompileHelp=Yes

 • A value is specified for FTSCommand (for JavaHelp or Oracle Help output) or for
JARCommand (for JavaHelp).

When OnlyAuto=No , DITA2Go runs the conversion before processing options specified
in the [Automation] section.

Compilation is
included for

WinHelp, HTML
Help

If the output type is WinHelp or HTML Help and you set CompileHelp=Yes (or you
check Compile Help on the Export dialog), DITA2Go runs the appropriate compiler
before placing the deliverable(s) in a shipping directory; see §44.10 Gathering and
processing Help-system files on page 802.

Note: If you set CompileHelp=No when OnlyAuto=Yes (because you compiled your
Help system in a previous run), be sure to set EmptyWrapPath=No ; otherwise,
your compiled Help system will be swept away before anything else happens.

Indexing search
terms is included

for JavaHelp,
Oracle Help

If the output type is JavaHelp or Oracle Help and you specify a value for FTSCommand in
the configuration file, DITA2Go runs the designated indexer before archiving the
deliverables and placing them in a shipping directory; see §20.5 Providing full-text search
for JavaHelp / Oracle Help on page 397.

(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 809

45 Converting via DCL

This section shows how to operate the DITA2Go DCL filter. Topics include:
§45.1 How the DCL filter works on page 809
§45.2 Using the DCL filter on page 809
§45.3 DCL command-line syntax on page 810
§45.4 Specifying output file paths and names on page 812
§45.5 About DCL technology on page 813

45.1 How the DCL filter works
DITA2Go uses the DCL (Document Coding Language) filter to convert XML files
according to settings you have already specified in a configuration file (and optionally as
arguments to the DCL command). Before you can convert files this way, you must set up a
configuration file for the conversion; see §2 Converting DITA documents on page 39.

When your configuration file is ready, you run the DITA2Go DCL filter at a command-
line prompt in a command window.

You will also need to use the full path to the DITA2Go version of dcl.exe on the
command line; see §2.7.1 Executing the correct version of DCL on page 46.

45.2 Using the DCL filter
In this section:

§45.2.1 Understanding where to run DCL on page 809
§45.2.2 Preparing for conversion on page 809
§45.2.3 Converting a single DITA or DCL file on page 809
§45.2.4 Converting a group of files on page 810

45.2.1 Understanding where to run DCL

You must invoke the DITA2Go DCL filter on a command line in a Windows Command
Prompt window. The DITA2Go DCL filter is a Windows Console application, not an MS-
DOS application. It will not run under plain MS-DOS, without Windows.

45.2.2 Preparing for conversion

Before you use the DCL command-line method to convert files, you must do the
following:

1. Copy a starting configuration file for the output type you want (see Table 39-5 on
page 737) from %OMSYSHOME%\d2g\local\config to your output directory.

2. Edit the configuration file to specify settings. See §3.1 Working with DITA2Go
configuration files on page 49 for more information.

45.2.3 Converting a single DITA or DCL file

To convert a single DITA XML file with the DITA2Go DCL filter:

1. Open a Windows Command Prompt window.

DCL COMMAND-LINE SYNTAX DITA2GO USER’S GUIDE

810 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

2. Change to the directory where you placed a configuration file.

3. At the command-line prompt, enter the following command:
dcl -f format [-o output] input

where the arguments are as follows:

4. Press Enter to convert the file.

45.2.4 Converting a group of files

You can convert more than one file at a time, by using wildcards in file names, or by
executing the DITA2Go DCL filter in a batch file. You must make sure any path values in
the [Setup] section of the configuration file are correct.

45.3 DCL command-line syntax
A dcl command has the following syntax:

dcl [-f format] [–o output] input ... [–v]

Command-line switches and arguments override corresponding configuration-file settings.
Switches can appear in any order preceding the name(s) of the input file(s) to which they
apply. Switches should be lowercase, and a space is required between a switch and its
argument. For example:

-f HTML

Each switch affects only the input files named after it on the command line.

In this section:
§45.3.1 Command-line switch -f format on page 810
§45.3.2 Command-line switch -o output on page 811
§45.3.3 Command-line argument input ... on page 812
§45.3.4 Command-line switch -v on page 812
§45.3.5 Additional command-line switches on page 812

45.3.1 Command-line switch -f format

The DCL -f switch specifies the output format, with an optional suffix that generates
additional processing for certain formats.

The -f options have the following meanings:

format Output type; one of the format codes or names listed for -f in
§45.3.1 Command-line switch -f format on page 810.

output Name or extension (with leading period) of the file to be
produced; optional for DCL, RT,F or HTML output, required for
XML output.

input Name of the file to be converted.

Format name Optional suffix Description
 HTML HTML 4.0

XHTML XHTML 1.0
HTMLHelp C I B Microsoft HTML Help
JavaHelp C I B JavaHelp

 OracleHelp C I B Oracle Help for Java
 EclipseHelp C I B Eclipse Help

45 CONVERTING VIA DCL DCL COMMAND-LINE SYNTAX

ALL RIGHTS RESERVED. MAY 19, 2013 811

Merge contents
and/or index

Where listed under Suffix, you can append one of the following letters to the format name
(case does not matter). These suffix options apply to HTML-based Help systems for which
DITA2Go can generate contents and/or index. For example: -f HTMLHelpB.

C - Merge contents
I - Merge index
B - Merge both contents and index

Letters C, I , and B represent three mutually exclusive options for the same merge
operation, which can also (re-) create the project file (depending on configuration settings)
while generating the other infrastructure files for the designated Help system.

Note: When you specify suffix C, I , or B for the -f argument, the input file must have
extension .lst ; see §45.3.3 Command-line argument input ... on page 812.

45.3.2 Command-line switch -o output

The DCL -o switch specifies an output file name (with or without path), or an output file
extension:

Default file extensions are as follows:

XML is the only output type where you must specify -o . ext. Otherwise, some of your
output files might get extension .htm .

OmniHelp C I B Cross-platform OmniHelp

DITA DITA XML
DocBook DocBook XML
XML Generic XML

 Word Word 8/97
WinHelp WinHelp 4

Format name Optional suffix Description

-o file Output file path or name, without extension. Applies only to the first
input file name that follows this option. Overrides, for the next file
name only, any –o .ext or –o path that appears earlier on the
command line. The default is the same name as the input file name, but
with the .ext extension provided as an argument to an earlier -o
switch.

-o .ext Output file extension, with leading period. Overrides default output file
extensions. Applies to all following input file names on the command
line until dcl encounters a new -o .ext. If no output type is specified
via -t (see §45.3.5 Additional command-line switches on page 812), the
default value for .ext depends on the value of the -f argument (see
§45.3.1 Command-line switch -f format on page 810). The value must
have a period as the first character. If the period is not present, ext is
interpreted as a file name.

Output type Default extension
HTML .htm

RTF .rtf

DCL .dcl

XML varies

SPECIFYING OUTPUT FILE PATHS AND NAMES DITA2GO USER’S GUIDE

812 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

45.3.3 Command-line argument input ...

The input ... argument(s) specify input file name(s) or complete path(s); wildcards are
acceptable. If a path or file name contains spaces, surround it with double quotes; for
example:

dcl -f HTML "C:\My Documents\some.dita"

When you specify suffix C, I , or B for the -f switch, the input file must have extension
.lst ; see §45.3.1 Command-line switch -f format on page 810.

45.3.4 Command-line switch -v

The -v switch produces verbose output; dcl reports, at the command prompt, everything
it does.

45.3.5 Additional command-line switches

Additional switches are available for DCL. You would need these only for working with
intermediate DCL input and output formats:

dcl [-ab] [-lm] [-s source] [–t target]

Table 45-1 shows the options for these additional switches.

Types of input or output files for switches -s and -t :

45.4 Specifying output file paths and names
For the output file name, you can modify any or all of the path, name, and extension. By
default, the filter alters only the file extension. For RTF output, the extension is normally
.rtf . For multi-step processing, it is .dcl for the first step and .rtf for the last step.
The target file is written to the same directory as the source file, usually the current
directory. Any intermediate files (typically binary DCL files, .dcb) are written to the
current directory, and are automatically deleted after conversion is complete.

Table 45-1 DCL intermediate input and output options

Switches Purpose Value Description
[-ab] Type of DCL output file -a ASCII

-b Binary

[-lm] Endianness of input files -l Little-endian (Intel)

-m Big-endian

[-s source] Type of input file -s dcl , dcb , mif , lst , or xml

[-t target] Type of output file -t dcl , dcb , inf , rtf , htm, or xml

dcb Intermediate Document Coding Language binary format; see
§45.5.1 DCL file structure on page 813

dcl Intermediate Document Coding Language ASCII format; see
§45.5.1 DCL file structure on page 813

htm HTML, HTML-based Help, XML

rtf Rich Text Format

XML DITA, DocBook, generic XML

45 CONVERTING VIA DCL ABOUT DCL TECHNOLOGY

ALL RIGHTS RESERVED. MAY 19, 2013 813

The output option -o name can specify a path without a file name, a file name with or
without a path, or an extension without a file name. Each of these works differently:

 • Path without file name causes the output file to be written with the same name but to
a different directory.

 • File name with or without path alters the file name for the output file. If you do not
specify a path, the original file path (as modified by any earlier path-related -o option)
is used.

 • Extension without file name gives the output file the extension specified instead of
the original extension. (In some cases, the new extension is added on instead of
replacing the previous one; this happens if the previous extension was not the one
used to indicate the input format, and if the file naming rules for the system permit
multiple extensions.)

45.5 About DCL technology
The DITA2Go DCL filter is based on the Omni Systems Document Coding Language,
DCL . This section gives a brief overview of DCL. For a full description of DCL, see the
Omni Systems DCL Specification, available on request. Omni Systems has placed the
DCL language in the public domain; you may use it without obligation. Omni Systems
products based on DCL, such as DITA2Go , are proprietary, and must be licensed from
Omni Systems.

In this section:
§45.5.1 DCL file structure on page 813
§45.5.2 Writing DCL conversion modules on page 813

45.5.1 DCL file structure

DCL can be read and written in either of two formats: ASCII or binary. When the
DITA2Go DCL filter is converting your files, it writes and reads the binary form, which is
designed for very rapid and efficient processing. If you want to work with the DCL file
yourself, use the ASCII version, which can be edited in any plain-text editor. All Omni
Systems DCL programs understand both forms of DCL; for example, drmif can write
either format, and dwrtf can read either format.

45.5.2 Writing DCL conversion modules

For simple projects, you can use text-processing tools to modify ASCII DCL files. You
can search and replace format names, for example, or modify format properties.

For more complex projects, where you need the power and versatility of a full-sized
programming language such as perl, Java, or C++, you are better off working with binary
DCL. You write a program that reads binary DCL files. Your program reads the eight-byte
“controls” in a binary DCL file one at a time; when it has read one control, your program
knows immediately how much “external” data follows the control, which tells it where the
next control begins. This design makes it simple for a program to step to the specific
controls it needs to modify. Once there, your program can replace or delete the control, or
add more controls, without concern for side effects elsewhere.

The Omni Systems DCL programs are written in C++, using a portable class library
developed by Omni Systems. If you intend to write C++ programs that work with DCL,
ask Omni Systems about availability of sample code and development tools.

(No illustrations)

ABOUT DCL TECHNOLOGY DITA2GO USER’S GUIDE

814 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 815

46 Creating a map with DITA2Map

DITA2Map is a command-line program that generates a map from a DITA topic file, “a
nice little free utility to help people mired in the nested-topics world into the cleaner world
of maps”. Topics include:

§46.1 Understanding how DITA2Map works on page 815
§46.2 Setting up a DITA2Map project on page 815
§46.3 Specifying DITA2Map configuration options on page 815
§46.4 Running DITA2Map on page 817

46.1 Understanding how DITA2Map works
If you have a DITA topic file, either .dita or one of its specializations, or a collection
with <dita> as root, you can use command-line program DITA2Map to generate a
.ditamap .

Working from an optional configuration file, a DTD, and your DITA topic file,
DITA2Map generates a .ditamap by making a topicref from each topic ID, title, and
shortdesc (if any) in the topic file. DITA2Map nests the topicrefs as the topics are nested,
and optionally adds a reltable with one row and a column for each topic type found.

46.2 Setting up a DITA2Map project
DITA2Map requires DITA DTDs, and executables dita2map.exe and libexpat.dll .
If you have installed DITA2Go you already have the DTDs and these executable files.

Unless DITA2Go configuration file dita2map.ini is already present in the directory
where you want DITA2Map to create a map, you might want to create a configuration file
named dita2map.ini , and populate it with the options listed in §46.3 Specifying
DITA2Map configuration options on page 815. However, a configuration file is optional;
instead, you can accept the defaults for most configuration settings, and specify the rest on
the command line. To determine processing options, DITA2Map looks first for
dita2map.ini ; if that file is not present, DITA2Map uses default settings.

To use DITA2Map , you must have at least the demonstration version of DITA2Go
installed on your system.

46.3 Specifying DITA2Map configuration options
Edit file dita2map.ini to specify options for creating a map file from a DITA topic file.
Or, edit the same options in your project configuration file. Or, accept default values and
dispense with a configuration file.

In this section:
§46.3.1 Locating a DITA DTD on page 816
§46.3.2 Locating configuration template files on page 816
§46.3.3 Specifying processing options on page 816
§46.3.4 Specifying logging options on page 816
§46.3.5 Specifying map options for DITA2Map on page 817

SPECIFYING DITA2MAP CONFIGURATION OPTIONS DITA2GO USER’S GUIDE

816 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

46.3.1 Locating a DITA DTD

To specify the location of DITA DTD files:
[Setup]
; DTDPath = path to location of DITA DTDs, default none
DTDPath=D:\path\to\DTDs

The OASIS DITA 1.1 DTD is in directory %omsyshome%\d2g\dtd of your DITA2Go
installation.

You can override the setting for DTDPath with the -d switch on the dita2map.exe
command line; see §46.4 Running DITA2Map on page 817.

If you run DITA2Map without specifying a value for DTDPath, either in a configuration
file or with the -d switch, DITA2Map will try to read the DTD referenced in the SYSTEM
ID , normally the one at OASIS, and most likely will fail. That is, DITA2Map will write
an empty map with no topicrefs, just header and ending.

46.3.2 Locating configuration template files

If you expect to need multiple configuration files for different DITA2Map projects, you
can collect settings that are common to all projects in a configuration template; see §39.2
Referencing configuration files and templates on page 731.

To specify a configuration template:
[Templates]
; Configs = path to .ini file
Configs=D:\path\to\template.ini

DITA2Map checks the template file for any settings missing from dita2map.ini .

46.3.3 Specifying processing options

To determine how names are matched to configuration settings:
[Options]
; CaselessMatch = Yes (default, ignore uppper/lower differences) or No
CaselessMatch = Yes
; SpacelessMatch = Yes (default, ignore embedded sp aces) or No
SpacelessMatch = Yes
; WildcardMatch = Yes (default, allow ? and * in se ttings) or No
WildcardMatch = Yes

See §4.1.10 Specifying how to treat cases, spaces, and wildcards on page 73.

To diagnose possible memory-management problems:
[Options]
NoNameDel = No
NoMemDel = No

If dcl.exe crashes at the very end of processing, try changing these options to Yes , one
at a time.

46.3.4 Specifying logging options

Logging options for DITA2Map are the same as for DITA2Go , except for the default log
file name:

[Logging]
; UseLog = Yes (default, log as specified in this s ection) or No
UseLog = Yes

46 CREATING A MAP WITH DITA2MAP RUNNING DITA2MAP

ALL RIGHTS RESERVED. MAY 19, 2013 817

; LogFileName = name with path, absolute or relativ e to output dir
LogFileName = DITA2map_log.txt

See §4.2 Logging conversion events on page 74.

46.3.5 Specifying map options for DITA2Map

DITA2Map uses the same map-generation options as DITA2Go . If you are happy with
the default settings listed in §4.1.4.2 Specifying options for a generated map on page 69,
except for the title of the map, you can specify the map title on the DITA2Map command
line. See §46.4 Running DITA2Map on page 817.

46.4 Running DITA2Map
You must run DITA2Map from a command line, in a Windows Command Prompt
window. DITA2Map looks for a configuration file in the current directory. However, a
configuration file is optional. If you are satisfied with default values for most
configuration settings, you can specify the rest with command-line switches.

To use dita2map.exe to generate a .ditamap file from a DITA topic file:

1. Open a Windows Command Prompt window.

2. Navigate to the directory where you want to use the map file that DITA2Map
produces, and where an optional DITA2Map configuration file (dita2map.ini) or
DITA2Go project configuration file is located.

3. Type a command of the following form (all on one line):
dita2map [-v] [-t " Map Title"] [-d " D:\ path\ to\ DTDs"]

[-i inifile.ini] [-o mapfile.ditamap] topicfile.dita

where the switches specify the following:

4. Press Enter .

All the command-line arguments to dita2map.exe are optional except the name of the
DITA topic file from which to generate the map. You can include a path for topicfile.
The generated topicrefs use the name of the topic file exactly as you specify it on the
command line, including any path. Links in the topicrefs are all relative to the directory
where DITA2Map is run. This is generally not the same directory where you run
DITA2Go , because that is the output directory, which is usually different from the input
directory. This means you should run dita2map.exe from the DITA2Go directory,
which is where you want to use the .ditamap file DITA2Map produces.

If you run dita2map.exe without the -o switch, the map file will have the same name as
the input topic file, except with extension .ditamap .

By default, dita2map.exe produces a log file called DITA2map_log.txt ; see §46.3.4
Specifying logging options on page 816.

-v Verbose command-line output.

-t Content of the <title> element for the map, enclosed in double quotes.

-d Relative or absolute path to local DITA DTDs, enclosed in double quotes.

-i Name of a configuration file to use; must be in the current directory.

-o Name of the map file to produce.

RUNNING DITA2MAP DITA2GO USER’S GUIDE

818 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 819

A Technical support for DITA2Go

Omni Systems can provide effective technical support for DITA2Go when you provide
complete, concise information. We always do our best to help; when you do your part, we
can do our part more quickly and effectively. Topics include:

§A.1 Things to check first on page 819
§A.2 How to request help on page 821

Zip your files! Do not send unzipped DITA files to Omni Systems.
Do not send files larger than 1 MB.

A.1 Things to check first
Before you holler for help, try the following:

§A.1.1 Examine your conversion log file on page 819
§A.1.2 Check your DITA2Go installation on page 819
§A.1.3 Check the DITA2Go User’s Guide on page 819
§A.1.4 Check path names, file names, and drive location on page 820
§A.1.5 Check your version of DITA2Go on page 820

A.1.1 Examine your conversion log file

By default, DITA2Go writes conversion errors and warnings to a log file in your project
directory. If the information in the log file does not reveal the cause of the problem, try
changing the log options to capture more information. See §4.2 Logging conversion
events on page 74.

No log errors or warnings? Next: Check your DITA2Go installation

A.1.2 Check your DITA2Go installation

Sometimes supporting files are not where they need to be.

If you use DITA2Go to generate OmniHelp, then when you load _myproj.htm the
browser displays only this message, and nothing else happens:

OmniHelp Loading...

This usually means the OmniHelp viewer files or control files are not in the same directory
as the HTML files; see §19.2 Setting up OmniHelp viewer control files on page 354.

Everything where it belongs? Next: Check the DITA2Go User’s Guide.

A.1.3 Check the DITA2Go User’s Guide

Quickest way: use the Search feature of the HTML Help version, which is installed with
DITA2Go . Search for words likely to relate to the problem; you might be able to solve it
yourself.

No luck? Next: Check path names, file names, and drive location.

THINGS TO CHECK FIRST DITA2GO USER’S GUIDE

820 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

A.1.4 Check path names, file names, and drive loca tion

If the name of any path or file involved in the conversion contains any characters other
than letters and numbers (such as spaces, dashes, or underscores), rename the path or
move the file to eliminate them; see §1.1.2 File, directory, and path names on page 26.

If you are using a network drive, move your files to a local drive and try running the same
conversion there before asking for support. A network is inherently slower and less
reliable than a local system, so you might have mysterious and intermittent problems
when a heavily loaded network is used for file storage.

File names and paths valid, and the problem still exists? Next: Check your version of
DITA2Go.

A.1.5 Check your version of DITA2Go

If you are using DITA2Go , do the following:

1. In a text editor, open an output file (.htm or .rtf or .dita or .ent) that you created
with DITA2Go , and find a line near the top of the file that shows the DITA2Go
version and build numbers. The line you want looks like this:

Table A-1 on page 820 lists the build numbers underlined in these examples.

2. Go to the DITA2Go Web site:
http://www.dita2go.com/

Navigate to Downloads > Basic Software > Components , and check the build
numbers on the archived DLL files. For example:

3. Compare the number on each DLL archive file with the build numbers you found in
your output, as shown in Table A-1.

4. If the build number on a DLL archive is higher than the corresponding build number
in your output file, obtain and install the current update; see §1.4 How to update
DITA2Go on page 36. Then try the conversion again.

5. If you think you have all the latest DLLs, but a build number in the output file does
not agree, there might be an old copy somewhere on your system, typically in
\windows\system or \windows\system32 . Find and delete the old copy, then
download an updated copy and unzip it in %OMSYSHOME%\common\bin.

6. If you still encounter the problem, check whether later beta versions of any DLLs are
available on the DITA2Go Web site:

HTML/XML: <!-- generated by DCL filter dwhtm, Ver 4.0 x002 h289 -->

RTF: {\info {\doccomm DCL filter dwrtf, Ver 4.0 x002 r297 }}

File Size Description Last updated
drxml 002.zip 215k DITA input module 01-Jun-2010

dwrtf 295.zip 251k RTF output module 01-Jun-2010
dwhtm289.zip 421k HTML/XML output module 01-Jun-2010

Table A-1 Examples of build numbers for DITA2Go DLL files

Output type DLL file

Build number:

Current?Latest Used

All drxml.dll 002 x002 Yes

HTML dwhtm.dll 289 h284 No

RTF dwrtf.dll 295 r295 Yes

http://www.dita2go.com/

A TECHNICAL SUPPORT FOR DITA2GO HOW TO REQUEST HELP

ALL RIGHTS RESERVED. MAY 19, 2013 821

http://www.dita2go.com/

Navigate to Downloads > Basic Software > Beta Components , and check the four-
part numbers in the descriptions of the DLL files. The first two parts are the product
version, third part the build number, and fourth is the beta version, zero for the
released DLL, incremented for each beta build. For example:

7. Compare the third part of the number in each description with the build numbers you
found in your output, as shown in Table A-1. If the fourth part is greater than zero, and
the problem is due to a defect in DITA2Go , the defect might have been corrected. See
§1.4.2 Try out DITA2Go beta executables on page 37.

Still no luck? See §A.2 How to request help on page 821.

A.2 How to request help
Zip your files! Do not send unzipped DITA files to Omni Systems.

Do not send files larger than 1 MB.

If you still encounter problems after following the steps in §A.1 Things to check first on
page 819, help us to help you, as follows:

§A.2.1 If the problem involves a crash on page 821
§A.2.2 Scope the problem on page 822
§A.2.3 Document the problem on page 822
§A.2.4 Package the problem on page 822
§A.2.5 Send the package to Omni Systems on page 823

A.2.1 If the problem involves a crash

If you are getting a Windows error message such as the following:
DCL NT console driver has encountered a problem and needs to close.

This means your DITA2Go conversion caused a crash.Try the following debugging
options:

[Options]
; NoNameDel = No (default),
; or Yes (prevent deallocation of name memory)
NoNameDel=Yes
; NoMemDel = No (default) or Yes (prevent deallocat ion of all memory)
NoMemDel=Yes

First set NoNameDel=Yes. If the conversion still causes a crash, try setting NoMemDel=
Yes. Your conversion might run to completion with one or the other of these options; in
any event, document the result, so Omni Systems programmers can investigate.

Note: When you set either of these options to Yes, memory deallocation is prevented
only while dcl.exe is running; at the end of that (usually brief) process, all
memory used by DITA2Go is always freed; no memory leaks occur.

Next: Scope the problem.

File Size Description Last updated
drxml.dll 580k DITA input module, 4.0.3.42 04-Jun-2012
dwrtf.dll 588k RTF output module, 4.0.297.2 02-Jun-2012

dwhtm.dll 1052k HTML/XML output module, 4.0.291.4 04-Jun-2012

http://www.dita2go.com/

HOW TO REQUEST HELP DITA2GO USER’S GUIDE

822 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

A.2.2 Scope the problem

Use the Configuration Manager (see §3.2 Editing files with the Configuration Manager on
page 49) to check the configurations in use. If any settings in “local’ configuration files in
%OMSYSHOME%\d2g\local subdirectories might affect the test case, copy those settings
into your project configuration file, and see if that fixes the problem. Otherwise, consider
the following questions:

 • Do you get the same result each time you try, or does the result vary?
 • If you have machines with other operating-system versions available, does the same

thing happen on all of them?
 • Does it happen with all source files, or only some? If only some, do the problem files

have something in common that other files do not?

Next: Document the problem.

A.2.3 Document the problem

Write an e-mail message that contains the following information:

 • A brief description of the problem, including answers to questions in §A.2.2 Scope the
problem on page 822.

 • Operating-system name and version; for example, Windows 7 X64.
 • Amount of memory on your machine; for example, 2 GB.
 • Browser name and version, if the problem occurs when you generate HTML; for

example, Firefox 3.5.

Next: Package the problem.

A.2.4 Package the problem

If you have placed settings in a file in %OMSYSHOME%\d2g\local\config* , copy
those settings to your project configuration file before you do the following.

Create a .zip file smaller than 1 MB that contains the following files:

DITA file(s) The smallest fragments that yield the problem. No unzipped
files.

Output file(s) Whatever output (if any) shows the undesired result.

Log file Located by default in your project directory; see §4.2
Logging conversion events on page 74.

Configuration file(s) Your project configuration file, plus any chapter-specific
configuration file used by the problem DITA file.

Configuration
templates

Include all configuration files and templates in every chain
that might affect the result, except the distribution
templates. However, if you have placed settings in a file in
%OMSYSHOME%\d2g\local\config* , copy those
settings to your project configuration file before you create
the package.

Macro libraries If the problem file uses DITA2Go macros located in library
files.

CSS file(s) If your project uses CSS (HTML output only), and the
problem is a display problem.

A TECHNICAL SUPPORT FOR DITA2GO HOW TO REQUEST HELP

ALL RIGHTS RESERVED. MAY 19, 2013 823

Zip your files! Do not send unzipped files.

Finally: Send the package to Omni Systems.

A.2.5 Send the package to Omni Systems

Attach the .zip file you created in §A.2.4 Package the problem on page 822 to the e-mail
message you wrote in §A.2.3 Document the problem on page 822, and send it to:

support@omsys.com

Generally you will receive a response within one business day; sometimes within an hour.
If you have not heard from Omni Systems after one business day, send another e-mail
message (without attachments) to inquire.

Zip your files! Do not send unzipped DITA files to Omni Systems.
Do not send files larger than 1 MB.

(No illustrations)

Help project file If the problem occurs when you generate one of the
following:
 • WinHelp: MyDoc.hpj .
 • HTML Help: MyDoc.hhp .
 • JavaHelp or Oracle Help for Java: MyDoc.hs .

Graphics files Any external graphics referenced by the problem-file
fragment.

mailto:support@omsys.com

HOW TO REQUEST HELP DITA2GO USER’S GUIDE

824 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 825

B Element type default properties

Table B-1 shows the default properties DITA2Go assigns to the elements shown in the
first column, qualified by their class attribute values, shown in the second column. See
§11 Defining element sets and properties on page 179.

Table B-1 Default properties assigned to elements

Element name Class attribute Default element type properties
abbreviated-form topic/term abbrev-d/abbreviated-for m Inline Gloss Abbrev

abbrevlist map/topicref bookmap/ abbrevlist Map Ref Topic List

abstract topic/ abstract Text Abstr

alt topic/ alt Text Inline Alt

amendments map/topicref bookmap/ amendments Map Ref Topic List

anchor map/ anchor

anchorref map/topicref mapgroup-d/ anchorref Map Ref Topic

apiname topic/keyword pr-d/ apiname Text Inline

appendices map/topicref bookmap/ appendices Map Ref Topic

appendix map/topicref bookmap/ appendix Map Ref Topic

approved topic/data bookmap/ approved

area topic/figgroup ut-d/ area Inline Image Ref

audience topic/ audience

author topic/ author Text Var

b topic/ph hi-d/ b Text Inline Typo

backmatter map/topicref bookmap/ backmatter Map List

bibliolist map/topicref bookmap/ bibliolist Map Ref Topic List

body topic/ body

bodydiv topic/ bodydiv Text Section

bookabstract map/topicref bookmap/ bookabstract Topic Map Ref

bookchangehistory topic/data bookmap/bookchangehisto ry

bookevent topic/data bookmap/ bookevent

bookeventtype topic/data bookmap/ bookeventtype

bookid topic/data bookmap/ bookid Map List

booklibrary topic/ph bookmap/ booklibrary Text Inline Map

booklist map/topicref bookmap/ booklist Map Ref Topic List

booklists map/topicref bookmap/ booklists Map List

bookmap map/map bookmap/ bookmap Root Map

bookmeta map/topicmeta bookmap/ bookmeta Map Meta Topic

booknumber topic/data bookmap/ booknumber Text Map Var

bookowner topic/data bookmap/ bookowner Text Map Var

bookpartno topic/data bookmap/ bookpartno Text Map Var

bookrestriction topic/data bookmap/ bookrestriction Text Map Var

bookrights topic/data bookmap/ bookrights Text Map Var

booktitle topic/title bookmap/ booktitle Map

booktitlealt topic/ph bookmap/ booktitlealt Text Map Var

boolean topic/ boolean Inline

DITA2GO USER’S GUIDE

826 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

brand topic/ brand Text Var

category topic/ category Text Var

chapter map/topicref bookmap/ chapter Map Ref Topic

chdesc topic/stentry task/ chdesc Task Text TabCell

chdeschd topic/stentry task/ chdeschd Task Text TabCell

chhead topic/sthead task/ chhead Task TabRow TabHead

choice topic/li task/ choice Task Text ListItem XRSource
Pernicious

choices topic/ul task/ choices Task List

choicetable topic/simpletable task/ choicetable Task Table TabStart

choption topic/stentry task/ choption Task Text TabCell

choptionhd topic/stentry task/ choptionhd Task Text TabCell

chrow topic/strow task/ chrow Task TabRow TabBody

cite topic/ cite Text Inline

cmd topic/ph task/ cmd Task Text Inline

cmdname topic/keyword sw-d/ cmdname Text Inline

codeblock topic/pre pr-d/ codeblock Text Pre

codeph topic/ph pr-d/ codeph Text Inline Pre

coderef topic/xref pr-d/ coderef Text Pre Ref

colophon map/topicref bookmap/ colophon Map Ref Topic

colspec topic/ colspec Table TabCol

completed topic/ph bookmap/ completed Text Map Inline

component topic/ component Text Var

conbody topic/body concept/ conbody

conbodydiv topic/bodydiv concept/ conbodydiv Text Section

concept topic/topic concept/ concept Root

context topic/section task/ context Task Text Section

coords topic/ph ut-d/ coords Text Image Group

copyrfirst topic/data bookmap/ copyrfirst

copyrholder topic/ copyrholder Text Var

copyright topic/ copyright

copyrlast topic/data bookmap/ copyrlast

copyryear topic/ copyryear

created topic/ created

critdates topic/ critdates

data topic/ data Data Text Inline

data-about topic/ data-about Data Inline

day topic/ph bookmap/ day Text Map Inline

dd topic/ dd Text TabCell DLDef

ddhd topic/ ddhd Text TabCell DLDef

dedication map/topicref bookmap/ dedication Map Ref Topic

delim topic/ph pr-d/ delim Text

desc topic/ desc Text Desc

Table B-1 Default properties assigned to elements (continued)

Element name Class attribute Default element type properties

B ELEMENT TYPE DEFAULT PROPERTIES

ALL RIGHTS RESERVED. MAY 19, 2013 827

dita dita

dl topic/ dl Table TabStart DList

dlentry topic/ dlentry TabRow TabBody DLEntry

dlhead topic/ dlhead TabRow TabHead DLEntry

draft-comment topic/ draft-comment Text Inline Draft Pernicious

draftintro map/topicref bookmap/ draftintro Map Ref Topic

dt topic/ dt Text TabCell DLTerm

dthd topic/ dthd Text TabCell DLTerm

edited topic/data bookmap/ edited

edition topic/data bookmap/ edition

entry topic/ entry Text TabCell Pernicious

example topic/ example Task Text Section

featnum topic/ featnum Text Var

fig topic/ fig Fig

figgroup topic/ figgroup

figurelist map/topicref bookmap/ figurelist Map Ref Topic List

filepath topic/ph sw-d/ filepath Text Inline

fn topic/ fn Text Inline Footnote Num
XRSource

foreign topic/ foreign Inline

fragment topic/figgroup pr-d/ fragment

fragref topic/xref pr-d/ fragref Text

frontmatter map/topicref bookmap/ frontmatter Map List

glossarylist map/topicref bookmap/ glossarylist Map Ref Topic List Glossary

glossdef topic/abstract concept/abstract
glossentry/ glossdef

Text Abstr Glossary

glossentry topic/topic concept/concept
glossentry/ glossentry

Root Glossary

glossgroup topic/topic concept/concept
glossegroup glossgroup

Root

glossref map/topicref glossref-d/glossref Map Ref Top ic Glossary

glossterm topic/title concept/title
glossentry/ glossterm

Text Title XRSource Glossary

groupchoice topic/figgroup pr-d/ groupchoice

groupcomp topic/figgroup pr-d/ groupcomp

groupseq topic/figgroup pr-d/ groupseq

i topic/ph hi-d/ i Text Inline Typo

image topic/ image Inline Image

imagemap topic/fig ut-d/ imagemap Fig Inline Image Ref Group

index-base topic/ index-base Text Inline Index

index-see topic/index-base indexing-d/ index-see Text Inline Index IxSee

index-see-also topic/index-base indexing-d/ index-see-also Text Inline Index IxSeeAlso

index-sort-as topic/index-base indexing-d/ index-sort-as Text Inline Index IxSort

indexlist map/topicref bookmap/ indexlist Map Ref Topic List

Table B-1 Default properties assigned to elements (continued)

Element name Class attribute Default element type properties

DITA2GO USER’S GUIDE

828 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

indexterm topic/ indexterm Text Inline IxStart

indextermref topic/ indextermref Inline Index

info topic/itemgroup task/ info Task Text Inline

isbn topic/data bookmap/ isbn Text Map Var

itemgroup topic/ itemgroup Text Inline

keydef map/topicref mapgroup-d/ keydef Key Map Ref Topic

keyword topic/ keyword Text Inline

keywords topic/ keywords

kwd topic/keyword pr-d/ kwd Text

li topic/ li Text ListItem XRSource
Pernicious

lines topic/ lines Text Pre

link topic/ link Link

linkinfo topic/ linkinfo Link Text Sequence

linklist topic/ linklist Link List Sequence

linkpool topic/ linkpool Link List

linktext map/ linktext Link Text Map

linktext topic/ linktext Link Text

longdescref topic/longdescref Inline Ref

longquoteref topic/longquoteref Inline Ref

lq topic/ lq Text

mainbooktitle topic/ph bookmap/ mainbooktitle Text Map Var

maintainer topic/data bookmap/ maintainer

map map/map Root Map

mapref map/topicref mapgroup-d/ mapref Map Ref Topic

menucascade topic/ph ui-d/ menucascade Inline CascadeSet

metadata topic/ metadata

month topic/ph bookmap/ month Text Map Inline

msgblock topic/pre sw-d/ msgblock Text Pre

msgnum topic/keyword sw-d/ msgnum Text Inline

msgph topic/ph sw-d/ msgph Text Inline

navref map/ navref

navtitle topic/ navtitle Text

no-topic-nesting topic/ no-topic-nesting

note topic/ note Text Note

notices map/topicref bookmap/ notices Map Ref Topic

object topic/ object Object

ol topic/ ol List Num

oper topic/ph pr-d/ oper Text

option topic/keyword pr-d/ option Text Inline

organization topic/data bookmap/ organization Map

othermeta topic/ othermeta

p topic/ p Text

Table B-1 Default properties assigned to elements (continued)

Element name Class attribute Default element type properties

B ELEMENT TYPE DEFAULT PROPERTIES

ALL RIGHTS RESERVED. MAY 19, 2013 829

param topic/ param Object Param

parml topic/dl pr-d/ parml Table TabStart PList

parmname topic/keyword pr-d/ parmname Text Inline

part map/topicref bookmap/ part Map Ref Topic

pd topic/dd pr-d/ pd Text TabCell PLDef

permissions topic/ permissions

person topic/data bookmap/ person Map

ph topic/ ph Text Inline

platform topic/ platform Text Var

plentry topic/dlentry pr-d/ plentry TabRow TabBody PLEntry

postreq topic/section task/ postreq Task Text Section

pre topic/ pre Text Pre

preface map/topicref bookmap/ preface Map Ref Topic

prereq topic/section task/ prereq Task Text Section

printlocation topic/data bookmap/ printlocation Map

prodinfo topic/ prodinfo

prodname topic/ prodname Text Var

prognum topic/ prognum Text Var

prolog topic/ prolog Meta Group

propdesc topic/stentry reference/ propdesc Text TabCell Reference

propdeschd topic/stentry reference/ propdeschd Text TabCell Reference

properties topic/simpletable reference/ properties Table TabStart Reference

property topic/strow reference/ property TabRow TabBody Reference

prophead topic/sthead reference/ prophead TabRow TabHead Reference

proptype topic/stentry reference/ proptype Text TabCell Reference

proptypehd topic/stentry reference/ proptypehd Text TabCell Reference

propvalue topic/stentry reference/ propvalue Text TabCell Reference

propvaluehd topic/stentry reference/ propvaluehd Text TabCell Reference

pt topic/dt pr-d/ pt Text TabCell PLTerm

published topic/data bookmap/ published Map

publisher topic/ publisher Text Var

publisherinformation topic/publisher
bookmap/ publisherinformation

Map Text Var

publishtype topic/data bookmap/ publishtype Map

q topic/ q Text Inline Typo

refbody topic/body reference/ refbody

refbodydiv topic/bodydiv reference/ refbodydiv Text Section Reference

reference topic/topic reference/ reference Root Reference

refsyn topic/section reference/ refsyn Text Section Reference

related-links topic/ related-links Rel

relcell map/ relcell TabCell

relcolspec map/ relcolspec Table TabCol

relheader map/ relheader TabRow TabHead

Table B-1 Default properties assigned to elements (continued)

Element name Class attribute Default element type properties

DITA2GO USER’S GUIDE

830 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

relrow map/ relrow TabRow TabBody

reltable map/ reltable Map Table TabStart Rel

repsep topic/ph pr-d/ repsep Text

required-cleanup topic/ required-cleanup Inline

resourceid topic/ resourceid

result topic/section task/ result Task Text Section

reviewed topic/data bookmap/ reviewed Map

revised topic/ revised

revisionid topic/ph bookmap/ revisionid Text Map Inline

row topic/ row TabRow

screen topic/pre ui-d/ screen Text Pre

searchtitle map/ searchtitle Text Map

searchtitle topic/ searchtitle Text

section topic/ section Text Section

sectiondiv topic/ sectiondiv Text Section

sep topic/ph pr-d/ sep Text

series topic/ series Text Var

shape topic/keyword ut-d/ shape Text Image

shortcut topic/keyword ui-d/ shortcut Text Inline

shortdesc map/ shortdesc Text SDesc Map

shortdesc topic/ shortdesc Text SDesc

simpletable topic/ simpletable Table TabStart

sl topic/ sl List

sli topic/ sli Text ListItem

source topic/ source Text Var

started topic/ph bookmap/ started Text Map Inline

state topic/ state Inline

stentry topic/ stentry Text TabCell

step topic/li task/ step Task Text ListItem XRSource
Pernicious

stepresult topic/itemgroup task/ stepresult Task Text Inline

steps topic/ol task/ steps Task List Num

steps-informal topic/section task/steps-informal Text Section Task

steps-unordered topic/ul task/ steps-unordered Task List

stepsection topic/li task/stepsection Task Text ListI tem NoNumber
Pernicious

stepxmp topic/itemgroup task/ stepxmp Task Text Inline

sthead topic/ sthead TabRow TabHead

strow topic/ strow TabRow TabBody

sub topic/ph hi-d/ sub Text Inline Typo

substep topic/li task/ substep Task Text ListItem XRSource
Pernicious

substeps topic/ol task/ substeps Task List Num Sub

summary topic/ph bookmap/ summary Text Map Inline

Table B-1 Default properties assigned to elements (continued)

Element name Class attribute Default element type properties

B ELEMENT TYPE DEFAULT PROPERTIES

ALL RIGHTS RESERVED. MAY 19, 2013 831

sup topic/ph hi-d/ sup Text Inline Typo

synblk topic/figgroup pr-d/ synblk

synnote topic/fn pr-d/ synnote Text

synnoteref topic/xref pr-d/ synnoteref

synph topic/ph pr-d/ synph Text Inline

syntaxdiagram topic/fig pr-d/ syntaxdiagram Inline

systemoutput topic/ph sw-d/ systemoutput Text Inline

table topic/ table Table TabStart

tablelist map/topicref bookmap/ tablelist Map Ref Topic List

task topic/topic task/ task Root Task

taskbody topic/body task/ taskbody

tbody topic/ tbody Table TabBody

term topic/ term Text Inline Glossary

tested topic/data bookmap/ tested Map

text topic/text Text Inline

tgroup topic/ tgroup Table

thead topic/ thead Table TabHead

title topic/ title Text Title XRSource

titlealts topic/ titlealts

tm topic/ tm Text Inline

toc map/topicref bookmap/ toc Map Ref Topic List

topic topic/ topic Root

topicgroup map/topicref mapgroup-d/ topicgroup Map Group Topic

topichead map/topicref mapgroup-d/ topichead Map Topic

topicmeta map/ topicmeta Map Meta Topic

topicref map/ topicref Map Ref Topic

topicset map/topicref mapgroup-d/ topicset Map Ref Topic

topicsetref map/topicref mapgroup-d/ topicsetref Map Ref Topic

trademarklist map/topicref bookmap/ trademarklist Map Ref Topic List

tt topic/ph hi-d/ tt Text Inline

tutorialinfo topic/itemgroup task/ tutorialinfo Task Text Inline

u topic/ph hi-d/ u Text Inline Typo

uicontrol topic/ph ui-d/ uicontrol Text Inline CascadeItem

ul topic/ ul List

unknown topic/ unknown Inline

userinput topic/ph sw-d/ userinput Text Inline

var topic/ph pr-d/ var Text

varname topic/keyword sw-d/ varname Text Inline

volume topic/data bookmap/ volume Map

vrm topic/ vrm

vrmlist topic/ vrmlist

Table B-1 Default properties assigned to elements (continued)

Element name Class attribute Default element type properties

DITA2GO USER’S GUIDE

832 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

wintitle topic/keyword ui-d/ wintitle Text Inline

xref topic/ xref Text Inline Ref

year topic/ph bookmap/ year Text Map Inline

Table B-1 Default properties assigned to elements (continued)

Element name Class attribute Default element type properties

ALL RIGHTS RESERVED. MAY 19, 2013 833

C Content model configuration

This section provides an annotated list of configuration sections, keywords, and
acceptable values for settings in content-model configuration files.

See also:
§41 Working with content models on page 753

; ContentModel.txt describes sections used in DITAs pecial.ini files,
; such as DITAconcept11.ini, as they are supported in dwhtm.dll h283.
; Most of it also applies to DocBook content model files; differences
; are marked in the descriptions below.

[Topic]
;ModelName = name of type (usually a built-in) to b e replaced after
; this file loads, effective only when this file is specified in
; [DITAContentModels] or [DocBookOptions]ContentMod el in mif2htm.ini;
; overrides the default use of the filename (withou t "DITA").
ModelName=concept
;
; TopicRoot = name of root element in the DITA or D ocBook file for
; this type.
TopicRoot=concept

; These two are DITA-only, not for DocBook:
; TopicStart = name of element that starts topic, s uch as "glossterm"
; (for glossary) or "title" (for every other type). When the Frame
; format mapped to this element in [DITATags] is al so mapped to
; level 1 in [DITALevels], that format always start s a new topic.
TopicStart=title
; TopicBody = name of its body element, such as con body for concept.
TopicBody=conbody

; PrologDType = PUBLIC name used in DOCTYPE header, double quotes
; are required.
PrologDType="-//OASIS//DTD DITA Concept//EN".
; PrologDTD = SYSTEM name, such as "concept.dtd", c an include a path,
; double quotes are required.
PrologDTD="http://docs.oasis-open.org/dita/v1.1/CD0 1/dtd/concept.dtd".
;
;TopicDerivation = name of type from which it is de rived, either one of
; the defined types (topic, concept, task, referenc e, glossary, or map)
; or another specialized type for which an .ini is available. Needed
; iff the description in the rest of the sections i s additive rather
; than complete in itself; omitted otherwise. Not used for .inis that
; were generated by dtd2ini, which are always compl ete.
TopicDerivation=topic
;
;DumpToFile = name with optional path of file in wh ich to dump the
; tagset information (including error lists) after loading, for debug;
; default none, meaning don’t dump. If the tagset is used more than
; once in processing the Frame file, it is dumped o nly the first time.
DumpToFile=concept2dump.txt

; For DITA working examples of the following sectio ns, see the files
; DITAtopic*.ini, DITAconcept*.ini, DITAtask*.ini, DITAreference*.ini,
; DITAglossary*.ini, DITAbookmap*.ini and DITAmap*. ini, where * is
; 10 for version 1.0 and 11 for version 1.1. DocBo ok examples are

DITA2GO USER’S GUIDE

834 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; docbook45b.ini (book as root) and docbook45a.ini (article as root).

[TopicParents]
; Element name = possible parents. All elements ot her than the topic
; type itself, amd its body type, must be listed on the left here.
; The two reserved parent names are "Any" (any pare nt is acceptable,
; mainly for inline elements) and "No" (for any ele ments present in
; the derived-from type that are excluded from this type). If there
; is more than one possible parent, they must be de fined as a single
; set, and listed in [ElementSets] below.

[ElementSets]
; Name for set = list of elements. This allows gro uping of elements
; for use on the right side of [TopicParents] and [TopicFirst], so
; that the same set of parents can be used for more than one element.
; The lists of elements on the right here can inclu de sets too, as
; building blocks. The sets are roughly equivalent to the parameter
; entities used in the DITA DTDs. Set names must s tart with "*", and
; sets can include other sets. Included sets shoul d preferably be
; defined above the sets including them; in any cas e, circular set
; references (set A includes set B and set B includ es set A, directly
; or indirectly) will not work.

[ElementTypes]
; Element name = list of properties: Block or Inlin e, Text, and
; Preform; default is Block without Text. The Bloc k and Inline
; properties determine whether returns are inserted before start
; tags and after end tags. The Text property deter mines whether
; an attempt is made to wrap any invalid text (in a n element that
; does not allow Text) in a valid container element , like <ph>.
; Preform determines whether whitespace within the element is
; retained as is; those elements are always block a nd allow text.
; For example:
para=Block Text
ph=Inline Text
section=Block
menucascade=Inline
codeblock=Block Text Preform

[TopicLevels]
; Element name = required level in topic, used only for elements that
; must be at a specific level, such as shortdesc, p rolog, body, and
; related-links at level 1, and example and metadat a at level 2.
; The content models generated by dtd2ini name only level 1 elements.

[TopicFirst]
; Child element = parents, where child must be the first child of the
; specified parents; if child is not first, the cur rent parent is
; closed and a new instance of it is started. Used mainly for lists,
; as in dt=dlentry and pt=plentry, and for title=An y. To add more
; than one parent when Any won’t do, specify them i n [ElementSets].

; The remaining sections are used for DITA only, no t DocBook:

[TopicTables]
; Table name = name of section that describes it be low. All supported
; by this topic type (other than those defined in t he type derived from)
; are defined here. Note that multiple named table s can define variants
; of the same DITA TableType; the name is purely a Mif2Go identifier.
; A name can be undefined in a derived topic type b y setting name=No.
; Since dtd2ini does not generate these sections, t hey must either be

C CONTENT MODEL CONFIGURATION

ALL RIGHTS RESERVED. MAY 19, 2013 835

; included in dtd2ini.ini as [AddedSections], or ad ded to the generated
; content model .ini manually after dtd2ini produce s it.

; These examples of table descriptions show all ava ilable table settings.

[PropertyTable]
TableType=properties
;ColCountMax default is 0, for unlimited, as for si mpletable
ColCountMax=3
;
;HeadRowMax default is 0, for unlimited head rows.
HeadRowMax=1
; HeadRow is applied only to the initial rows, iff they are head
; rows in the Frame file.
HeadRow=prophead
; All cells are used; to omit some, define another table name with
; fewer columns but the same TableType.
HeadCell1=proptypehd
HeadCell2=propvaluehd
HeadCell3=propdeschd
;
Row=property
Cell1=proptype
Cell2=propvalue
Cell3=propdesc

[SimpleTable]
TableType=simpletable
HeadRowMax=1
HeadRow=sthead
Row=strow
Cell=stentry

[ComplexTable]
TableType=complex
; TableTitle default is No, for no title.
TableTitle=Yes
; TableDesc default is no desc.
TableDesc=desc
; TableGroup default is no group’
TableGroup=tgroup
; ColSpec default is no column specs
ColSpec=colspec
; The next three items are all colspec attributes
ColNum=colnum
; ColSpecName is required if ColSpanNames=Yes or Co lName is
; used, below. It is created using ColNamePrefix, b elow.
ColSpecName=colname
ColWidth=colwidth
;
; HeadGroup default is no group, use head rows only .
HeadGroup=thead
; HeadRow Default is same row element as for body.
HeadRow=hrow
; HeadCell default is same cell element as for body
HeadCell=hentry
;
; BodyGroup default is no group, use body rows only .
BodyGroup=tbody
Row=row
Cell=entry
;

DITA2GO USER’S GUIDE

836 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

; RowSpan is a cell attribute name; default is no r owspan.
RowSpan=morerows
;
; ColSpanNames default is true to use names, false uses count.
ColSpanNames=Yes
; The next four settings are all cell attributes.
; ColSpanCount is count of cells spanned, if ColSpa nNames=No.
ColSpanCount=span
; ColSpanStart is ref to first colspec name if ColS panNames=Yes.
ColSpanStart=namest
; ColSpanEnd is ref to last colspec name if ColSpan Names=Yes.
ColSpanEnd=nameend
; ColName is ref to single colspec name for non-spa nning cells.
ColName=colname
; ColNamePrefix is for colspec names, default col a s in DITA-OT.
ColNamePrefix=col
; CellAlign default is No, when Yes use align and v align attrs.
CellAlign=Yes

[End]
(No tables)
(No illustrations)

ALL RIGHTS RESERVED. MAY 19, 2013 837

RTF keyword index
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A
AddCntFileName , [HelpContents] keyword 309

AddContentsLink , [RelatedLinks] keyword 191

AddedDividerFormat , [RelatedLinks]
keyword 195

AddedDividerText , [RelatedLinksText]
keyword 195

AddedLinksEnd , [RelatedLinks] keyword 195

AddedLinksFormat , [RelatedLinks]
keyword 195

AddedLinksSpacer , [RelatedLinks]
keyword 195

AddedLinksStart , [RelatedLinks] keyword 195

AddGlossaryLink , [RelatedLinks] keyword 191

AddIndexLink , [RelatedLinks] keyword 191

AddLOFLink , [RelatedLinks] keyword 191

AddLOTLink , [RelatedLinks] keyword 191

AKey, [HelpStyles] format property260, 296, 304

ALink , [MarkerTypes] property 723

Altura , [HelpOptions] keyword 283

AncestorHead , [RelatedLinksText]
keyword 194

[AnumCodeAfter] , code after paragraph autonumber
placement properties712
subject to configuration overrides772

[AnumCodeBefore] , code before paragraph auto-
number
placement properties712
subject to configuration overrides772

AnumTabWidth , [WordOptions] keyword 226

AppendFlagsFile , ConditionOptions
keyword 166

AppendixStream , [NumberStreams] keyword 147

AppendLinksToTopics , [RelatedLinks]
keyword 191

Archive* , [Automation] keywords:
ArchiveCommand 804

activated by WrapAndShip 788
ArchiveEndParams 804
ArchiveExt 805

ArchiveName 805
ArchiveStartParams 804
ArchiveVer 805

[AttributePrefixes] , format-name prefixes
based on attributes96

AutoBrowse , [HelpBrowse] keyword 310

[Automation]

default values in local_omsys.ini 33
default values supplied by Project Manager43
produce deliverables788
system commands777, 778

B
BaseMapFormat , [ElementOptions] keyword 105

[BaseValues] , format property units120

[BctFileHeads] , WinHelp section307

[*BLForms] , booklist item levels217

[*BList] , variant booklist identifiers215

[*BLItems] , booklist item properties216

[BlockFormatMaps] , map block element paths to
formats 93

[BlockFormatPrefixRunins] , specify run-in
headings97

[BlockOutclassMaps] , assign format names to
block elements90

[*BLRefForms] , formats for variant indexlist
references217

[*BLText] , title text for variant booklists216

BodyBaseSize , [BaseValues] keyword 120

BodyBaseWidth , [BaseValues] keyword 120

[BookLists] , name booklist components214

BookmarkIXRanges , [WordOptions] keyword 221

Bottom , [Inserts] Word keyword711

Browse , [HelpStyles] format property296

[BrowsePrefix] , WinHelp section311

[BrowseStart] , WinHelp section311

Build , [HelpStyles] format property296

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

838 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

C
CascadeSeparator , [ElementText] keyword 159

CaselessMatch , [Options] keyword 73

CatalogKeys , [Catalogs] keyword 67

[Catalogs] , XML catalog keys67

ChapterStream , [NumberStreams] keyword 147

[Char] , default character format122

[CharStyle*] sections
[CharStyleCode*] sections

all subject to configuration overrides772
[CharStyleCodeAfter] 712
[CharStyleCodeBefore] 712
[CharStyleCodeEnd] 712
[CharStyleCodeReplace] 712
[CharStyleCodeStart] 712

CharStylesUsedInText

[WordOptions] keyword 227

CharTags , [WordOptions] keyword 227

ChildHead , [RelatedLinksText] keyword 194

ChoiceTableFormat , [TableOptions]
keyword 103

Cnt* , [HelpContents] keywords:
CntBase 307
CntBStyleText 308, 309
CntMainWindow 309
CntName 307
CntStartFile 307
CntTitle 307
CntTopHead 307
CntTopic 307
CntType 249, 306

Code* , [HelpStyles] and [WordStyles] format
properties
CodeAfter 693, 712
CodeAfterAnum 712
CodeBefore 693, 712
CodeBeforeAnum 712
CodeEnd 712
CodeReplace 712
CodeStart 693, 712
CodeStore 688, 693

Code, [MarkerTypes] property 723

CodePage, [Defaults] keyword 220

CompactForm . [*BList] keyword 216

CompileHelp , [Automation] keyword 286
compile WinHelp project802

set up WinHelp project284

Compiler , [HelpOptions] keyword 285

ComplexOtherprops , ConditionOptions
keyword 162

ConceptsHead , [RelatedLinksText]
keyword 194

[CondEndFlagAltText] , specify flag alt text168

[CondEndFlagImages] , specify flag images168

ConditionalDefaults , ConditionOptions
keyword 163

[ConditionalExclude] , exclude content164

[ConditionalFlagging] , flag content163

[ConditionalFlags] , specify flag properties166

[ConditionalPassthrough] , pass attributes
through 165

[ConditionAttributes] , assign attributes with
flags 169

[ConditionOptions] , process otherprops162

[ConditionOptions] , set flags165

[ConditionOptions] , specify ditaval file161

[CondStartFlagAltText] , specify flag alt
text 168

[CondStartFlagImages] , specify flag images168

Config , override configuration settings
[HelpStyles] format property776
[MarkerTypes] property 723
[WordStyles] format property776

Configs , [Templates] keyword 731, 737, 740,
742, 816
chain of templates743
precedence of settings765

Contents , [HelpStyles] format property250, 296

[Contents]

generate a TOC221

[ContentsText]

title and other fixed text199

[ContentsText] , contents entries and links191

ContinuedFormatSuffix , [ElementOptions]
keyword 89

CopyAfterFiles , [Automation] keyword 795

CopyAfterFrom , [Automation] keyword 795

CopyBeforeFiles , [Automation] keyword 791

CopyBeforeFrom , [Automation] keyword 791

CopyGraphicsFrom , [Automation] keyword 797

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 839

activated by CompileHelp 803
activated by WrapAndShip 788

CopyOriginalGraphics , [Automation]
keyword 796

CousinHead , [RelatedLinksText] keyword 194

CSSFlagsFile , ConditionOptions keyword 165

D
DefaultBlockFormat , [ElementOptions]

keyword 88

DefaultInlineFormat , [ElementOptions]
keyword 88

DefaultNoteType , [ElementOptions]
keyword 101

[Defaults] 220, 227
subject to configuration overrides770

DefinitionListTables , [TableOptions]
keyword 104

DefListTableColWidths , [TableOptions]
keyword 104

DefListTableFormat , [TableOptions]
keyword 104

Delete

[HelpStyles] format property296
[MarkerTypes] property 723
[XrefStyles] format property290

Delete , [WordStyles] format property228

DeleteExistingDCL , [Setup] keyword 73

DescendantHead , [RelatedLinksText]
keyword 194

Digits , [HelpBrowse] keyword 310

DisambiguateIndex , [HelpOptions]
keyword 306

DisplayElementPath , [ElementOptions]
keyword 73

DitavalFile , ConditionOptions keyword 161

Document , [Templates] keyword 732, 737, 738

[Document] , output page properties134

DTDPath, [Setup] keyword 33, 69

DuplicateNameCheck , [IDOptions] keyword 77

E
EditorFileName , [Logging] keyword 74

[ElementAttrPrefixes] , prefix format names
based on attributes95

[ElementClasses] , add ̂class to elements183

[ElementOptions] , assign formats to elements88

ElementPathFormat , [ElementOptions]
keyword 73

[ElementSets] , define sets of elements179

[ElementText] , miscellaneous text
assignments159

[ElementTypes] , properties of element types183

EmptyFrames

[HelpOptions] keyword 751
[WordOptions] keyword 751

EmptyGraphPath , [Automation] keyword
activated by CompileHelp 803

EmptyOutputDir , [Automation] keyword 789
activated by CompileHelp 803
dependencies791
when effective790

EmptyOutputFiles , [Automation] keyword 790
activated by CompileHelp 803
when to include791

EmptyWrapPath , [Automation] keyword 793
activated by CompileHelp 803
dependencies799

[End] , dummy section to end settings66

[End] , dummy section to replace
[MacroVariables] 680

EndFtnWithSpace , [HelpOptions] keyword 284

ExactLineSpace , [WordOptions] keyword 227

ExtendHelpNoScroll , [HelpOptions]
keyword 297, 298

ExternalXrefs , [WordOptions] keyword 221

F
FieldHyper , [WordOptions] keyword

(deprecated)230

FigTitleAboveImage , [FigureOptions]
keyword 102

FigTitleAboveTable , [FigureOptions]
keyword 102

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

840 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

FigureAnchorFormat , [FigureOptions]
keyword 103

[FigureOptions] , title placement102

File , [HelpStyles] format property296

[FileIDs] , RTF bookmark prefix77

FileName . [*BList] keyword 215

FileNames , [Graphics] keyword 749
reference WinHelp hypergraphics300
replace file extensions78
substitute files235, 749
synchronize settings800

FilePaths , [Graphics] keyword 749
for already converted files751
for referenced graphics235
reference WinHelp hypergraphics300
substitute files749, 750
synchronize settings800

FileSuffix , [Setup] keyword 219

FirstFooter , [Inserts] Word keyword711

FirstHeader , [Inserts] Word keyword711

Footer , [Inserts] Word keyword711

FootnoteFormat , ƒootnotes] keyword 102

Footnotes

[HelpOptions] keyword 288

[Footnotes] , assign footnote formats102

FootnoteSeparator

[HelpOptions] keyword 288

FootnoteSpace , [HelpOptions] keyword 284

FootnoteStream , [NumberStreams] keyword 147

ForceBmc , [HelpOptions] keyword 283

ForceTableLineBreaks , [Tables] keyword 291

[FormatAliases]

map format names52, 113
map subformat names142

Formats , [Templates] keyword 110, 120, 730

FrameEndPara , [WordOptions] keyword 228

FriendHead , [RelatedLinksText] keyword 194

FullIndexRanges , [Index] keyword 209

G
GenerateALinks , [RelatedLinks] keyword 192

GenerateIDX , [Index] keyword 222

GenerateMapIfMissing , [MapGeneration]

keyword 69

GenerateParentChild , [RelatedLinks]
keyword 190

GeneratePrevNext , [RelatedLinks]
keyword 190

GenerateSiblings , [RelatedLinks]
keyword 190

GenerateTOC , [Contents] keyword 221

GenerateUIDs , [IDOptions] keyword 76

GenListXrefFormat , [ElementOptions]
keyword 102

[Glossary], define glossary output 204

[GlossaryText] , text for title of generated
glossary204

GLSTitle , [GlossaryText] keyword 204

GLSTitleFormat , [Glossary] keyword 204

GLSTOCFormat, [Glossary] keyword 204

GraphCopyFiles , [Automation] keyword 797
activated by CompileHelp or FTSCommand803

[GraphFiles] , replace graphics files78, 235, 749
reference WinHelp hypergraphics300
synchronize graphics settings800

GraphicAlignment , [FigureOptions]
keyword 103

[Graphics]

omit 751
subject to configuration overrides770

Green , [HelpStyles] format property296

H
HeadBlockFormat , [RelatedLinks] keyword 194

Header , [Inserts] Word keyword711

HeadInlineFormat , [RelatedLinks]
keyword 194

[HelpBrowse] 310, 311
subject to configuration overrides770

[HelpContents] 306–310
subject to configuration overrides770

HelpCopyDate , [HelpOptions] keyword 286

HelpCopyright , [HelpOptions] keyword 286

HelpLineBreak , [HelpOptions] keyword 298

[HelpOptions]

cross references288, 289, 290

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 841

footnotes284, 288
graphics751
index 250, 253, 305, 306
links 301
options determined at run time, listed 733
page and section breaks283, 285
platforms 283
subject to configuration overrides770
tables 290, 291, 292
titles 298

[HelpReplacements] 287
subject to configuration overrides772

HelpSectionBreaks , [HelpOptions]
keyword 285
platform differences283

[HelpStyles]

“A” footnotes 260
ALinks and keywords304
basic properties284
replace content287
subject to configuration overrides772

[Help*Styles] , WinHelp sections
[HelpBrowsePrefixStyles] 311
[HelpCntStyles]

basic conversion options284
understand level numbers250, 308

[HelpKeywordStyles] 305
[HelpMacroStyles] 296, 303
[HelpSuffixStyles] 297
[HelpTitleSufStyles] 297, 298
[HelpTopicBuildStyles] 296
[HelpWindowStyles] 263, 297, 302

[HelpXrefFiles] , cross references289

Hide , [WordStyles] format property228

HistoryFileName , [Logging] keyword 74

HPJFileName , [HelpOptions] keyword 284

HyperHelp , [HelpOptions] keyword 283

I
IDElemSep , [IDOptions] keyword 77

IDFile , [IDOptions] keyword 76

[IDOptions] options for element IDs76

IDPath , [IDOptions] keyword 76

IDPathSep , [IDOptions] keyword 76

IDTopic , [IDOptions] keyword 76

IDTopSep , [IDOptions] keyword 77

IDUpDir , [IDOptions] keyword 77

IdxColon , [HelpOptions] keyword 253, 305

IDXFormat , [Index] keyword 207

IDXTitle , [IndexText] keyword 191

IDXTitleFormat , [Index] keyword 207

IDXTitleFormat , [IndexText] keyword 207

IDXTOCFormatt , [Index] keyword 207

[ImportancePrefixes] , format-name prefixes
based on importance value96

IncludeElementTags , [ElementOptions]
keyword 72

Index

[HelpOptions] keyword 250
[WordOptions] keyword 240

[Index]

generate an index222

[IndexClasses] , map indexterms to indexlist
variants 218

IndexLetterNumber , [Index] keyword 210

IndexLettersFormat , [Index] keyword 210

IndexLetterSymbol , [Index] keyword 210

[IndexLists] , assign indexterm outputclasses to in-
dexlist variants218

IndexRangeSep , [IndexText] keyword 210

IndexRefSep , [IndexText] keyword 210

IndexRefStartSep , [IndexText] keyword 210

IndexSeeAlsoEnd , IndexSeeFormats]
keyword 208

IndexSeeAlsoStart , IndexSeeFormats]
keyword 208

IndexSeeEnd , IndexSeeFormats] keyword 208

[IndexSeeFormats] , assign index see and see-also
formats 208

IndexSeeStart , IndexSeeFormats] keyword 208

[IndexSeeText] , index see/see-also entries209

IndexTopLettersFormat , [Index] keyword 211

[InlineFormatMaps] , map inline element paths to
formats 93

[InlineFormatPrefixRunins] , specify run-in
headings98

[InlineOutclassMaps] , assign format names to in-
line elements90

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

842 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[InlineOutclassMaps] , for <xref> wrappers91

[Inserts] , insert code at predefined locations711
subject to configuration overrides771

ItemFormat . [*BList] keyword 215

J
JumpHot , [HelpStyles] format property296

JumpTarget , [HelpStyles] format property295

K
KeepDraftComments , [ElementOptions]

keyword 105

KeepSectBreaks

[HelpOptions] keyword 285

Key, [HelpStyles] format property296, 304

KeydefsOnlyWithinBranch , KeyOptions
keyword 172

[KeyOptions] , limit scope of keydefs172

KeywordLimit , [HelpOptions] keyword 252

L
Language , [Defaults] keyword 220

Languages , [Templates] keyword 158, 730

LeftFooter , [Inserts] Word keyword711

LeftHeader , [Inserts] Word keyword711

LineSpacing, RTF [Defaults] keyword 227

LinkFormat , [ElementOptions] keyword 89

[ListOfFiguresText] , text for generated LOF201

[ListOfTables] , define LOT output202

[ListOfTablesText] , text for generated LOT202

[ListOptions] , list styles 127

ListStream , [NumberStreams] keyword 147

ListTitle . [*BLText] keyword 216

Local , [HelpStyles] format property296

LockAllNavtitles , [MapOptions] keyword 200

LockHyper , [WordOptions] keyword 231, 239

LockXrefs , [WordOptions] keyword 229, 239

LOFFormat , [ListOfFigures] keyword 202

LOFTitle , [ListOfFiguresText] keyword 201

LOFTitleFormat , [ListOfFigures] keyword 201

LOFTOCFormat, [ListOfFigures] keyword 202

LOFXrefFormat , [ListOfFigures] keyword 202

LogAuto , [Automation] keyword 788

LogDebug , [Logging] keyword 74

LogErrors , [Logging] keyword 74

LogFileName , [Logging] keyword 74

[Logging] conversion events74

LogInfo , [Logging] keyword 74

LogIniChains , [Logging] keyword 75

LogQuerys , [Logging] keyword 74

LogWarnings , [Logging] keyword 74

LOTFormat , [ListOfTables] keyword 203

LOTTitle , [ListOfTablesText] keyword 202

LOTTitleFormat , [ListOfTables] keyword 202

LOTTOCFormat, [ListOfTables] keyword 203

LOTXrefFormat , [ListOfTables] keyword 203

M
Macro , [HelpStyles] format property296

MacroHot , [HelpStyles] format property303

MacroNestMax , [Macros] keyword 683, 705

Macros , [Templates] keyword 684, 729

[Macros]

debug 709
loop-control limits 705
remove implicit line breaks681

[MacroTemplates] , assign a template macro to a
file 187

[MacroVariables] 689
create a macro variable688

MacroVarNesting , [Macros] keyword 690

MakeArchive , [Automation] keyword 43

MakeCombinedCnt , [HelpOptions] keyword 284
determined at run time733

MakeRef , [HelpStyles] format property296
for pop-up graphics293

[MapGeneration] , produce DITA map from
topics 69

MapLanguage , [MapGeneration] keyword 70

[MapOptions] , configure generated maps106, 200

MapRootElem , [MapGeneration] keyword 69

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 843

MapTitle , [MapGeneration] keyword 69

MapTitleElem , [MapGeneration] keyword 69

[MarkerTypeCodeAfter] 725

[MarkerTypeCodeBefore] 724

[MarkerTypeCodeReplace] 725

[MarkerTypes] , marker-type properties723

MergeStradCells

[Table] keyword 234
[Tables] keyword 292

MoveArchive , [Automation] keyword 807

N
NameGraphics , [Graphics] keyword 237

NameUndefinedMacros , [Macros] keyword 709

NameUndefinedMacroVars , [Macros]
keyword 709

NextHead , [RelatedLinksText] keyword 194

NoMemDel, [Options] keyword 821

NoNameDel, [Options] keyword 821

NormalTableFormat , [TableOptions]
keyword 103

NoScroll , [HelpStyles] format property296

NoSeeAlso

[HelpOptions] keyword 306
[WordOptions] keyword 240

[NoteAttrPrefixes] , attributes to determine which
Note format to use96

NoTitle , [HelpStyles] format property296
for pop-up topics295

NoXrefPopups , [HelpOptions] keyword 301

NoXScroll , [HelpStyles] format property297
for pop-up topics295

[NumberFormatsText] , text for numbering
formats 149

O
OmitMacroReturns , [Macros] keyword 681

OnlyAuto , [Automation] keyword 808

[Options]

debug 821
for cases, spaces, and wildcards73
for conversion debugging821

subject to configuration overrides771

OutputclassHasBorderShadeFormats ,
[ElementOptions] keyword 88

OutputclassHasBorderShadeFormatst ,
[ElementOptions] keyword 145

P
PageBreaks

[HelpOptions] keyword 285

Pages , [Setup] keyword 134

Pages , [Templates] keyword 110, 730

ParaLink , [HelpStyles] format property296

ParameterListTables , [TableOptions]
keyword 104

ParamListTableColWidths , [TableOptions]
keyword 104

ParamListTableFormat , [TableOptions]
keyword 104

[Parar] , default paragraph format122

[ParaStyle*] sections
[ParaStyleCode*] sections

all subject to configuration overrides772
[ParaStyleCodeAfter] 712
[ParaStyleCodeBefore] 712
[ParaStyleCodeEnd] 712
[ParaStyleCodeReplace] 712
[ParaStyleCodeStart] 712

ParentHead , [RelatedLinksText] keyword 194

PartStream , [NumberStreams] keyword 147

[PeerLinks] , resolve peer related links196

PicScale[WordOptions] keyword 236

Pop* , [HelpStyles] format properties
PopContent 295
PopHot 296
PopOver 296, 297, 300

Prefix , [HelpBrowse] keyword 311

PrevHead , [RelatedLinksText] keyword 194

PrevRef , [HelpStyles] format property297
for pop-up graphics294

PrintProject , [Setup] keyword 71

PropertiesTableFormat , [TableOptions]
keyword 103

PublicID , [MapGeneration] keyword 70

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

844 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Q
Quotes

ElementText] keyword 143, 159
[WordOptions] keyword 227

R
Refer , [HelpStyles] format property297

ReferenceFlagsFile , ConditionOptions
keyword 165

ReferencesHead , [RelatedLinksText]
keyword 194

RefFormat . [*BList] keyword 216

RefID . [*BList] keyword 215

RelatedDividerFormat , [RelatedLinks]
keyword 195

RelatedHead , [RelatedLinksText] keyword 194

[RelatedLinks] , append links to topics191

[RelatedLinksText] , labels for related links194

RemoveGraphics , [Graphics] keyword 751

RepeatMax , [Macros] keyword 706

Replace

[HelpStyles] format property287, 297
[WordStyles] format property228

Replace , [HelpStyles] format property296

[Required] , include unused formats120

ResetAbbrevAt , [Glossary] keyword 205

Resume, [HelpStyles] format property293, 295,
296, 297

RevProt , [WordOptions] keyword 239

RevTrack , [WordOptions] keyword 239

RightFooter , [Inserts] Word keyword711

RightHeader , [Inserts] Word keyword711

RTFConfig

[HelpStyles] format property776
[MarkerTypes] property 723
[WordStyles] format property776

[RuninHeadText] , text of run-in headings98, 154

S
Scope , [Templates] keyword 734, 741

Scroll , [HelpStyles] format property297, 298

for pop-up topics295

SeeAlsoEndIndex , [IndexSeeText] keyword 209

SeeAlsoStartIndex[IndexSeeText]
keyword 209

SeeEndIndex , [IndexSeeText] keyword 209

SeeStartIndex , [IndexSeeText] keyword 209

SeqAnums, [WordOptions] keyword 226

[Setup]

compile WinHelp284
options determined at run time, listed 733
subject to configuration overrides770

[Setup], set up DITA2Go options 33, 69

ShiftWideTablesLeft

[Tables] keyword 290

ShipPath , [Automation] keyword 806
activated by WrapAndShip 788

ShortdescFormat , [RelatedLinks] keyword 194

ShowElementPath , [ElementOptions]
keyword 72

ShowLog, [Logging] keyword 74

SiblingHead , [RelatedLinksText] keyword 194

SimpleTableFormat , [TableOptions]
keyword 103

Slide , [HelpStyles] format property294, 297

SlideEnd , [Inserts] WinHelp keyword711

SlideStart , [Inserts] WinHelp keyword711

SpaceAfterUnicode , [Defaults] keyword 221

SpacelessMatch , [Options] keyword 63, 73

SpKey, [HelpStyles] format property296, 297,
304

Start , [HelpBrowse] keyword 311

Step , [HelpBrowse] keyword 310

[StepAttrPrefixes] , attributes to determine which
Step format to use96

[StepImportancePrefixes] , Step format-name
prefixes based on importance value96

StepsHeadFormat , [ElementOptions]
keyword 88

StrippedCellPar , [Table] keyword 292

StripTables , [Table] keyword 292

StripTables , [Tables] keyword 294

[StyleCodeStore] , assign macro variable to para-
graph format693

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 845

[StyleReplacements] , merge formats226

[Styles] , map paragraph formats to Word
styles 225

SubFormats , [Templates] keyword 110, 141

Subformats , [Templates] keyword 730

Suffix , [HelpStyles] format property297

SystemCommandWindow, [Automation]
keyword 778

SystemEndCommand, [Automation] keyword 777

SystemID , [MapGeneration] keyword 70

SystemStartCommand , [Automation]
keyword 777

SystemWrapCommand, [Automation] keyword 777

T
TableAnchorFormat , [TableOptions]

keyword 103

[TableAnchorFormats] , override anchor paragraph
format for selected tables103

TableFill

[Table] keyword 233
[Tables] keyword 291

TableFooterClass , [TableOptions]
keyword 104

TableGraphics

[Tables] keyword 291

[TableOptions] , assign format names to tables103

[TableOptions] , output options for tables104

[TableOutclassMaps] , assign format names to
tables 90

TableRules

[Table] keyword 233
[Tables] keyword 291

Tables , [Templates] keyword 110, 129, 730

TableTitles

[Table] keyword 233, 291

TableWidthsFixed , [Table] keyword 290

TasksHead , [RelatedLinksText] keyword 194

TblColWidAdd , [Table] keyword 292

TblColWidPct , [Table] keyword 292

TblFootformat , [Footnotes] keyword 102

TblFootnoteStream , [NumberStreams]
keyword 147

TblFullWidth , [Table] keyword 292

Template , [WordOptions] keyword 223

[Templates] 737
for document-specific settings732
for general configuration settings731
for macro libraries729

TitleFormat . [*BList] keyword 215

TitleIndent , [HelpOptions] keyword 298

TitleOnlyTopicID , [TopicHeads] keyword 106

TitleOnlyTopicType , [TopicHeads]
keyword 106

TitleScroll , [HelpOptions] keyword 298

TitleSpace , [HelpOptions] keyword 298

TitleSuf , [HelpStyles] format property297

TOCFormat . [*BList] keyword 216

TOCFormat , [Contents] keyword 200

TOCTitle , [ContentsText] keyword 191, 199

TOCTitleFormat , [Contents] keyword 200

TOCXrefFormat, [Contents] keyword 200

Top, [Inserts] Word keyword711

Topic , [HelpStyles] format property295, 297
for pop-up topics295

TopicEnd , [Inserts] WinHelp keyword711

[TopicHeads] 200

[TopicHeads] , configure map output106

TopicheadsHaveNavtitles , [TopicHeads]
keyword 200

[TopicHeadText] , heading for list of child
topics 107

TopicStart , [Inserts] WinHelp keyword711

TopicTitleFormat , [RelatedLinks]
keyword 194

TreatTableFigAsTable , [FigureOptions]
keyword 203

U
Uline , [HelpStyles] format property297

UniqueNameSuffixFormat , [IDOptions]
keyword 77

UniqueNameSuffixLength , [IDOptions]
keyword 77

UseAbbrevInTitles , [Glossary] keyword 206

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

846 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

UseAddedDivider , [RelatedLinks] keyword 195

UseAllInTOC , [MapOptions] keyword 201

UseAncestors , [RelatedLinks] keyword 190

UseBranchKeydefs , KeyOptions keyword 172

UseCatalogs , [Catalogs] keyword 67

UseChildren , [RelatedLinks] keyword 190

UseCompactForm , [Index] keyword 209

UseConditionalFlagging , ConditionOptions
keyword 165

UseCousins , [RelatedLinks] keyword 190

UseDCLOutput , [Automation] keyword 44

UseDCLSource , [Automation] keyword 43

UseDescendants , [RelatedLinks] keyword 190

UseElementNameForFormat , [ElementOptions]
keyword 88

UseExistingDCL , [Setup] keyword 73

UseFigureAnchor , [FigureOptions]
keyword 103

UseFriends , [RelatedLinks] keyword 190

UseFullPath , [Options] keyword 70

UseGreen , [HelpOptions] keyword 300

UseHeading , [*BList] keyword 215

UseHyperlinks

[HelpOptions] keyword 301
[WordOptions] keyword 231

UseIndexLeader , [Index] keyword 210

UseIndexLetters , [Index] keyword 210

UseLeader , [*BList] keyword 216

UseLetters , [*BList] keyword 216

UseLog , [Logging] keyword 74

UseMapDescAsTitle , [MapOptions] keyword 106

UseNestedTopicsInTOC , [Contents]
keyword 199

UseOutputClassForFormat , [ElementOptions]
keyword 88, 145

UseParent , [RelatedLinks] keyword 190

UsePrevNext , [RelatedLinks] keyword 190

UseRelatedDivider , [RelatedLinks]
keyword 195

UseRelDescAsTitle , [RelatedLinks]
keyword 192

UseRelDescription , [RelatedLinks]
keyword 191

UseSiblings , [RelatedLinks] keyword 190

UseTableAnchor , [TableOptions] keyword 103

UseTOCDescriptions , [Contents] keyword 200

UseTopicShortdesc , [MapGeneration]
keyword 69

UseTopicTypes , [RelatedLinks] keyword 191

UseTopLetters , [*BList] keyword 216

V
[VariableMaps] , assign variable names to

elements186

ViewOutputCommand , [*Options] keyword 35,
223, 248, 443

W
WhileMax , [Macros] keyword 705

WildcardMatch , [Options] keyword 73

Window, [HelpStyles] format property297, 302

Word2000 , [WordOptions] keyword 224

Word2002 , [WordOptions] keyword 224

Word2003 , [WordOptions] keyword 224
correct graphics scale236

Word2007 , [WordOptions] keyword 224

Word2009 , [WordOptions] keyword 224

Word2010 , [WordOptions] keyword 224

Word8, [WordOptions] keyword 224

[WordOptions]

cross references229, 232, 288
formats 227
graphics751
index 240
line spacing227
special characters227
subject to configuration overrides771
tables 233

WordPerfect , [WordOptions] keyword 220

[WordReplacements] 228
subject to configuration overrides773

[WordStyles] , print RTF format properties
hide content228
omit content228
replace content228
subject to configuration overrides773

ALL RIGHTS RESERVED. MAY 19, 2013 847

WordSuffix , [Setup] keyword 223

[WordXrefFiles] , cross references232

WrapAndShip , [Automation] keyword 788

WrapCopyFiles , [Automation] keyword 793
activated by CompileHelp 803

WrapPath , [Automation] keyword 792
activated by CompileHelp 803
activated by WrapAndShip 788
for WinHelp 284, 286, 346

WrapXrefs , [WordOptions] keyword 230

WriteAnums

[HelpOptions] keyword 287
[WordOptions] keyword 226

WriteFlagsFile , ConditionOptions
keyword 165

WriteHelpProjectFile , [HelpOptions]
keyword 283

X
XrefFileDefault , [HelpOptions] keyword 290

XrefFileSuffix

[HelpOptions] keyword 289
[WordOptions] keyword 232

XrefFormat . [*BList] keyword 216

XrefFtnFormat , [ElementOptions] keyword 101

XrefHyper , [WordOptions] keyword 229

XrefLenLimit , [HelpOptions] keyword 290

XrefNumFormat , [ElementOptions] keyword 101

[XrefOutclassMaps] , format names for cross
references91

Xrefs

[HelpOptions] keyword 288
[WordOptions] keyword 229

[XrefStyles] , cross-reference formats231, 290
subject to configuration overrides773

XrefTextFormat , [ElementOptions]
keyword 101

XrefTitleFormat , [ElementOptions]
keyword 101

XrefType , [WordOptions] keyword 288

XScroll , [HelpStyles] format property297

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

848 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 19, 2013 849

HTML/XML keyword index
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A
Abbr , [HTMLParaStyles] WAI format

property 662
assign a value in [StyleCellAbbr] 663
cell content abbreviation662

AbbrVal , [HTMLParaStyles] WAI format
property 666

AccessMethod , [Table] keyword 658
apply the id/headers method to all tables659
apply the scope method to all tables658
avoid redundant attribute assignments447
effects on ColGroup property676
effects on RowGroup property677
overriding attributes644
use the scope method to identify cells667
WAI strategy for row/column markup657
ways to override659

AddCntWindowName, [HelpContents]
keyword 309

AddContentsLink , [RelatedLinks] keyword 191

AddedDividerFormat , [RelatedLinks]
keyword 195

AddedDividerText , [RelatedLinksText]
keyword 195

AddedLinksEnd , [RelatedLinks] keyword 195

AddedLinksFormat , [RelatedLinks]
keyword 195

AddedLinksSpacer , [RelatedLinks]
keyword 195

AddedLinksStart , [RelatedLinks] keyword 195

AddGlossaryLink , [RelatedLinks] keyword 191

AddIndexLink , [RelatedLinks] keyword 191

AddLOFLink , [RelatedLinks] keyword 191

AddLOTLink , [RelatedLinks] keyword 191

address , [ParaTags] format property566

AddTopicHeadChildren , [TopicHeads]
keyword 107

[AElement] , implied link format 128

AliasPrefix

[MSHtmlHelpOptions] keyword 343
[OmniHelpOptions] keyword 375

AliasTitle , [MSHtmlHelpOptions] keyword 344

AlignAttributes , [HTMLOptions] keyword
CSS-dependent default value597
override paragraph properties573
XML default value 449

ALink

[HTMLParaStyles] format property
create HTML Help ALink buttons329
for HTML-based Help261
for Oracle Help409

[MarkerTypes] property 723

ALink* , [MSHtmlHelpOptions] keywords:
ALinkButtonGraphic 326
ALinkButtonHeight 326
ALinkButtonIcon 326
ALinkButtonText 326
ALinkButtonWidth 326
ALinkEmptyTopic 326
ALinkFlags 326
ALinkText 326
ALinkTextFont 326
ALinkType 326

ALinkRefs , [OmniHelpOptions] keyword 370

ALinkRefs , [OracleHelpOptions] keyword 409

AllowEmptyAlt , [Graphics] keyword 620

AllowNobr , [HTMLOptions] keyword 447

AllowTbSplit , [Table] keyword
convert tables to paragraphs647
designate split points526

AllowTbTitle , [Table] keyword
convert tables to paragraphs647
titles for split files 532

Alt , [HTMLParaStyles] format property for alt
attribute 651

AlwaysNestLists , [CSS] keyword 587

AncestorHead , [RelatedLinksText]
keyword 194

ANSI, [MarkerTypes] property 723

Anum, [HTMLParaStyles] format property, retain
autonumbers568

[AnumCodeAfter] , code after paragraph autonumber
indent list items589
placement properties712

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

850 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

subject to configuration overrides772

[AnumCodeBefore] , code before paragraph auto-
number
placement properties712
subject to configuration overrides772

AnumTabs, [HtmlOptions] keyword 568

AppendFlagsFile , ConditionOptions
keyword 166

AppendixStream , [NumberStreams] keyword 147

AppendLinksToTopics , [RelatedLinks]
keyword 191

Archive* , [Automation] keywords:
ArchiveCommand

activated by WrapAndShip 788
archive deliverables804
place deliverables807

ArchiveEndParams 804
ArchiveExt 805
ArchiveName 805
ArchiveStartParams 804
ArchiveVer 805

ATagElement , [HTMLOptions] keyword 454

ATagLineBreak , [HTMLOptions] keyword 439

[AttributePrefixes] , format-name prefixes
based on attributes96

[Attributes]

for background images624
for <body> element438
for links 546
for tables 632
overridden by [TableAttributes] 633
subject to configuration overrides770
when not to use637

[AUnvisitedElement] , implied link format 129

[Automation]

default values in local_omsys.ini 33
default values supplied by Project Manager43
pre- and post-conversion system code777
produce deliverables788

[AVisitedElement] , implied link format 129

Axis , [HTMLParaStyles] WAI format
property 662

AxisVal , [HTMLParaStyles] WAI format
property 666

B
[Base] , default font and size577

subject to configuration overrides770

Basefont , [HTMLOptions] keyword 577, 597, 609

BaseMapFormat , [ElementOptions] keyword 105

[BaseValues] , format property units120

BeginFile , [Inserts] keyword 432

BinaryIndex

[MSHtmlHelpOptions] keyword 335

BinaryTOC

[MSHtmlHelpOptions] keyword 335

[*BLForms] , booklist item levels217

[*BList] , variant booklist identifiers215

[*BLItems] , booklist item properties216

[BlockFormatMaps] , map block element paths to
formats 93

[BlockFormatPrefixRunins] , specify run-in
headings97

[BlockOutclassMaps] , assign format names to
block elements90

Blockquote , [ParaTags] format property566

[*BLRefForms] , formats for variant indexlist
references217

[*BLText] , title text for variant booklists216

BodyBaseSize , [BaseValues] keyword 120

BodyBaseWidth , [BaseValues] keyword 120

BodyContentOnly , [HTMLOptions] keyword 443

[BodyElement] , implied block format120

Bold , [HTMLParaStyles] or [HTMLCharStyles]
format property573

[BookLists] , name booklist components214

Border , [Table] keyword 636
overridden by [TableAttributes] 633, 637

Bottom , [Inserts] keyword 535, 536, 710
position a navigation macro564

C
CascadeSeparator , [ElementText] keyword 159

CaselessMatch , [Options] keyword 73

CaseSensitiveIndexCompare, [Index]
keyword 257

CatalogKeys , [Catalogs] keyword 67

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 851

[Catalogs] , XML catalog keys67

CellAlignAttributes , [Table] keyword 636

CellAttribute, [HTMLParaStyles] format
property 635

CellAttribute , [HTMLParaStyles] format
property 662

CellAttribute , [HTMLParaStyles] WAI format
property 662

CellColorAttributes , [Table] keyword 636

Center , [HTMLParaStyles] format property573

CGElems, [TableAccess] property 630

ChangeFileNameSpaces , [HTMLOptions]
keyword 783

[Char] , default character format122

[CharacterRangeClasses] , assign classes to Uni-
code character ranges603

[CharClasses]

default use for CSS class names592
map character formats for XML452
map character formats to span classes602
subject to configuration overrides770

[CharConvert] , map special characters574

[CharStyle*] sections
[CharStyleCode*] sections

all subject to configuration overrides772
[CharStyleCodeAfter] 712
[CharStyleCodeBefore] 712
[CharStyleCodeEnd] 712
[CharStyleCodeReplace] 712
[CharStyleCodeStart] 712

[CharStyleCSS] 608
[CharStyleLinkSrc] 712

[CharTags]

assign HTML tags to character formats569
assign XML tags to character formats452
map character formats to CSS span classes602
subject to configuration overrides772
tags used for CSS classes by default592

CheckAllRefs , [HTMLOptions] keyword 551

ChildHead , [RelatedLinksText] keyword 194

[ChmFiles] , map source files to .chm files 324, 349

ChmFormat , [MSHtmlHelpOptions] keyword 324

ChoiceTableFormat , [TableOptions]
keyword 103

ChunkBy , [Chunking] keyword 524

[Chunking] 523

ChunkSel , [Chunking] keyword 525

ClassIsTag , [CSS] keyword 601
map CSS class names to XML tags452
use tag names for CSS class names604
XML default value 449

ClassSpaceChar , [HtmlOptions] keyword 600

ClickBlockToClose , [DropDowns] keyword 271

CloseOldWindow , [OmniHelpOptions]
keyword 363

Code* , [HTMLCharStyles] format properties
CodeAfter 712
CodeBefore 712
CodeEnd 712
CodeReplace 712
CodeStart 712

Code* , [HTMLParaStyles] format properties
CodeAfter 693, 712
CodeAfterAnum 712
CodeBefore 693, 712
CodeBeforeAnum 712
CodeEnd 567, 693, 712
CodeReplace 328, 712
CodeStart 567, 693, 712
CodeStore 693, 694

capture FrameMaker autonumbers780
create a macro variable688
difference from TextStore 694

Code, [MarkerTypes] property 723

ColGroup , [HTMLParaStyles] WAI format
property 662
in [Table]ColGroupHead cells 670
use header cells to define column groups660

ColGroupElements , [Table] keyword 628
apply scope method to all tables658
for browser-dependent table tags628
override column group settings630

ColGroupHead , [Table] WAI keyword 670
column-group extent671
id/header table cell attribute670

ColGroupIDs , [Table] WAI keyword 670
column-group extent671
id/header table cell attribute670
override for selected tables676
set by AccessMethod=IDheaders 659, 661

ColHead , [Table] WAI keyword 674
column extent674

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

852 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

id/header table cell attribute670

ColIDs , [Table] WAI keyword 674
column extent674
id/header table cell attribute670
override for selected tables676

Color* , [HTMLParaStyles] or
[HTMLCharStyles] format property573, 581

[Colors]

map color names to values440
override for paragraph formats573

[Colors] , specify text colors580

ColSpanHead , [Table] WAI keyword 672
column-span extent673
id/header table cell attribute670

ColSpanIDs , [Table] WAI keyword 672
column-span extent673
dependencies659
id/header table cell attribute670
override for selected tables676

CombineIndexLevels , [Index] keyword 253

Comment

[HTMLOptions]GeneratorTag setting 435
[HTMLParaStyles] format property for

scripts 568
[HTMLParaStyles] or [HTMLCharStyles] for-

mat property568

CompactForm . [*BList] keyword 216

CompileHelp , [Automation] keyword
compile HTML Help project346, 802

Compiler , [MSHtmlHelpOptions] keyword 346

ComplexOtherprops , ConditionOptions
keyword 162

CompoundWordChars , [OmniHelpOptions]
keyword 372

ConceptsHead , [RelatedLinksText]
keyword 194

[CondEndFlagAltText] , specify flag alt text168

[CondEndFlagImages] , specify flag images168

ConditionalDefaults , ConditionOptions
keyword 163

[ConditionalDefaults] , exclude content164

[ConditionalExclude] , exclude content164

[ConditionalFlagging] , flag content163

[ConditionalInclude] , exclude content164

[ConditionalPassthrough] , pass attributes

through 165

[ConditionAttributes] , assign attributes with
flags 169

[ConditionOptions]

process otherprops162
set flags165
specify ditaval file161

[ConditionOptions] , exclude content163

[CondStartFlagAltText] , specify flag alt
text 168

Config , override configuration settings
[HTMLParaStyles] format property776
[MarkerTypes] property 723

Configs , [Templates] keyword 731, 737, 742, 816
precedence of settings765

Confluence , [HTMLOptions] keyword 442

ConfluenceLinkEnd , [HTMLOptions]
keyword 442

ConfluenceLinkPage , [HTMLOptions]
keyword 442

ConfluenceLinkPageEnd , [HTMLOptions]
keyword 442

ConfluenceLinks , [HTMLOptions] keyword 442

ConfluenceLinkStart , [HTMLOptions]
keyword 442

ConfluenceLinkText , [HTMLOptions]
keyword 442

ConfluenceLinkTextEnd , [HTMLOptions]
keyword 442

Contents

[HTMLParaStyles] format property
HTML-based Help contents entries250

[JavaHelpOptions] ListType value 249, 335
[MSHtmlHelpOptions] ListType value 249,

335

[Contents]

generate a TOC221
use or lose page break before525

ContentsLocalValuePrefix ,
[MSHtmlHelpOptions] keyword 350

ContentsNamesFileOnly , [MSHtmlHelpOptions]
keyword 338

[ContentsText]

title and other fixed text199

[ContentsText] , contents entries and links191

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 853

ContentType , [HTMLOptions] keyword 437, 451

ContextAnchors , [EclipseHelpOptions]
keyword 420, 426

ContextDescription , [EclipseHelpOptions]
keyword 420, 427

ContextFileName , [EclipseHelpOptions]
keyword 426

ContextID , [EclipseHelpOptions] keyword 426

ContextPluginName , [EclipseHelpOptions]
keyword 426

ContinuedFormatSuffix , [ElementOptions]
keyword 89

ConversionDPI , [HTMLOptions] keyword 438

CopyAfterFiles , [Automation] keyword 795

CopyAfterFrom , [Automation] keyword 795

CopyBeforeFiles , [Automation] keyword 791

CopyBeforeFrom , [Automation] keyword 791

CopyCssFrom , [Automation] keyword 800
activated by CompileHelp or FTSCommand803
activated by WrapAndShip 788

CopyGraphicsFrom , [Automation] keyword 797
activated by CompileHelp or FTSCommand803
activated by WrapAndShip 788
locate graphics for HTML Help318
locate graphics for OmniHelp360

CopyOriginalGraphics , [Automation]
keyword 796

CousinHead , [RelatedLinksText] keyword 194

CshMapFile , [MSHtmlHelpOptions] keyword
use symbolic IDs for CSH links342

CshMapFileNumIncrement ,
[MSHtmlHelpOptions] keyword 342

CshMapFileNumStart , [MSHtmlHelpOptions]
keyword 342

Css* , [CSS] keywords:
CssBodyFontSize 606
CssBodyFontTag 607
CssBodyFontUnit 607
CssBrowserDetect 593
CssFileName 593

name CSS files595
CssFontUnitDec 607
CssFontUnits 607
CssIndentBaseSize 607
CssIndentBaseUnit 608
CssIndentUnitDec 607

CssIndentUnits 607
CSSLinkNS4 599
CssPath 595

destination for CssCopyFiles 795
place CSS files for assembly800

[CSS] 592–609
file options 593
for XML 452
link options 547
list attributes588

CssCopyFiles , [Automation] keyword 800
activated by CompileHelp or FTSCommand803

[CSSEndMacro] , ending code for CSS file608

CSSFlagsFile , ConditionOptions keyword 165

CSSReplace , [HTMLParaStyles] or
[HTMLCharStyles] format property608

[CSSStartMacro] , starting code for CSS file608
specify default font size607
when CSS is generated each time542

CtrlCssName , [OmniHelpOptions] keyword 362

D
Default , [JavaHelp window] parameter403

DefaultBlockFormat , [ElementOptions]
keyword 88

DefaultChmFile , [MSHtmlHelpOptions]
keyword 317
map CHM files 348
syntax for inter-CHM-file links324

DefaultInlineFormat , [ElementOptions]
keyword 88

DefaultNoteType , [ElementOptions]
keyword 101

DefaultTarget , [HTMLOptions] keyword 444,
624

DefaultTopic , [JavaHelpOptions] keyword 393

DefaultTopic , [OracleHelpOptions]
keyword 393

DefaultTopicFile

[MSHtmlHelpOptions] keyword 318
[OmniHelpOptions] keyword 359

DefinitionListTables , [TableOptions]
keyword 104

DefListTableColWidths , [TableOptions]
keyword 104

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

854 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

DefListTableFormat , [TableOptions]
keyword 104

Delete

[HTMLCharStyles] format property, override
placement772

[HTMLParaStyles] format property666, 784
delimit extracts530
do not use for CodeStore paragraphs694
eliminate glossary entries from JavaHelp

TOC 403
eliminate unwanted paragraphs569
enable/disable extract processing528
for configuration overrides776
hide TextStore paragraphs693
hide WAI markup650, 651, 652
HTML Help TOC-only entries337
name split files784
override placement772
paragraph formats for <meta> tags 437
prevent duplicate file names785

[MarkerTypes] property 723
[XrefStyles] format property552

DeleteExistingDCL , [Setup] keyword 73

DescendantHead , [RelatedLinksText]
keyword 194

DescriptionIsFirstLabel ,
[EclipseHelpOptions] keyword 420, 426

DisableChunking , [Chunking] keyword 524

DisplayElementPath , [ElementOptions]
keyword 73

DitavalFile , ConditionOptions keyword 161

DListDD , [HTMLParaStyles] format property586,
588

Document , [Templates] keyword 732, 737, 738

Drop* , [DropDowns] keywords
DropBlockEnd 271
DropBlockStart 271
DropButton 271
DropButtonAttr 271
DropButtonCloseLabel 270
DropButtonOpenLabel 270
DropClass 271
DropCloseIcon 271
DropCloseIconAlt 269
DropCloseIconFile 269
DropDivAttr 271
DropDownBlock 266
DropIDPrefix 270

DropJSCode 272
DropJSLocation 272
DropLinkAttr 270
DropLinkEnd 270
DropLinkPara 271
DropLinkParaEnd 270
DropLinkParaStart 270
DropLinkParaText 270
DropLinkStart 270
DropLinkType 268
DropOpenIcon 271
DropOpenIconAlt 269
DropOpenIconFile 269
DropText 270

DropDown, [HTMLParaStyles] format
property 265, 266

DropDownEnd , [HTMLParaStyles] format
property 266

DropDownLink , [HTMLParaStyles] format
property 266

DropDownLink , [HtmlParaStyles] or
[HtmlCharStyles] format property266

[DropDowns] , create expandable drop-down
sections268

DropDownStart , [HtmlCharStyles] format
property 266

DropDownStart , [HTMLParaStyles] format
property 266

DTDPath, [Setup] keyword 33, 69

DuplicateNameCheck , [IDOptions] keyword 77

E
EclipseVer , [EclipseHelpOptions]

keyword 415

EditorFileName , [Logging] keyword 74

[ElementAttrPrefixes] , prefix format names
based on attributes95

[ElementClasses] , add ̂class to elements183

[ElementOptions] , assign formats to elements88

ElementPathFormat , [ElementOptions]
keyword 73

[ElementSets] , define sets of elements179

[ElementText] , miscellaneous text
assignments159

[ElementTypes] , properties of element types183

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 855

EmptyGraphPath , [Automation] keyword 798
activated by CompileHelp or FTSCommand803
when effective793

EmptyJavaGraphSubdir , [JavaHelpOptions]
keyword 390

EmptyJavaGraphSubdir , [OracleHelpOptions]
keyword 390

EmptyJavaHTMLSubdir , [JavaHelpOptions]
keyword 390

EmptyJavaHTMLSubdir , [OracleHelpOptions]
keyword 390

EmptyOutputDir , [Automation] keyword 789
activated by CompileHelp or FTSCommand803
dependencies791
when effective790

EmptyOutputFiles , [Automation] keyword 790
activated by CompileHelp or FTSCommand803
when to include791

EmptyParaContent , [HTMLOptions] keyword 569

EmptyTbCellContent , [Table] keyword 640
eliminate default content for XML453

EmptyWrapPath , [Automation] keyword 793
activated by CompileHelp or FTSCommand803
dependencies799

Encoding , [HTMLOptions] keyword 434
for XML 450
prevent character mapping576

End, [Inserts] keyword 535, 536, 710
for framesets444

[End] , dummy section to end settings66

[End] , dummy section to replace
[MacroVariables] 680

EndingFSButton , [NavigationMacros]
keyword 563

EndingNextFSButton , [NavigationMacros]
keyword 562

EndingNextFSMacro , [NavigationMacros]
keyword 561
scope562

Entities , [Inserts] keyword 432, 710

Extr*

[Graphics] extract keywords:
ExtrGraphClass 541
ExtrGraphHigh 541
ExtrGraphSuffix 537, 539, 540
ExtrGraphTarget 541

ExtrGraphThumbnail 540
ExtrGraphWide 541

[HTMLParaStyles] extract format properties
ExtrDisable 529
ExtrEnable 529
ExtrEnd 529
ExtrFinish 529
ExtrStart 529

[Inserts] keywords:
ExtrBottom 536
ExtrHead 536
ExtrHeadEnd 536
ExtrTop 536

[MarkerTypes] properties
ExtrBottom 723
ExtrDisable 723
ExtrEnable 723
ExtrEnd 724
ExtrFinish 724
ExtrHead 724
ExtrReplace 724
ExtrStart 724
ExtrTop 724

[Extr*] , extract-file sections
all subject to configuration overrides772
[ExtrBottom] 536
[ExtrHead] 536
[ExtrReplace] , extract replacement code539
[ExtrTitle] 538
[ExtrTop] 536

ExtractEnable , [HTMLOptions] keyword 528

F
FigTitleAboveImage , [FigureOptions]

keyword 102

FigTitleAboveTable , [FigureOptions]
keyword 102

Figure , [HTMLParaStyles] format property, en-
sure wrapping DITA image in <fig> 483

FigureAnchorFormat , [FigureOptions]
keyword 103

[FigureOptions] 102

FileName

[HTMLParaStyles] format property783
[MarkerTypes] property 724

name split and extract files782

FileName . [*BList] keyword 215

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

856 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

FileNameSpaceChar , [HTMLOptions]
keyword 783

FileSuffix , [Setup] keyword 71, 450
determined at run time733
for DITA output 456
for DocBook output501

First* , [Inserts] keywords:
FirstBottom 536
FirstEnd 536
FirstFrames 536
FirstHead 536
FirstHeadEnd 536
FirstTop 536

FixGraphSpaces , [Graphics] keyword 748

Font , [Base] keyword 577

[FontSizes] , map points to HTML sizes577

FootClass , [CSS] keyword 603

FootInlineIDPrefix , [HTMLOptions]
keyword 503, 582

FootInlineParaTag , [HTMLOptions]
keyword 503, 582

FootInlineRefTag , [HTMLOptions]
keyword 503, 582

FootInlineTag , [HTMLOptions] keyword 582

FootnoteEndCode , [HTMLOptions] keyword 583

FootnoteFormat , [Footnotes] keyword 102

Footnotes , [HTMLOptions] keyword 503, 582
XML default value 449

[Footnotes] , assign footnote formats102

FootnoteSeparator , [HTMLOptions]
keyword 582

FootnoteStartCode , [HTMLOptions]
keyword 583

FootnoteStream , [NumberStreams] keyword 147

FootTagLast , [Table] keyword 630

[FormatAliases]

map format names52, 113
map subformat names142

Formats , [Templates] keyword 110, 120, 121, 730

FrameHigh , [OmniHelpOptions] keyword 363

FrameOptions , [OmniHelpOptions] keyword 363

Frames , [Inserts] keyword 535, 536, 710
for framesets444

Frameset , [OmniHelpOptions] keyword 363

FrameWide , [OmniHelpOptions] keyword 363

FriendHead , [RelatedLinksText] keyword 194

FRowsN, [TableAccess] keyword 631, 632

FTSCommand, [JavaHelpOptions] keyword
for JavaHelp398

FTSCommand, racleHelpOptions] keyword
for Oracle Help399

FullIndexRanges , [Index] keyword 209

G
GenerateALinks , [RelatedLinks] keyword 192

GenerateIDX , [Index] keyword 222

GenerateMapIfMissing , [MapGeneration]
keyword 69

GenerateParentChild , [RelatedLinks]
keyword 190

GeneratePrevNext , [RelatedLinks]
keyword 190

GenerateSiblings , [RelatedLinks]
keyword 190

GenerateTOC , [Contents] keyword 221

GenerateUIDs , [IDOptions] keyword 76

GeneratorTag , [HTMLOptions] keyword 435

GenListXrefFormat , [ElementOptions]
keyword 102

[Glossary], define glossary output 204

[GlossaryText] , text for title of generated
glossary204

GlossPrefix , [JavaHelpOptions] keyword 402

GlossSpace , [JavaHelpOptions] keyword 402

GlossSuffix , [JavaHelpOptions] keyword 402

GlossTerm , [HTMLParaStyles] JavaHelp format
property 402

GLSFile , [Glossary] keyword 204

GLSSuffix , [Glossary] keyword 204

GLSTitle , [GlossaryText] keyword 204

GLSTitleFormat , [Glossary] keyword 204

GLSTOCFormat, [Glossary] keyword 204

[GraphALT] , image alt attribute
for image maps622

[GraphALT] , image alt tags 620
subject to configuration overrides775

[GraphAttr] , image attributes619

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 857

subject to configuration overrides775

GraphClass , [Graphics] keyword 601

GraphCopyFiles , [Automation] keyword 797
activated by CompileHelp or FTSCommand803

[GraphEndMacros] , code after images615
subject to configuration overrides775

[GraphFiles] , replace graphics613, 747, 799
path overrides748
subject to configuration overrides775

[GraphGroup] , create graphics groups615
assign with *Config marker 775

[GraphHigh] , image height in pixels621
property of extracted graphic542
related to predefined macro variables616
subject to configuration overrides775

GraphicAlignment , [FigureOptions]
keyword 103

[Graphics]

class name for anchor paragraph601
fix graphics file names748
graphics location for JavaHelp391
relocate graphics files70, 611, 747
remove path information347
replace graphics747, 799
subject to configuration overrides770
third-party graphics tools78
thumbnails for extract links540
use existing graphics files612, 748
use title for alt 623
include or omit image attributes

for DITA XML 484
for DocBook XML 521
for generic XML 453
for HTML 621

[GraphIndents] , indent images618

GraphPath , [Graphics] keyword 70, 611, 747, 799
for JavaHelp and Oracle Help391
overridden by [GraphFiles] 747
overrides [GraphFiles] 748

GraphPathOverrides , [Graphics] keyword 748,
774, 799

[GraphReplaceMacros] , code instead of
image 615
subject to configuration overrides775

[GraphRightSpacers] , indent images618

GraphScale , [Graphics] keyword
eliminate attributes

for DITA XML 484
for DocBook XML 521
for generic XML 453
for HTML 621

XML default value 449

[GraphScale] , scale images621
related to predefined macro variables616
subject to configuration overrides775

[GraphStartMacros] 615
subject to configuration overrides775

GraphSubdir , [JavaHelpOptions] keyword 390

GraphSubdir , [OracleHelpOptions]
keyword 390

GraphSuffix , [Graphics] keyword 747, 799
replace referenced graphics613
third-party graphics tools78
use referenced graphics without converting612

[GraphSuffix] , replace graphics file
extension613, 747, 799

[GraphWide] , width of image in pixels621
property of extracted graphics542
related to predefined macro variables616
subject to configuration overrides775

GraphWrapPara , [Graphics] keyword 453, 616

H
h1 - h6 , [ParaTags] format properties566

HCols N, [TableAccess] keyword 631, 632
default header columns631
effect on [Table]ScopeRow 668

Head, [Inserts] keyword 535, 710
customize CSS link tag599
for CSS selection macro594, 597, 598
for HTML Help KeyHelp pop-up322
for solitary file 536

HeadBlockFormat , [RelatedLinks] keyword 194

HeadEnd, [Inserts] keyword 535
for solitary file 536

HeadFootBodyTags , [Table] keyword 629
choose a row-group method672
default header/footer counts631
enable [Table*Attributes] 644
identify table cells via scope668
RowGroup property677
with scope method658, 661

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

858 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

HeadInlineFormat , [RelatedLinks]
keyword 194

Height , [JavaHelp window] parameter404

Helen , [JavaHelpOptions] keyword 395

[HelpContentsLevels]

assign heading levels for split overrides527
for HTML-based Help250, 251
subject to configuration overrides772

HelpFileLanguage , [MSHtmlHelpOptions]
keyword 345

HelpFileTitle

[JavaHelpOptions] keyword 393
[MSHtmlHelpOptions] keyword 316
[OmniHelpOptions] keyword 359
[OracleHelpOptions] keyword 393

HelpMerge , [MarkerTypes] property 724

[HelpMerge] , merge help projects
for HTML Help 350
for OmniHelp 378, 379

[HelpMergePaths] , merge JavaHelp or Oracle Help
helpsets410

HFBTags, [TableAccess] override 630, 644

HHCProperties , [MSHtmlHelpOptions]
keyword 339

HHKProperties , [MSHtmlHelpOptions]
keyword 339

HHPFileName , [MSHtmlHelpOptions]
keyword 317
archive deliverables806

[HHWindows] , secondary windows
for HTML Help 333

HistoryFileName , [Logging] keyword 74

HrefAttribute , [HTMLOptions] keyword 454,
502

HRowsN, [TableAccess] keyword 631, 632
default header row count631
effect on [Table]ScopeCol 668

HSFileName , [JavaHelpOptions] keyword 401
archive JavaHelp deliverables806
name JavaHelp helpset file392

HSFileName , [OracleHelpOptions] keyword
name Oracle Help helpset file392

HSPathNames, [JavaHelpOptions] keyword 394

HSPathNames, [OracleHelpOptions]
keyword 394

HTMConfig

[HTMLParaStyles] format property776
[MarkerTypes] property 724

[HTMLCharStyles]

subject to configuration overrides772

HTMLComment, [MarkerTypes] property 724

HTMLDocType, [HTMLOptions] keyword 432
for framesets444

HTMLDTD, [HTMLOptions] keyword 433
for framesets444

[HtmlFiles] , rename split files782

[HTMLOptions]

for declarations432, 433, 434, 437, 438, 444
for extracts528
for footnotes503, 582
for framesets444
for links 444, 624
for preformatted text439, 581
for split files 527, 783
for tables 641
subject to configuration overrides770

[HTMLParaStyles]

for extracts529
for HTML Help 261
for images651
for links 652
for split files 532
for WAI table attributes662
subject to configuration overrides772

HTMLSubdir , [JavaHelpOptions] keyword 390,
392

HTMLSubdir , [OracleHelpOptions] keyword 390

HTMLVersion , [HTMLOptions] keyword 432

HyperSpaceChar , [HTMLOptions] keyword 549

I
IDElemSep , [IDOptions] keyword 77

IDFile , [IDOptions] keyword 76

IDheaders , [Table]AccessMethod option 658
apply id/headers to all tables659
ColGroup dependency676
RowGroup dependency677

[IDOptions] options for element IDs76

IDPath , [IDOptions] keyword 76

IDPathSep , [IDOptions] keyword 76

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 859

IDs , [TableAccess] property, 659

IDTopic , [IDOptions] keyword 76

IDTopSep , [IDOptions] keyword 77

IDUpDir , [IDOptions] keyword 77

IdxButtons , [OmniHelpOptions] keyword 369

IdxExpand , [OmniHelpOptions] keyword 368

IDXFile , [Index] keyword 212

IdxFilename , [EclipseHelpOptions]
keyword 419

IDXFormat , [Index] keyword 207

IdxGroupsOpen , [OmniHelpOptions]
keyword 369

IdxIcoBase , [OmniHelpOptions] keyword 369

IdxOpenLevel , [OmniHelpOptions] keyword 369

IDXSuffix , [Index] keyword 212

IDXTitle , [IndexText] keyword 191, 207

IDXTitleFormat , [Index] keyword 207

IDXTOCFormatt , [Index] keyword 207

IECssName, [OmniHelpOptions] keyword 361

IECtrlCssName , [OmniHelpOptions]
keyword 362

IgnoreCharsIX, [Index] keyword 256

IgnoreLeadingCharsIX, [Index] keyword 256

Image , [JavaHelp window] parameter404

[ImportancePrefixes] , format-name prefixes
based on importance value96

IncludeElementTags , [ElementOptions]
keyword 72

IncludeVersionPI , [EclipseHelpOptions]
keyword 418

Index

[JavaHelpOptions]ListType value 249, 335
[MSHtmlHelpOptions]ListType value 249,

335

[Index]

configure Help index entries253
configure HTML index entries211
generate an index222
file name and suffix212

IndexBottom , [Inserts] keyword 213

[IndexClasses] , map indexterms to indexlist
variants 218

IndexFileSuffix , [Index] keyword 212

IndexHead , [Inserts] keyword 213

IndexLetterClass , [Index] keyword 213

IndexLetterNumber , [Index] keyword 210

IndexLetterPrefix , [Index] keyword 210

IndexLettersFormat , [Index] keyword 210

IndexLetterSymbol , [Index] keyword 210

IndexLevelClass , [Index] keyword 212

[IndexLists] , assign indexterm outputclasses to in-
dexlist variants218

IndexNavType , [Index] keyword 211

IndexRangeSep , [IndexText] keyword 210

IndexRefClass , [Index] keyword 212

IndexRefSep , [IndexText] keyword 210

IndexRefStartSep , [IndexText] keyword 210

IndexSeeAlsoEnd , IndexSeeFormats]
keyword 208

IndexSeeAlsoStart , IndexSeeFormats]
keyword 208

IndexSeeEnd , IndexSeeFormats] keyword 208

[IndexSeeFormats] , assign index see and see-also
formats 208

IndexSeeStart , IndexSeeFormats] keyword 208

[IndexSeeText] , index see/see-also entries209

IndexSortLocale , [HtmlOptions] keyword 257

IndexSortType , [HtmlOptions] keyword 257

[IndexText] , index entries and links191

[IndexText] , text of index title207

IndexTOC , [Inserts] keyword 213

IndexTop , [Inserts] keyword 213

IndexTopLettersClass , [Index] keyword 213

IndexTopLettersFormat , [Index] keyword 211

[InlineFormatMaps] , map inline element paths to
formats 93

[InlineFormatPrefixRunins] , specify run-in
headings98

[InlineOutclassMaps] , assign format names to in-
line elements90

[InlineOutclassMaps] , for <xref> wrappers91

[Inserts] , insert code at predefined locations535,
710
for HTML indexes 213
subject to configuration overrides771

InternalTableCaption , [Table] keyword 503,
641

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

860 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

Ital , [HTMLPararStyles] or [HTMLCharStyles]
format property573

ItemFormat . [*BList] keyword 215

J
JarCommand, [JavaHelpOptions] keyword 401

JarCommand, [OracleHelpOptions] keyword 401

[JavaHelp window] , assign default parameters403

[JavaHelpOptions]

subject to configuration overrides771

JavaRootFiles , [JavaHelpOptions]
keyword 390

JavaRootFiles , [OracleHelpOptions]
keyword 390

[JH2_HelpsetAddition] 394

[JHImages] 404

JHVersion2 , [JavaHelpOptions] keyword 387

K
KeepDraftComments , [ElementOptions]

keyword 105

KeepFileNameSpaces , [HTMLOptions]
keyword 783

KeepFileNameUnderscores , [HTMLOptions]
keyword 783

KeepTOCWithTitlePage , [Contents]
keyword 525

KeydefsOnlyWithinBranch , KeyOptions
keyword 172

[KeyOptions] , limit scope of keydefs172

KeywordLimit, [MSHtmlHelpOptions]
keyword 252

KeywordRefs, [Index] keyword 255

KLink* , [MSHtmlHelpOptions] keywords:
KLinkButtonGraphic 326
KLinkButtonHeight 326
KLinkButtonIcon 326
KLinkButtonText 326
KLinkButtonWidth 326
KLinkEmptyTopic 326
KLinkFlags 326
KLinkText 326
KLinkTextFont 326

KLinkType 326

L
Languages , [Templates] keyword 158, 730, 740

Last* , [Inserts] keywords:
LastBottom 536

position trails of links559
LastEnd 536
LastFrames 536
LastHead 536
LastHeadEnd 536
LastTop 536

Left

[HTMLParaStyles] format property573
[JavaHelp window] parameter404

LeftWide , [OmniHelpOptions] keyword 363

LEnd, [HTMLParaStyles] format property586, 587

LevelBreakForSee, [Index] keyword 255

LFirst , [HTMLParaStyles] format property
for lists with multiple paragraph formats587
start list style586

Link* , [MSHtmlHelpOptions] base keywords:
LinkButtonGraphic 326
LinkButtonHeight 326
LinkButtonIcon 326
LinkButtonText 326
LinkButtonWidth 326
LinkEmptyTopic 326
LinkFlags 326
LinkText 326
LinkTextFont 326
LinkType 326

LinkClass , [HTMLParaStyles] WAI keyword 652

LinkClassIsParaClass , [CSS] keyword 547
default depends on UseCSS 597

LinkFormat , [ElementOptions] keyword 89

LinkSrc

[HTMLCharStyles] format property712
[HTMLParaStyles] format property548, 712
[XrefStyles] format property552

LinkTitle , [HTMLParaStyles] WAI keyword 652

ListMissingRefs , [HTMLOptions] keyword 551

ListN , [HTMLParaStyles] format property586

[ListOfFiguresText] , text for generated LOF201

[ListOfTables] , define LOT output202

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 861

[ListOfTablesText] , text for generated LOT202

[ListOptions] , list styles 127

ListStream , [NumberStreams] keyword 147

ListTitle . [*BLText] keyword 216

ListType

[EclipseHelpOptions] keyword 420
[JavaHelpOptions] keyword 249, 335
[MSHtmlHelpOptions] keyword 249, 335
[OmniHelpOptions] keyword 367

LLevel , [HTMLParaStyles] format property586,
587

LNest , [HTMLParaStyles] format property586,
587

LockAllNavtitles , [MapOptions] keyword 200

LOFFile , [ListOfFigures] keyword 201

LOFFormat , [ListOfFigures] keyword 202

LOFSuffix , [ListOfFigures] keyword 201

LOFTitle , [ListOfFiguresText] keyword 201

LOFTitleFormat , [ListOfFigures] keyword 201

LOFTOCFormat, [ListOfFigures] keyword 202

LOFXrefFormat , [ListOfFigures] keyword 202

LogAuto , [Automation] keyword 788

LogDebug , [Logging] keyword 74

LogErrors , [Logging] keyword 74

LogFileName , [Logging] keyword 74

[Logging] conversion events74

LogInfo , [Logging] keyword 74

LogIniChains , [Logging] keyword 75

LogQuerys , [Logging] keyword 74

LogWarnings , [Logging] keyword 74

Longdesc , [HTMLParaStyles] format property for
longdesc attribute 651

LOTFile , [ListOfTables] keyword 202

LOTFormat , [ListOfTables] keyword 203

LOTSuffix , [Contents] keyword 202

LOTTitle , [ListOfTablesText] keyword 202

LOTTitleFormat , [ListOfTables] keyword 202

LOTTOCFormat, [ListOfTables] keyword 203

LOTXrefFormat , [ListOfTables] keyword 203

LowerCaseCSS, [CSS] keyword 600

LowMem, [OmniHelpOptions] keyword 359

M
MacroNestMax , [Macros] keyword 683, 705

Macros , [Templates] keyword 684, 729

[Macros]

debug 709
loop-control limits 705
remove implicit line breaks681
subject to configuration overrides771

[MacroTemplates] , assign a template macro to a
file 187

[MacroVariables] 689
create a macro variable688

MacroVarNesting , [Macros] keyword 690

MainCssName, [OmniHelpOptions] keyword 361

MakeAliasFile , [MSHtmlHelpOptions]
keyword 343

MakeALinkFile , [OracleHelpOptions]
keyword 409

MakeArchive , [Automation] keyword 43

MakeCshMapFile , [MSHtmlHelpOptions]
keyword 342

MakeFileHrefsLower , [HTMLOptions]
keyword 415, 549
for JavaHelp401

MakeFTS, [Automation] keyword 43

MakeJar , [Automation] keyword 43

MakeTrail , [Trails] keyword 556
enable [HTMLParaStyles]Trail format

property 556

MapFilePrefix , [JavaHelpOptions]
keyword 392

MapFilePrefix , [OracleHelpOptions]
keyword 392

[MapGeneration] , produce DITA map from
topics 69

MapLanguage , [MapGeneration] keyword 70

[MapOptions] , configure generated maps106, 200

MapRootElem , [MapGeneration] keyword 69

MapTitle , [MapGeneration] keyword 69

MapTitleElem , [MapGeneration] keyword 69

[MarkerTypeCodeAfter] 725

[MarkerTypeCodeBefore] 724

[MarkerTypeCodeReplace] 725

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

862 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[MarkerTypes] , marker-type properties723

MergeFirst , [OmniHelpOptions] keyword 379

MergePre , [HTMLOptions] keyword 439

Meta

[HTMLOptions]GeneratorTag property 435
[HTMLParaStyles] format property436, 534

MidHigh , [OmniHelpOptions] keyword 363

MoveArchive , [Automation] keyword 807

[MSHtmlHelpOptions] 316–352
subject to configuration overrides771

N
N4CssName, [OmniHelpOptions] keyword 361

N4CtrlCssName , [OmniHelpOptions]
keyword 362

N6CssName, [OmniHelpOptions] keyword 361

N6CtrlCssName , [OmniHelpOptions]
keyword 362

Name, [JavaHelp window] parameter404

NameUndefinedMacros , [Macros] keyword 709

NameUndefinedMacroVars , [Macros]
keyword 709

NavElems , [OmniHelpOptions] keyword 367

NavIcons , [JavaHelp window] parameter404

[NavigationMacros]

use buttons for560

559

NavPane, [JavaHelp window] parameter404

NewWindow, [OmniHelpOptions] keyword 363

NextButton , [NavigationMacros] keyword 562

NextHead , [RelatedLinksText] keyword 194

NextMacro , [NavigationMacros] keyword 561

NoAccess , [TableAccess] property 659

NoAnum, [HTMLParaStyles] format property, re-
move autonumbers454, 567
from footnotes584

NoAttribLists , [CSS] keyword 588

NoClassLists , [CSS] keyword 588
default depends on UseCSS 597

NoColID , [HTMLParaStyles] WAI format
property 662

NoColor , [HTMLParaStyles] or

[HTMLCharStyles] format property573, 581

NoContLink , [HTMLParaStyles] , HTML Help for-
mat property337, 338

NoCSS, [HTMLParaStyles] or [HTMLCharStyles]
format property608

NoFig , [HTMLParaStyles] or [HTMLCharStyles]
format property, prevent wrapping DITA image
in <fig> 483

NoFonts , [HTMLOptions] keyword 578
CSS-dependent default value597
prevent tags from overriding CSS609
XML default value 449

NoFootnoteLinks , [HTMLOptions] keyword 583

NoLocations , [HTMLOptions] keyword 549

NoMemDel, [Options] keyword 821

NoNameDel, [Options] keyword 821

NonsplitBottom , [Inserts] keyword 536

NonsplitTop , [Inserts] keyword 536

NoPara , [HTMLParaStyles] format property, strip
<p> tags 568
for XML 453

NoParaClose , [HTMLOptions] keyword 438

NoRef

[HTMLParaStyles] format property422, 549
[XrefStyles] format property552

NormalTableFormat , [TableOptions]
keyword 103

NoSize , [HTMLParaStyles] or
[HTMLCharStyles] format property573

NoSplit

[HTMLParaStyles] format property528

NoTags , [HTMLParaStyles] or
[HTMLCharStyles] format property568

[NoteAttrPrefixes] , attributes to determine which
Note format to use96

NoWrap, [HTMLOptions] keyword 439, 451

NoWrap, [HTMLParaStyles] format property, sup-
press line breaks568

[NumberFormatsText] , text for numbering
formats 149

NumericCharRefs , [HTMLOptions] keyword 434
for XML 450

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 863

O
OHProjFileSuffix , [OmniHelpOptions]

keyword 358

OHProjFileXhtml , [OmniHelpOptions]
keyword 354

[OHTopLeftNav] , code for OmniHelp364

[OHTopRightNav] , code for OmniHelp364

OHVFiles , [OmniHelpOptions] keyword 380

OHViewPath , [OmniHelpOptions] keyword 355,
380

OmitMacroReturns , [Macros] keyword
omit line breaks in macro output681

[OmniHelpOptions] 358–379
subject to configuration overrides771

OnlyAuto , [Automation] keyword 808

[Options]

for cases, spaces, and wildcards73
for conversion debugging821
subject to configuration overrides771

[OracleHelpWindows] 408

[OrderedListElement] , implied list format126

OutputclassHasBorderShadeFormats ,
[ElementOptions] keyword 88

OutputclassHasBorderShadeFormatst ,
[ElementOptions] keyword 145

P
Padding , [Table] keyword 636

overridden by [TableAttributes] 633, 637

Pages , [Setup] keyword 134

Pages , [Templates] keyword 110

[ParaClasses]

default use for CSS class names592
map paragraph formats601
map paragraph formats for XML452
subject to configuration overrides771

ParaLinkClass , [HTMLParaStyles] format
property 547

ParameterListTables , [TableOptions]
keyword 104

ParamListTableColWidths , [TableOptions]
keyword 104

ParamListTableFormat , [TableOptions]

keyword 104

[Parar] , default paragraph format122

[ParaStyle*] sections
[ParaStyleCode*] sections

all subject to configuration overrides772
[ParaStyleCodeAfter] 712
[ParaStyleCodeBefore] 550, 712
[ParaStyleCodeEnd] 712
[ParaStyleCodeReplace] 712
[ParaStyleCodeStart] 691, 712

[ParaStyleCSS] 608
[ParaStyleLinkSrc] 548, 712

[ParaTags]

assign HTML tags to paragraph formats566
assign XML tags to paragraph formats452
designate script paragraph formats568
map format names to CSS class names601
subject to configuration overrides772
tags used for CSS classes by default592

ParentHead , [RelatedLinksText] keyword 194

PartStream , [NumberStreams] keyword 147

[PeerLinks] , resolve peer related links196

PersistSettings , [OmniHelpOptions]
keyword 365

PixelSpacerImage , [HTMLOptions] keyword 618
indent images618
indent tables641

Plain , [HTMLParaStyles] or [HTMLCharStyles]
format property573

PluginID, [EclipseHelpOptions] keyword 417

PluginName , [EclipseHelpOptions]
keyword 416

PluginProvider , [EclipseHelpOptions]
keyword 417

PluginSchemaVersion , [EclipseHelpOptions]
keyword 419

PluginVer, [EclipseHelpOptions]
keyword 417

Pop*

[JavaHelpOptions] keywords:
PopFontColor 406
PopFontFamily 406
PopFontSize 406
PopFontStyle 406
PopFontWeight 406
PopGraphic 406
PopMarkerPrefix 407

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

864 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

PopSize 405
PopText 406
PopType 406

[MSHtmlHelpOptions] keywords:
PopColors 322
PopFont 322
PopMargins 322

pre , [ParaTags] format property566

PrevButton , [NavigationMacros] keyword 562

PrevHead , [RelatedLinksText] keyword 194

PrevMacro , [NavigationMacros] keyword 561

PrintProject , [Setup] keyword 71

ProjectName , [OmniHelpOptions] keyword 358

ProjectTemplate , [OmniHelpOptions]
keyword 366

PropertiesTableFormat , [TableOptions]
keyword 103

PublicID , [MapGeneration] keyword 70

Q
QuotedEncoding , [HTMLOptions] keyword 434

Quotes , ElementText] keyword 143, 159

R
Raw, [HTMLParaStyles] format property

for ALink paragraphs329
for marker-only paragraphs724
for split files 532

Raw, [HTMLParaStyles] or [HTMLCharStyles]
format property568

ReferenceFlagsFile , ConditionOptions
keyword 165

ReferencesHead , [RelatedLinksText]
keyword 194

RefFileType

[JavaHelpOptions] keyword 249
[MSHtmlHelpOptions] keyword 249, 335
[OmniHelpOptions] keyword 249, 367

RefFormat . [*BList] keyword 216

RefID . [*BList] keyword 215

[RegMark] , default registered-trademark format157

RelatedDividerFormat , [RelatedLinks]
keyword 195

RelatedHead , [RelatedLinksText] keyword 194

[RelatedLinks] , append links to topics191

[RelatedLinksText] , labels for related links194

RemoveAHrefAttrs , [HTMLOptions] XML
keyword 454

RemoveANames, [HTMLOptions] keyword 550
for XML link anchors 454

RemoveATags, [HTMLOptions] XML keyword 454

RemoveChmFilePaths , [MSHtmlHelpOptions]
keyword 349

RemoveEmptyTableParagraphs , [Table] keyword
for DITA 481
for DocBook 503
for HTML 640

RemoveFilePaths , [HTMLOptions] keyword 551
identify links to other files359, 553

RemoveInternalAnchors , [JavaHelpOptions]
keyword 396, 409

RemoveInternalAnchors , [OracleHelpOptions]
keyword 396, 409

RemoveXrefHotspots , [HTMLOptions]
keyword 454, 502

RepeatMax , [Macros] keyword 706

[Required] , include unused formats120

ResetAbbrevAt , [Glossary] keyword 205

Right , [HTMLParaStyles] format property573

RowAttribute, [HTMLParaStyles] format
property 634

RowGroup, [HTMLParaStyles] WAI format
property 662
in header cells to define row groups661
in [Table]RowGroupHead cells 670
use with scope method672

RowGroupHead, [Table] WAI keyword 670
id/header table cell attribute670
row-group extent671

RowGroupIDs , [Table] WAI keyword 671
id/header table cell attribute670
override for selected tables676
row-group extent671
with id/headers method661

RowHead, [Table] WAI keyword 674
id/header table cell attribute670
row extent 674

RowIDs , [Table] WAI keyword 674

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 865

id/header table cell attribute670
override for selected tables676
row extent 674

RowSpanHead, [Table] WAI keyword 673
id/header table cell attribute670
row-span extent673

RowSpanIDs , [Table] WAI keyword 672
dependencies659
id/header table cell attribute670
override for selected tables676
row-span extent673

[RuninHeadText] , text of run-in headings98, 154

S
Scope

[HTMLParaStyles] WAI format property662
[Table]AccessMethod property 658

apply scope method to all tables658
avoid redundant attributes447
dependencies668, 677
enable [Table*Attributes] 644

[TableAccess] property 659
enable [Table*Attributes] 644

Scope , [Templates] keyword 734, 741

ScopeCol , [Table] WAI keyword 668
dependencies659
override for selected tables676

ScopeColGroup , [Table] WAI keyword 668
dependencies659
override for selected tables676

ScopeRow, [Table] WAI keyword 668
dependencies659
override for selected tables676

ScopeRowGroup

[Table] WAI keyword
dependencies659
enable [Table*Attributes] 644
override for selected tables676

[TableAccess] override, enable
[Table*Attributes] 644

[Tables] WAI keyword 668

script , [ParaTags] format property566

ScriptType , [HTMLOptions] keyword 568

SearchHighlightStyle , [OmniHelpOptions]
keyword 374

SearchWordMin , [OmniHelpOptions]

keyword 373

Sec* , [JavaHelpOptions] secondary-window
properties
SecFontColor 406
SecFontFamily 406
SecFontSize 406
SecFontStyle 406
SecFontWeight 406
SecGraphic 406
SecLocation 405
SecName 405
SecSize 405
SecText 406
SecType 406

SecMarkerPrefix , [JavaHelpOptions]
keyword 407

[SecWindows] , secondary windows263
for HTML Help 333
for OmniHelp 371
for Oracle Help408
subject to configuration overrides772

SeeAlsoEnd , [IndexSeeText] keyword 209

[SeeAlsoEndIndex] , index see/see-also format
building blocks 208

SeeAlsoStartIndex , [IndexSeeText]
keyword 209

[SeeAlsoStartIndex] , index see/see-also format
building blocks 208

SeeAlsoTerm, [Index] keyword 254

SeeEndIndex , [IndexSeeText] keyword 209

[SeeEndIndex] , index see/see-also format building
blocks 208

SeeStartIndex , [IndexSeeText] keyword 209

[SeeStartIndex] , index see/see-also format build-
ing blocks 208

SeeTerm, [Index] keyword 254

SelectorIncludesTag , [CSS] keyword 605

[ServiceMark] , default service-mark format157

[Setup]

options determined at run time, listed 733
subject to configuration overrides770

[Setup], set up DITA2Go options 33, 69

ShipPath , [Automation] keyword 806
activated by CompileHelp or FTSCommand803
activated by WrapAndShip 788

ShortdescFormat , [RelatedLinks] keyword 194

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

866 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

ShowElementPath , [ElementOptions]
keyword 72

ShowLog, [Logging] keyword 74

ShowNavLeft , [OmniHelpOptions] keyword 364

ShowSubjects , [OmniHelpOptions] keyword 370

ShowUndefinedFormats , [Logging] keyword 75

SiblingHead , [RelatedLinksText] keyword 194

SimpleTableFormat , [TableOptions]
keyword 103

Size , [Base] keyword 577

Size N, [HTMLParaStyles] format property573
overrides [FontSizes] 577

SmartSplit , [HTMLOptions] keyword 527

SortSeeAlsoFirst, [Index] keyword 255

SpacelessMatch , [Options] keyword 63, 73

[Spacer] , indent images and tables685

SpacerAlt , [HTMLOptions] keyword 618

Spacing , [Table] keyword 636
overridden by [TableAttributes] 633, 637

Span, [HTMLParaStyles] WAI format
property 662
identify rows and columns673

Split

[HTMLParaStyles] format property526
trail dependencies556

[MarkerTypes] property 724

Split* , [Inserts] split-file keywords:
SplitBottom 536

position trails of links559
SplitEnd 536
SplitFrames , 536
SplitHead 536
SplitHeadEnd 536
SplitTop 536

SplitTopicFiles , [Chunking] keyword 523

SplitTrail , [Trails] keyword 558
dependencies556

StartingFSButton , [NavigationMacros]
keyword 563

StartingPrevFSButton , [NavigationMacros]
keyword 562

StartingPrevFSMacro , [NavigationMacros]
keyword 561

[StepAttrPrefixes] , attributes to determine which
Step format to use96

[StepImportancePrefixes] , Step format-name
prefixes based on importance value96

StepsHeadFormat , [ElementOptions]
keyword 88

[StopWords] , for OmniHelp search373

Strike , [HTMLCharStyles] or
[HTMLCharStyles] format property573

StripGraphPath , [Graphics] keyword 70, 611,
747
synchronize graphics settings799
use referenced graphics without converting612
use system commands to manage files347

StripTable , [Table] keyword 647

[Style*] sections
all subject to configuration overrides773
[StyleCellAbbr] 663
[StyleCellAttribute] 663, 635
[StyleCellAxis] 663
[StyleCellScope] 663
[StyleCodeStore] 693
[StyleFilePrefix] 784
[StyleFileSuffix] 784
[StyleMetaName] 436
[StyleParaLinkClass] 547
[StyleRowAttribute] 634
[StyleTextStore] 693
[StyleTitlePrefix] 532
[StyleTitleSuffix] 532
[StyleTrailPrefix] 556
[StyleTrailSuffix] 556
[StyleWindow] 334

SubFormats , [Templates] keyword 110, 141

Subformats , [Templates] keyword 730

Suffix . [*BList] keyword 215

Summary, [HTMLParaStyles] WAI table
keyword 654

SystemCommandWindow, [Automation]
keyword 778

SystemEndCommand, [Automation] keyword 777

SystemID , [MapGeneration] keyword 70

SystemStartCommand , [Automation]
keyword 777

SystemWrapCommand, [Automation] keyword 777

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 867

T
[TableAccess] , override properties630, 659, 676

override [Table] default access method659
subject to configuration overrides774

[TableAfterMacros] 642, 643
subject to configuration overrides774

[TableAnchorFormats] , override anchor paragraph
format for selected tables103

TableAttributes , [Table] keyword 453, 636,
638

[TableAttributes]

overrides [Attributes] values 633
overrides border , cellpadding , and

cellspacing in [Attributes] 633
overrides [Table]Border , Padding , and

Spacing 633
subject to configuration overrides774
summary and title654

[TableBeforeMacros] 642
add space before tables643
invoke macros around tables642
subject to configuration overrides774

TableBody , [HTMLParaStyles] WAI table-cell
property 664

[TableBodyAttributes] 644
subject to configuration overrides774

TableCaptionTag , [Table] keyword 503, 641

[TableCellAttributes] 645
base CSS class on table format635
subject to configuration overrides774

[TableCellEndMacros] 645
subject to configuration overrides774

[TableCellStartMacros] 645
selectively modify table text646
subject to configuration overrides774

[TableClasses] , map table formats to CSS
classes603, 633

[TableEndMacros]

capture row and column counts645
invoke macros around tables642
subject to configuration overrides774

[TableFooterAttributes] 644
subject to configuration overrides774

TableFooterClass , [TableOptions]
keyword 104

TableFooterRows , [Table] keyword 631

overridden by [TableAccess] method631

TableFootnoteSeparator , [Table] keyword 642

TableFootnotesWithTable , [Table]
keyword 642

[TableGroup] 626
assign with *Config marker 775
subject to configuration overrides774

TableHead , [HTMLParaStyles] WAI table-cell
property 664

[TableHeaderAttributes] 644
subject to configuration overrides774

TableHeaderCols , [Table] keyword 631
effect on ScopeRow 668
overridden by [TableAccess] method631

TableHeaderRows , [Table] keyword 631
effect on ScopeCol 668
overridden by [TableAccess] method631

TableIndents , [Table] keyword 641

[TableIndents] 641

[TableOptions] , assign format names to tables103

[TableOutclassMaps] , assign format names to
tables 90

[TableReplaceMacros] 642
subject to configuration overrides774

[TableRowAttributes] 644
subject to configuration overrides774

[TableRowEndMacros] 645
subject to configuration overrides774

[TableRowStartMacros] 645
selectively modify table text646
subject to configuration overrides774

Tables , [Templates] keyword 110, 129, 730

[Tables]

access method657–666, 668, 672, 677
caption 503, 641
cell access method667–676
eliminate attributes for XML453, 636, 638
overridden by [TableAtttributes] 633
properties636
split-file titles 532
structure627–632
subject to configuration overrides771

TableSizing , [Table] keyword 638
overridden by [TableSizing] 639

[TableSizing] 639
subject to configuration overrides774

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

868 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

[TableStartMacros] 642
capture row and column counts645
override column or row groups630
selectively modify table text646
specify <col> elements629
subject to configuration overrides774

TableTitle , [HTMLParaStyles] format
property 654

TableTitles , [Table] keyword 641

[TargetFiles] 444
for jumps from image maps624
for jumps to a window type551

[Targets] 444
for jumps to a window type551
subject to configuration overrides773

TasksHead , [RelatedLinksText] keyword 194

TbFootClass , [CSS] keyword 603

TblFootFormat , [Footnotes] keyword 102

TblFootnoteStream , [NumberStreams]
keyword 147

[Templates] 737
for document-specific settings732
for general configuration settings731
for macro libraries729
format configuration110

Text , [XrefStyles] format property552

TextStore , [HTMLParaStyles] format
property 693
create a macro variable688

Title

[HTMLOptions] keyword 435, 533
[HTMLParaStyles] format property436

for split files 532
trail dependencies556

[JavaHelp window] parameter404
[MarkerTypes] property 724

TitleFormat . [*BList] keyword 215

TitleOnlyTopicID , [TopicHeads] keyword 106

TitleOnlyTopicType , [TopicHeads]
keyword 106

[Titles]

for individual output files436
overrides [HTMLParaStyles]Title 533
precedence531

Toc*

[EclipseHelpOptions] keywords:

TocExtradir 419
TocFilename 419
TocLabel 421
TocLinkTo 424
TocNamesFileOnly 422
TocPrimary , 419
TocTopic 421

[JavaHelpOptions] keywords:
TocClosedImage 396
TocOpenImage 396
TocTopicImage 396

[OmniHelpOptions] keywords:
TocButtons 369
TocExpand 368
TocGroupsOpen 369
TocIcoBase 369
TocOpenLevel 369

TOCFile , [Contents] keyword 199

TOCFormat . [*BList] keyword 216

TOCFormat , [Contents] keyword 200

TocIdxFilePrefix , [EclipseHelpOptions]
keyword 421

[TocLevelExpand] , JavaHelp 2 settings396

[TocLevelImage] , JavaHelp 2 settings396

TOCSuffix , [Contents] keyword 199

TOCTitle , [ContentsText] keyword 191, 199

TOCTitleFormat , [Contents] keyword 200

TOCXrefFormat, [Contents] keyword 200

Toolbar , [JavaHelp window] parameter404

Top

[Inserts] keyword 535, 536, 710
to position a navigation macro564
to position trails of links558

[JavaHelp window] parameter404

TopButton , [NavigationMacros] keyword 563

TopFirst , [OmniHelpOptions] keyword 363

TopHigh , [OmniHelpOptions] keyword 363

TopicBreak , [Inserts] keyword 526, 535, 710

TopicHeadChildHeadFormat , [TopicHeads]
keyword 107

[TopicHeads] 200

[TopicHeads] , configure map output106

TopicheadsHaveNavtitles , [TopicHeads]
keyword 200

[TopicHeadText] , heading for list of child

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 869

topics 107

TopicStartCode

[MarkerTypes] property 724

TopicTitleFormat , [RelatedLinks]
keyword 194

TopMacro , [NavigationMacros] keyword 561

[TradeMark] , default trademark format157

Trail , [HTMLParaStyles] format property556
dependencies556
for non-heading formats558
required for first paragraph in file559

Trail* , [Trails] keywords:
TrailCurrent 557
TrailEnd 557
TrailIndent 557
TrailPosition 558
TrailSep 557
TrailStart 557

[TrailLevels] 558
subject to configuration overrides773

[Trails] , bread-crumb link list556–558
subject to configuration overrides771

TreatTableFigAsTable , [FigureOptions]
keyword 203

TreatTopicheadsAsTopics , [TopicHeads]
keyword 106

[Typographics] 466, 579

U
ULine , [HTMLCharStyles] or [HTMLCharStyles]

format property573

UnicodeFTS

[OmniHelpOptions] keyword 373

UnicodeLocale

[OmniHelpOptions] keyword 373

UniqueNameSuffixFormat , [IDOptions]
keyword 77

UniqueNameSuffixLength , [IDOptions]
keyword 77

[UnorderedListElement] , implied list format126

UnwrapPRE, [HTMLOptions] keyword 439, 581

URLTarget , [HTMLOptions] keyword 554

UseAbbrevInTitles , [Glossary] keyword 206

UseAddedDivider , [RelatedLinks] keyword 195

UseAliasAName , [MSHtmlHelpOptions]
keyword 341

UseAllInTOC , [MapOptions] keyword 201

UseAncestors , [RelatedLinks] keyword 190

UseAnums, [HTMLOptions] keyword
for HTML output 568
for XML output 453
XML default value 449

UseBackForward , [OmniHelpOptions]
keyword 364

UseBranchKeydefs , KeyOptions keyword 172

UseCALSModel, [Table] keyword 503, 627
XML default value 449

UseCatalogs , [Catalogs] keyword 67

UseCharacterTypographics , [Typographics]
keyword 580

UseCharRangeClasses , [CSS] keyword 603

UseChildren , [RelatedLinks] keyword 190

UseChmInLinks , [MSHtmlHelpOptions]
keyword 324

UseCodePage

[MSHtmlHelpOptions] keyword 317

UseCommaAsSeparator , [Index] keyword 253

UseCompactForm , [Index] keyword 209

UseCompositeDropJS , [DropDowns] keyword 269

UseConditionalFlagging , ConditionOptions
keyword 165

UseContext , [EclipseHelpOptions]
keyword 420

UseCousins , [RelatedLinks] keyword 190

UseCSS, [CSS] keyword 593
affects default value of

[HTMLOptions]AlignAttributes 573
[HTMLOptions]Basefont 577
LinkClassIsParaClass 547
NoClassLists 588

affects default values of other settings597
affects use of tags 609
replaces [HtmlOptions]Stylesheet 596

UseCSSLeading , [HTMLOptions] keyword 609

UseDCLOutput , [Automation] keyword 44

UseDCLSource , [Automation] keyword 43

UseDefaultStopWords , [OmniHelpOptions]
keyword 374

UseDescendants , [RelatedLinks] keyword 190

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

870 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

UseDOCTYPE, [HTMLOptions] keyword 432, 502

UseDropDowns , [DropDowns] keyword 265

UseElementNameForFormat , [ElementOptions]
keyword 88

UseExistingDCL , [Setup] keyword 73

UseFavorites , [JavaHelpOptions] keyword 393

UseFigureAnchor , [FigureOptions]
keyword 103

UseFontFace , [HTMLOptions] keyword 577, 578

UseFontSize , [HTMLOptions] keyword 579

UseFootnoteLists , [HTMLOptions] keyword 583

UseFootXrefTag , [HTMLOptions] keyword 503,
582
XML default value 449

UseFormatTypographics , [Typographics]
keyword 580

UseFrameSet , [HTMLOptions] keyword 444

UseFTS

[EclipseHelpOptions] keyword 420
[JavaHelpOptions] keyword 397
[MSHtmlHelpOptions] keyword 340
[OmniHelpOptions] keyword 372

UseFullPath , [Options] keyword 70

UseGlossary , [JavaHelpOptions] keyword 402

UseHash, [HTMLOptions] keyword 454, 502

UseHeadAndBody , [HTMLOptions] keyword 437,
451
XML default value 449

UseHeading , [*BList] keyword 215

UseHideShow , [OmniHelpOptions] keyword 364

UseHVIndex , [Index] keyword 252

UseIndex , [EclipseHelpOptions] keyword 419

UseIndexentryTag , [JavaHelpOptions]
keyword 397

UseIndexentryTag , [OracleHelpOptions]
keyword 397

UseIndexHeading , [Index] keyword 207

UseIndexLetters , [Index] keyword 210

UseIndexLevelNum, [Index] keyword 212

UseIndexTopLetters , [Index] keyword 210

UseInformaltableTag , [Table] keyword 503,
641

UseLetters , [*BList] keyword 216

UseListButton , [OmniHelpOptions]

keyword 364

UseListedXrefFilesOnly , [HTMLOptions]
keyword 454, 502

UseListTypeAttribute , [CSS] keyword 395, 588

UseLog , [Logging] keyword 74

UseManifest , [EclipseHelpOptions]
keyword 416

UseMapDescAsTitle , [MapOptions] keyword 106

UseNavButtons , [NavigationMacros]
keyword 560

UseNavtitleMarkers

[JavaHelpOptions] keyword 250
[OmniHelpOptions] keyword 250
[OracleHelpOptions] keyword 250

UseNestedTopicsInTOC , [Contents]
keyword 199

UseOutputClassForFormat , [ElementOptions]
keyword 88, 145

UseParagraphTypographics , [Typographics]
keyword 580

UseParent , [RelatedLinks] keyword 190

UsePlugin , [EclipseHelpOptions] keyword 415

UsePrevNext , [OmniHelpOptions] keyword 364

UsePrevNext , [RelatedLinks] keyword 190

UsePxSuffix , [Graphics] keyword 622

UseRawName, [HTMLOptions] keyword 783

UseRawNewlinks , [HTMLOptions] keyword 279,
410

UseRelatedDivider , [RelatedLinks]
keyword 195

UseRelDescAsTitle , [RelatedLinks]
keyword 192

UseRelDescription , [RelatedLinks]
keyword 191

UseRuntime

[EclipseHelpOptions] keyword 420

UseSearchHighlight , [OmniHelpOptions]
keyword 374

UseSiblings , [RelatedLinks] keyword 190

UseSingleton , [EclipseHelpOptions]
keyword 417

UseSpacers , [HTMLOptions] keyword 618, 641

UseSpanAsDefault , [CSS] keyword 602

UseStart , [OmniHelpOptions] keyword 364

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 871

UseSubHelpSets , [JavaHelpOptions]
keyword 410

UseSubHelpSets , [OracleHelpOptions]
keyword 410

UseTableAnchor , [TableOptions] keyword 103

UseTbFootnoteLists , [HTMLOptions]
keyword 583

UseTbHeaderCode , [Table] keyword 628

UseTitleForAlt , [Graphics] keyword 623

UseTOCDescriptions , [Contents] keyword 200

UseTopButtons , [OmniHelpOptions]
keyword 364

UseTopicShortdesc , [MapGeneration]
keyword 69

UseTopicTypes , [RelatedLinks] keyword 191

UseTopLetters , [*BList] keyword 216

UseTypographicElements , [Typographics]
keyword 466, 579

UseTypographicStyles , [Typographics]
keyword 580

UseUlink , [HTMLOptions] keyword 454, 502

UseXMLDeclaration , [HTMLOptions]
keyword 438

UseXMLRoot, [HTMLOptions] keyword 437, 502

V
ValidOnly , [HTMLOptions] keyword 445

[VariableMaps] , assign variable names to
elements186

ViewOutputCommand , [HTMLOptions]
keyword 443

ViewOutputCommand , [*Options] keyword 35,
248

ViewOutputFile , [HTMLOptions] keyword 443

W
WhileMax , [Macros] keyword 705

Width , [JavaHelp window] parameter404

WildcardMatch , [Options] keyword 73

Window

[MarkerTypes] property 724

Window, [HTMLParaStyles] format property333

Windows , [JavaHelpOptions] keyword
list of windows 403

WrapAndShip , [Automation] keyword 788

WrapCopyFiles , [Automation] keyword 793
activated by CompileHelp or FTSCommand803

WrapPath , [Automation] keyword 792
activated by CompileHelp or FTSCommand803
activated by WrapAndShip 788
for JavaHelp, Oracle Help389, 392

WriteClassAttributes , [CSS] keyword 593
default depends on UseCSS 597
replaces [HtmlOptions] Stylesheet 596
turn off for XML 452, 604

WriteContext , [EclipseHelpOptions]
keyword 420

WriteCssLink , [CSS] keyword 593
change CSS mid-document598
customize CSS link tag599
default depends on UseCSS 597
replaces [HtmlOptions]Stylesheet 596
select CSS file at run time597
use with CssFileName 595

WriteCssStylesheet , [CSS] keyword 593
default depends on UseCSS 597
designate CSS file595
replaces [HtmlOptions] Stylesheet 596

WriteDropIconFiles , [DropDowns] keyword 269

WriteDropJSFile , [DropDowns] keyword 273

WriteFlagsFile , ConditionOptions
keyword 165

WriteHelpProjectFile , [MSHtmlHelpOptions]
keyword 318

WriteHelpSetFile , [JavaHelpOptions]
keyword 393

WriteHelpSetFile , [OracleHelpOptions]
keyword 393

WriteIndexCssLink , [Index] keyword 211

WriteManifest , [EclipseHelpOptions]
keyword 417

WritePlugin , [EclipseHelpOptions]
keyword 418

WriteSpacerFile , [HTMLOptions] keyword 618

X
XHLangAttr , [HTMLOptions] keyword 433, 502

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

872 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

XHLanguage , [HTMLOptions] keyword 433

XHNamespace, [HTMLOptions] keyword 433

XMLEncoding , [HTMLOptions] keyword 450
for double-byte characters434

XMLLinkAttrs , [HTMLOptions] keyword 454

XMLRoot, [HTMLOptions] keyword 437, 451
XML default value 449

XMLVersion , [HTMLOptions] keyword 450

[XrefFiles] , interfile links 554

XrefFormat . [*BList] keyword 216

XrefFormatIsXrefClass , [CSS] keyword 604
default depends on UseCSS 597

XrefFtnFormat , [ElementOptions] keyword 101

XrefNumFormat , [ElementOptions] keyword 101

[XrefOutclassMaps] , format names for cross
references91

XrefSpaceChar , [HTMLOptions] keyword 549

[XrefStyleLinkSrc] , macro for href
attribute 552
for KeyHelp pop-ups323
subject to configuration overrides773

[XrefStyles] , cross-reference format552
for KeyHelp pop-ups323
subject to configuration overrides773

XrefTextFormat , [ElementOptions]
keyword 101

XrefTitleFormat , [ElementOptions]
keyword 101

Z
ZeroCSSMargins , [CSS] keyword 452

ZipCommand, [EclipseHelpOptions]
keyword 427

ZipParams , [EclipseHelpOptions] keyword 428

ALL RIGHTS RESERVED. MAY 19, 2013 873

Subject index
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A
 tags, suppressing line breaks in439

abbr , HTML table attribute for WAI
guidelines for using653
via CellAbbr marker 666
via [HtmlStyleCellAbbr] 663
via paragraph format662
via special paragraph format666

abbreviations of glossary terms205
class attribute for <abbreviated-form> ,

specifying 206
first-use rules, overriding206
first-use rules, specifying205
formatting for output 206

absolute vs. relative paths
in configuration settings64
in graphics references612

accented characters, converting to HTML574

ActiveX and MS HTML Help 245

adaptive table sizing
for HTML 639

overriding 639
for WinHelp 291

<address> , HTML paragraph tag566

after , macro string operator707

after , output format property118

alert markers
for HTML Help pop-ups 264
for HTML split points 527
for WinHelp pop-ups 301

alert pop-ups, creating for WinHelp301

alerttitle markers
for WinHelp pop-ups 301

alias files for context-sensitive Help278

align , HTML attribute
and valign , automatically generated, excluding

from table cells 453, 635
eliminating from paragraph tags573
for HTML Help contents entries336

aligning
graphics for HTML 617

ALink

See also ALinks
jumps, configuring for HTML-based Help261
keywords

adding with format properties260
adding with markers260

list destinations, specifying262

ALink , PI marker for Help systems719
ALinks

See also ALink
DITA, in relationship tables496
generating from related links for Help output

192
HTML Help

creating 325
target-and-jump 329
uncompiled 326

OmniHelp, support for370
Oracle Help for Java, creating409
target-and-jump, for HTML-based Help262
understanding259
WinHelp

adding footnotes to topics304
configuring 303

alt , HTML attribute
empty, omitting 620
for drop-down icons269
for image maps622
for images

via GraphAlt marker 651
via graphic file name620
via special format 651
WAI guidelines for using 650

for links, via special format652

Altura
graphics format for WinHelp293
QuickHelp, specifying for WinHelp283

anchor tags, suppressing line breaks in439

anchors, internal, for JavaHelp and Oracle Help409

Anum, [HtmlStyles] format property, retain
autonumbers453

archiving files for delivery 802

arithmetic operators for macro expressions, listed
702

arrays

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

874 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

initializing 696
instead of conditional expressions698
processing with macros696
processing with pointers697

ASCII
decimal character code, mapping for HTML574
text output via conversion to Word241

Asian languages, HTML Help support for344

aspect ratio, preserving for graphics, HTML621

assembling files for distribution792
for Eclipse Help 427
for JavaHelp and Oracle Help389
for OmniHelp 380

assembly directory
default files copied to795
emptying before copying to793
files to copy, specifying793
graphics files to copy, listing797
specifying 792

associative links, see ALinks

attribute markers for HTML or XML721
listed 722
names of 721

attribute values
defaults for missing100
including or excluding content based on164
passing through to output165
prefixing format names with95

attributes, DITA, see DITA, attributes

attributes, DocBook, see DocBook, attributes

attributes, HTML
align, omitting from paragraph tags573
assigning

to character formats569
to paragraph formats566

image size, omitting620
image, specifying 619
link class, assigning with a marker546
link, assigning with markers547
table, assigning with markers634
table, automatically generated, eliminating453,

635
WAI, assigning values to663

attributes, image, see graphics, attributes

automating
conversions 765, 777
production of deliverables787

autonumbers
converting for database input780
converting to HTML 567
converting to Word 226
including or excluding

for generic XML 453
for HTML 567

tabs in, eliminating for HTML 568

axis , HTML table attribute for WAI
guidelines for using653
identifying cells by virtual properties669
via Axis format property 662
via AxisVal format property 666
via CellAxis marker 666
via [HtmlStyleCellAxis] property 663

B
background image, for HTML624

backslash
character literal for macro variables689
escape character

in frame code for OmniHelp364
in KLink jumps 261
in macros 680
in RTF code 238

prohibited in catalog paths68
separator in file paths

for HTML Help 349
in code markers for HTML441

trailing, to remove line breaks in macros681,
781

base values of format properties, specifying120

based , output format property116
vs. inline 122

$$_basefile , macro variable537, 691

$$_basename , system-command variable691, 778

$$_basetitle , macro variable537, 691

.bat file for system commands779

before , macro string operator707

before , output format property118

beta executables37

beta version of DITA2Go , running via DCL46
Bezier curves, in WMF graphics746

bgcolor , automatically generated, excluding from
HTML table cells 453, 635

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 875

binary TOC for HTML Help 321
for browse buttons320, 335
mid-topic links 337
no-link contents entries337

bitmaps
compressing 235
resolution of, for RTF 235

bitwise operators for macro expressions, listed 701

blank paragraphs, see empty paragraphs

blanks, see spaces

block output formats
border properties of128
properties of, listed 124

block text, content-model element type760

<blockquote> , HTML paragraph tag566

blocks for expandable sections
configuring 271
delimiting

with formats 266
with markers 267

blue borders, eliminating from images619
BMP, graphics export format

See also bitmaps

BMROOT entries in .hpj files 286

bold , as a format override for HTML573

book-level maps, DITA, vs. chapter maps494

bookmarks, Word
for cross references229
limiting 221

border formats, defining144

border properties
for RTF output pages137
of block formats 128

border , automatically generated, excluding from
HTML tables 453, 635

BorderFormat , PI marker for specifying border
subformats 719

borders
around images, hiding619
around table cells, HTML636, 637
for output formats

around RTF pages137
around RTF sections135
around table cells133
around table rows132
around tables131

around text 128
from <outputclass> attributes 88

BorderType , PI marker for specifying border
subformats 146, 719

branch PI marker for scoping in maps170

Branch , PI marker for naming map branches719

branches, named, in maps170

branching browse schemes for WinHelp311

breadcrumb trails
in Eclipse Help 415, 422
in HTML 555

<$_break> , control structure for macros704, 706

breaks, column, inserting in DITA via PIs137

breaks, line
suppressing

in HTML or XML output 439
in XML output 451

breaks, page
and section

for WinHelp 285

breaks, topic, including space or a separator in525

Bristol HyperHelp
format for WinHelp graphics293
specifying for WinHelp 283

browse
buttons, enabling in HTML Help Workshop319
numbers, WinHelp, specifying310
prefix, assigning for branches, WinHelp311
sequences

HTML, creating 559
WinHelp, creating 310

browser-dependent
HTML list styles 586
settings for HTML tables628

browsers
cookies for, created by OmniHelp365
CSS support in430, 432, 591
font rendering differences579
graphics support in746

build numbers, finding
in output 820
on Web site 820

bulleted lists, converting
to DITA XML 460
to DocBook XML 504
to HTML 584

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

876 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

to Word 226

bullets
eliminating from HTML output 568
for HTML list styles 126
mapping to special characters for HTML575
replacing for W3C validity 446
specifying for bulleted lists152

buttons for drop-down links, configuring269

C
Calabash XInclude178

Calibre, for ePub430

CALS table model
default for XML 449
specifying for HTML 627

cancelling a conversion38

<caption> tags for HTML tables, placing641

cascading style sheets, see CSS

case sensitivity
of ALink keywords 258, 260
of attribute names for HTML links549
of command-line arguments810
of CSS class names600, 601
of file names 782
of format names, specifying73
of index terms for HTML-based Help257
of key names in configuration settings63, 768
of KLink keywords 258, 261
of macro operators702

catalogs, XML, connecting to67

Cell* , custom markers for HTML table cell
attributes 719

CellAbbr , custom marker for WAI666

CellAxis , custom marker for WAI666

CellClass , custom marker for CSS635, 719

CellGroup , custom marker for WAI666, 719
using to define a ColGroup cell661
using to define a RowGroup cell661

CellID , custom marker for WAI666, 719

cellpadding , automatically generated, excluding
from HTML tables 453, 635

cells, see table cells; tables

CellScope , custom marker for WAI666, 719

cellspacing , automatically generated, excluding

from HTML tables 453, 635

CellSpan , custom marker for WAI666, 673, 719

chapter
maps, DITA, vs. book maps494

char , macro string operator707

character
See also characters
encoding

for code pages576
for HTML 434
for HTML Help 314
for XML 450

entity references, HTML570
formats

converting to RTF 227
mapping to CSS span classes 602
output properties of, listed 123
output, default, specifying121, 122
properties, overriding771
replacing with code, for WinHelp287, 711
replacing with code, for Word228, 711

literals
assigning to macro variables689
for macro variables, listed 689

ranges, Unicode, assigning CSS classes to603
spans, changing properties of771

characters
See also character
accented, converting to HTML574
double-byte, in HTML 434
double-byte, in XML 450
high ASCII

encoding for HTML 434
encoding for XML 450
mapping to HTML 570
replacing for W3C validation445

problem, in HTML hypertext links548
special, avoiding in URIs576
special, converting

for HTML 570
special, mapping574

for code pages576

Chinese
DITA2Go support for27
for HTML Help output, specifying345
for RTF output, specifying220

.chm file, compiled HTML Help 314, 348

CHM files, merging 350

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 877

CHM files, unblocking 314

chrome, browser, for OmniHelp363

chunking DITA maps 523

chunking policy, specifying524

CJK languages27, 434

class attribute
adding to element183
assigning element type properties to183

class , CSS attribute
See also CSS, class names
for graphics 615
for links 546, 720

assigning with a format547
assigning with a marker546

for paragraphs601
for table cells 635
for table columns 629
for tables 603, 633
for Unicode character ranges603
for XML output 452
naming restrictions600

$$_class , macro variable691

closing </p> tags, suppressing in HTML438

.cnt file, WinHelp contents 306

code pages
encoding for special characters576
for Asian and Cyrillic languages

for HTML Help 344
for print RTF 220
obtaining 28

for HTML Help 314
omitting, for uncompiled HTML Help317

code sections, configuring for HTML581

code snippets, external, referencing175
with fragment identifiers 177
with processing instructions177

Code , HTML custom marker type719

<col> element tags for HTML tables629

ColGroup and RowGroup cells676
using with id/headers method670
using with scope attributes668

<colgroup> elements
and ColGroup cells676
required for scope column groups668
tags for HTML tables 628

color number, RTF, assigning via macro119

<$_colornum()> , predefined macro for RTF
output 119, 684

colors
for HTML links 545
in graphics

for WinHelp 745
for Word 745

in tables
for WinHelp 291
for Word 233

of bullet symbols, specifying152
text, defining for HTML 439
text, specifying

for HTML 574, 580
text, suppressing, for HTML573
Web-safe

for HTML text 440
listed 441

colspan , HTML table attribute 653

column breaks, inserting via PIs137, 138

column spans in HTML tables673

command-line version, see DCL, DITA2Go com-
mand-line version

commands, system
executing 777
in batch files 779
in DITA2Go macros779
understanding778

commenting out configuration sections66

comments
draft, excluding from output105
draft, specifying formats for105
in configuration files, syntax for64
in macro definitions 681
in system-command macros780
substituting for paragraphs in HTML568

comparison tool, file, obtaining35

compiling
Help files for delivery 802
HTML Help 346
JavaHelp with Helen395
WinHelp 284, 285

complex otherprops values, processing162

conditional
action settings, syntax of163
actions, defining 162
content flagging 163
exclusion from output164

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

878 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

expressions
in macros 704
replacing with list variables698

flags
See also flags
configuring 166
file, CSS 165
for assigning attributes169
setting 165

inclusion in output 164
operators for macro expressions, listed 702
processing, specifying161

conditions
default, specifying actions for163
extracting from ditaval files161

Config , custom marker type719

configuration
file, see configuration file
macros, see configuration macros
markers for overrides767
options determined at run time, listed 733
section, see configuration file, sections; configu-

ration sections
settings, see configuration settings
variables, see configuration variables

configuration file
comment syntax64
creating

for individual ditamap files765
deciding which to edit734
document-specific

name of 35
where to keep733

editing 49
macro, editing 740
output-specific, editing738
project, editing 737
sections

See also configuration sections
names of 63
order of 63

source-specific, editing738
starting, copied to output directory39
structure of 62

configuration macros
accessing settings with699
changing table settings with647
deploying 700
overriding configuration settings with767

configuration sections
See also configuration file, sections
commenting out 66
fixed-key, listed 770
names of 63
order of 63
using as list variables696
variable-key

cross-reference format, listed 773
graphic, listed 775
table format or ID, listed 774
text format, listed 772

configuration settings
case sensitivity of63, 768
changing on the fly765
file-path separator in64
fixed-key

overriding 770
vs. variable-key 63

in configuration templates742
order of 63
overrides to, persistent vs. temporary767
overriding 766, 775

with macros 767
with markers 767

precedence of, listed 766
querying with configuration variables699
rules for 62
spaces and tabs in63
syntax of 62
variable-key, overriding771
wildcards in 65, 73

configuration templates
See also templates, configuration727
chaining 743, 765
creating 741
for DITA2Map 816
format, setting up110
referencing 731

configuration variables
assigning macros and variables to768
assigning values to768
capturing settings with699

Confluence, generating XHTML for442

conkeyref
cannot be used map to map175
processed along with keyrefs176

conref
map to map pull 175

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 879

ConrefBranch , PI marker 171, 719

Conrefbranch , PI marker 173

conrefs
in map branches171

conrefs in map branches173

contains , macro string operator707

content model
See also content models; DTD
abstracting from a DTD

for DITA 755
for DocBook 755

configuration file, producing755
configuration sections756

[ElementSets] 758
[Topic] 757
[TopicFirst] 758
[TopicLevels] 759
[TopicParents] 758

DITA
settings, overriding762
topic type, naming756

DocBook, naming 756
element levels759
element parents758
element sets758
element types760
first-child elements 758
generating from a DTD754
replacing 755, 757
root element, specifying757

content models
See also content model
built-in

configurations for, listed 754
derivation 753
obtaining copies of754

debugging 764
preparing for use755
working with 753

content reference, see conrefs

content type, XML, specifying451

content, adding via format properties118

contents
Eclipse Help

creating 420
entries, merging from multiple files423
link paths, supplying421
properties, configuring421

properties, specifying419
HTML Help

and index, generating334
entries, configuring 337
links to mid-file topics 337

HTML-based Help
levels, setting 251

JavaHelp
creating 395
entries, configuring 395
expansion levels, specifying396
images, designating396

link to, following related links 191
mid-topic links, avoiding for Help systems250
OmniHelp, including 367
WinHelp

assembling for multiple topic files309
combined file, specifying284
configuring 306
entries, configuring 306
level for headings, specifying284
levels, setting 250
multiple files, referencing309
referencing secondary windows309

Word
table of, including or excluding198, 221

contents, table of (TOC), file name for199

context IDs for Eclipse Help426

context-sensitive Help277
for Eclipse Help, setting up425
for HTML Help, setting up 340
for JavaHelp, using symbolic IDs410
for OmniHelp, setting up375

<$_continue> , control structure for macros704,
706

controls for macro expressions
listed 704
using 704

conversion
DCL modules, writing 813
events, logging 74
project, setting up39
restrictions on file names26
setting up

for DITA XML 455
for DocBook XML 500
for Eclipse Help 413
for OmniHelp 357
for XML 449

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

880 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

settings, see configuration settings
to HTML

validating 434
to WinHelp

basic options 284
preparing for 282

via DCL, preparing for 809

converting to HTML
footnotes 581
graphics 611
list formats 584
nested lists 587
numbered lists586
special characters570
table footnotes642
tables 625, 648

converting to RTF
character formats227
cross references229
graphics 234
tables 232

converting via DCL
single file, example809

cookies, OmniHelp, persistence of365, 381

copyright statement and date, for WinHelp286

copy-to attribute, to override default file names
524

$$_count , macro variable692, 706

cover page
break before TOC525

crash, debugging821

cross references
for DITA XML

converted to <xref> elements 489
format attribute, specifying491
links below topic level 490
omitting from footnotes 490
scope attribute, specifying490
type attribute, specifying491
understanding how converted489
wrapper outputclass , specifying 489

for DocBook XML
converted to <xref> elements 507

for HTML
converting to text 552
deleting 552
omitting paths from 553

for print RTF 229

external, enabling231
locking 229
omitting from output 231

for WinHelp
converting 288
converting to text 290
deleting 290

in named map branches171

cross-file links, see interfile links

cross-reference
branch PI markers171
elements, mapping to output formats91
formats, defining 155
formats, specifying 101
jump destinations, WinHelp, specifying289
links, in DITA XML 489
marker text, truncating in WinHelp290
output format names, default, listed 157
properties, overriding773
wrapper elements, mapping to output formats91

CSH, see context-sensitive Help

CSS 591, 609
browsers, supporting430
class attributes for table columns629, 630
class names

case of 600
for character formats602
for footnotes 603
for links, assigning with formats547
for links, assigning with markers546
for paragraph formats601
for table cells 635
for table footnotes603
for tables 603, 633
for XML tags 452
restrictions on 600

directory to copy files from, specifying800
file name, specifying595
file, specifying when to create593
files

for conditional flags 165
for OmniHelp 361
list of, to copy 801

flags file, specifying 165
font sizes, mapping577
font-size units, changing607
for OmniHelp navigation panel, modifying365
generated from output formats109
line leading in 609

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 881

options for OmniHelp 361
properties, specifying599
span class for character formats602
using with HTML Help 319
vs. HTML, header formatting432

.css file, cascading style sheet (CSS)
options, specifying 593

css , output format property118

curly quotes, converting to straight quotes
for print RTF 227

$$_currbase , macro variable537, 692

$$_currfile , macro variable537, 692

$$_currfilepath , macro variable537, 692

$$_currpath , system-command variable692, 778

$$_currtitle , macro variable537, 692

custom markers
See also markers, custom
for DITA maps 498
for DITA XML 491
for DocBook XML 521
for HTML extracts 537
for WAI

image attributes651

Cyrillic
languages, HTML Help support for344
locale, for index sort order257

Czech
for HTML Help output, specifying345
for RTF output, specifying220

D
_d2g_log.txt , conversion event log file74
_d2g_log.txt , conversion log file46
Darwin Information Typing Architecture, see DITA

dashed lines, in WMF graphics746

Data Type Definition, see DTD

database input from HTML443

dcb , DCL output type 812

.dcb , output file extension for binary DCL files73

dcl , DCL output type 812

DCL, DITA2Go command-line version
conversion modules, writing813
files, using existing73
for use with oXygen 36

options, listed 812
output

file extension, specifying431
file structure813
files and paths, specifying812

running 46
syntax of 810

.dcl , output file extension for ASCII DCL files
convert existing DCL files73

$$_dcount , macro variable692, 706

debugging options75, 821

default configuration values61

definition lists, DITA
first-child status 475
options for 104

Delete , HTML custom marker type719

deleting
files before conversion789

deliverables
assembling for distribution792
compiling or archiving 802
file names and extensions, listed 806
producing 788

dictionary lists, converting
to HTML 588

directory
Omni Systems home, creating29

directory names
restrictions on 26

distribution
assembling files for792
DITA2Go , downloading30

DITA
attributes

affecting output formats95
assigning to elements468
assigning with conditional flags169
block element, overriding470
block element, specifying469
collection-type 497
ID, specifying 468
index range, for DITA 1.1 only456
inline element, specifying470
outputclass

assigning 471
for CSS 459
for border and shading properties88

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

882 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

parent, interpolated, assigning470
parent, interpolated, overriding470
root element, specifying469
values of, for output formats95
<xref> , overriding 490

bookmap
declarations, overriding763

configuration file, custom topic type
creating 761
listing 763
locating 764

content models
See also content model; DTD
built-in, configurations for, listed 754
built-in, obtaining copies of754
built-in, source of 753
configuration files, producing755
configuration sections756
generating from DTDs754
naming 756
overriding 762
preparing for use755

DTD
SYSTEM identifier, configuring 457

elements
assigning to formats461
block, ID, specifying 468
block, nesting 471
default, for character formats466
default, for paragraph formats462
delimiting 460
image, configuring 482
levels, overriding 479
levels, specifying 479
list types, parents of473
<menucascade> 467
outputclass attribute 467, 471
overriding character mapping466
overriding paragraph mapping463
possible parents of, specifying472
root, assigning outputclass attribute 471
typographic 467
<uicontrol> 467

images
ancestry, specifying482
configuring 482
parents of 482
wrapping in <fig> elements 483

maps 763
book maps vs. chapter maps494

chunking 523
levels, specifying 495
naming 494
navigation aids, providing498
navigation title, specifying495
nesting 494
overriding settings with markers498
overwriting 493
predefined markers for, listed 498
titles, specifying 494

marker types, predefined
for maps, listed 498
for topics and elements, listed 492

parent elements, specifying472
producing 455, 493
project, setting up455
PUBLIC declaration 458
relationship tables

adding ALink rows to 497
collection-type attribute 497
excluding ALink column from 496
structure of 496
unidirectional linking in 497

specialized topic types
debugging 764
element levels759
element parents, specifying758
first-child elements 758

tables
ancestry, specifying480
column widths of, specifying481
empty paragraphs in481
omitting element ancestries481
parents of 480
width, specifying 481

topic ID, specifying 487
topic types

assigned via marker487
assigned via paragraph format486
assignment, precedence of486
default, specifying 486
predefined, overriding762
specializing 761
specifying 486

topics
alternate titles for 488
IDs, specifying 487
map levels, specifying495
starting paragraph485

version, specifying 456

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 883

DITA*, DITA predefined marker types719
for maps, listed 498
for topics and elements, listed 492

DITA2Go
installing 30
running via DCL 809
stopping 38
uninstalling 38
updating 36

DITA2Map
configuration template for816
map options, specifying817
project, setting up815
running 817
understanding815

dita2map.exe , DITA2Map executable 817

ditamaps
including in output 105
individual configuration files for765
output options for, specifying105

$$_ditastart , macro variable464

ditaval files
extracting conditions from161
otherprops values in 162
single, specifying 161

divider between topic and related links, inserting
195

DLL files 37
build numbers of 820
downloading 37

.doc files, for Word 2000 237

DocBook
attributes

ID, assigning 508
inline, assigning 511
other than ID, assigning510
overriding 510
parent, assigning511
parent, overriding 511

content model
See also content models; DTD
built-in

configurations for, listed 754
obtaining copy of 754
source of 753

configuration file, producing755
configuration sections756
debugging 764

generating from a DTD754
naming 756
preparing for use755

elements
assigning to formats504
block, ID, specifying 510
block, nesting 511
default, for character formats508
default, for paragraph formats505
figure, options for 520
levels, overriding 519
levels, specifying 518
list types, parents of513
overriding character mapping508
overriding paragraph mapping506
possible parents of, specifying512

images
ancestry, specifying520
figure element, what to include in520
omitting size attributes from521
options for, specifying520
parents of 520
titles, where to place520

language attribute, specifying434
marker types, predefined, listed 521
output, producing 499
parent elements, specifying512
resources 499
tables

ancestry, specifying519
parents of 519

DocBook* , DocBook predefined marker types719
listed 521

DocType , specifying for HTML/XML 432

document
properties, specifying for HTML438
properties, specifying for RTF134

double-byte characters
in HTML 434
in XML 450

double-byte languages27, 434

downloading 37
beta executables37
HTML Help Workshop 32, 315
JavaHelp 32
Microsoft Help Workshop 33, 281
OmniHelp control files 354
run-time libraries 37
User’s Guide 17

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

884 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

DPI
default, specifying for HTML 438

draft comments
excluding from output 105
specifying formats for 105

<draft-comment>, suppressing in output 94

drop-down sections
See also expandable sections for HTML
blocks for

configuring 271
delimiting with formats 266
delimiting with markers 267

CSS for 271
emulating Web Works Publisher method275
JavaScript code for271
links for

configuring 268
delimiting with formats 266
delimiting with markers 267

DTD
See also content model
abstracting content model from754
HTML, specifying 432
locating for DITA2Map 816
parameter entities, equivalent to element sets

758
project, for DITA2Go , locating 68
properties, default, changing180
source for built-in content model753

dtd2ini , content-model extractor754

duplicate element IDs, checking for77

dynamic Help systems, see modular Help systems

E
eBooks, producing430

from HTML 33

Eclipse Help
contents and index methods420
contents properties, configuring421
context file, naming 426
context-sensitive Help, setting up425
files, packaging 427
generating 413
index properties, configuring423
infopops, configuring 425
MANIFEST.MF

configuring 417

including or excluding 416
output options, specifying414
plug-in

CSH properties, specifying420
ID, specifying 417
index properties, specifying419
naming 416
product version, specifying417
provider, specifying 417
schema version, specifying419
TOC properties, specifying419

plugin.xml

configuring 418
creating 418
excluding 415

projects
merging 423
setting up 413

TOCs, primary vs. secondary423
understanding413

Eclipse SDK, downloading33

EclipseAnchor , custom marker type424, 719

EclipseContext , custom marker type426, 719

EclipseLink , custom marker type424, 719

editor
for log file error display, designating74
XML, oXygen, integrating DITA2Go with 36

eHelp 244

electronic books, producing430

element names, using for output formats88

element paths
assigning DITA2Go user variables to186
defining 92
including in output 72
mapping to output formats91

inline and block 93

element sets, defining179

element tags, including in output72

element types, properties of
listed 181
specifying 179, 825

$$_element , macro variable692

elements
DITA, configuring 459
DocBook, configuring 504
mapping to formats87

cross-reference91

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 885

inline and block 90
<steps> headings 88
tables 90

specialized, defining properties of179, 825
unique IDs for, generating76

<$_else> , control structure for macros704, 705

<$_elseif> , control structure for macros704, 705

embedded topics, DITA
IDs for, generated487

empty paragraphs
in DITA table cells, retaining tags for481
in DocBook table cells, retaining tags for503
in HTML table cells

omitting tags for 640
providing content for 640
retaining tags for 640

in HTML text, providing content for569
in RTF output, removing final228

end , output format property118

<$_endif> , control structure for macros704, 705

endnotes, configuring148

<$_endrepeat> , control structure for macros704

ends , macro string operator707

<$_endwhile> , control structure for macros704

entity references
for HTML 432
for XML 450
mapped from high ASCII characters570

environment variable %OMSYSHOME%, creating 29

ePub format, producing from XHTML430

ePub, producing
from HTML output 27, 33
from XHTML 430

error messages
DCL NT console driver 821
HTML Help

alias entries 344
page cannot be displayed318

logged as conversion events74
OmniHelp Loading... 819
system command, displayed779
text of, localizing for OmniHelp365
Word

cannot open file230

errors
duplicate keys in configuration settings63
logged to conversion log file74

severity level of 74
WinHelp compiler 252

escape character for macros680

event log, see log file

events, conversion, logging74

excluding content from output164

excluding selected elements94

expandable sections for HTML264
See also drop-down sections
delimiting with formats 266
delimiting with markers 267
JavaScript code for

deploying 271
locating 272
modifying 273

JavaScript macro for, naming272
understanding265

exporting
HTML for database input443

expressions, macro
conditional, in macros704
results of 700

displaying in output 702
using indirection in 708
using list variables in707

ExtCode* , custom marker types177, 719

extension point, Eclipse Help413, 420

external code snippets, referencing175

Extr* , custom marker types719
listed 537

$$_extr* , predefined macro variables for extracts,
listed 539

extracts, HTML 528
customizing 537
delimiting 529

with existing formats 529
with markers 530
with special formats529

enabling and disabling528
meta text for 534
naming, with custom markers782
referencing 536
replacing with links 539
titles of, specifying 531

<$_extrthumb> , predefined macro539, 541

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

886 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

F
FAR, for Microsoft Help Viewer 244

favorites option
for HTML Help 320
for JavaHelp2 393

figure anchors, output formats for102

figure titles
placement of 102
treating as table titles203

figures
See also graphics
list of (LOF)

file name, specifying201
generating 201
link to, following related links 191

options for, specifying102

figures, see graphics

file
See also files
comparison tool, obtaining35
extension

for DITA XML output 456
for DocBook XML output 501
for graphics, HTML 747
for HTML/XML/DCL output 431
for interfile links 431
for Word interfile links 232
for Word output 219
for XML output 450

extracts, HTML, creating528, 544
names

containing blanks812
for DITA topics, via FrameScript488
for Word interfile references232
HTML split and extract 530
HTML, custom markers for782
HTML, generated 198
of chapter-specific configuration files765
overriding with copy-to attributes 524
restrictions on 26

path, see path
paths in configuration settings64
structure, DCL 813
titles, HTML, specifying 435

FileName , custom marker type719, 782
for DITA topics 487

files
See also file

configuration, see configuration file
converted

default location of for Word232
copying via system commands777
deliverable

assembling for distribution792
default base names of, listed 806

generated, naming for HTML output198
graphics

copied for postprocessing, listed 797
extension, specifying for HTML747
path, removing for HTML 611, 747
replacing, renaming, relocating for HTML

746
Help contents

for HTML Help, generating 334
for JavaHelp, creating395
for WinHelp, assembling for multiple

topics 309
for WinHelp, naming 306

HTML
extracting 528
generated, naming198
importing as insets441
renaming, for automated systems781
split and extract, referencing536
split and extract, renaming781
split and extract, specifying titles for531
splitting 526
splitting, at table heads526

index
for HTML Help, generating 334
for JavaHelp, generating395

JavaHelp
helpset, configuring392

macro, individual 685
macro, library 685
map, HTML Help, specifying348
naming, restrictions on26
output, copied for postprocessing, listed 795
postprocessing via system commands777
renaming via system commands777
splitting

for HTML 526
WinHelp

multiple, referencing from contents309
project, naming 284

filtering
in maps, advantages of169
individual elements via mapping94

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 887

via ditaval files 161

find, see full-text search

Firefox new window option for OmniHelp382

first , macro string operator707

$$_firstfile , macro variable537, 692

fixed-key configuration sections
listed 770
overriding settings in770
vs. variable-key 63

fixed-text links for expandable sections266
configuring 270

flagging content for further processing163

flags
See also conditional, flags
conditional, setting 165
images for, providing168
properties of, conflicting168
text properties of, specifying166

folder, see directory

font
RTF, assigning via macro119
size units in CSS319, 607
size, changing in HTML Help319
tags, HTML

including in HTML output 578
workaround for browser differences579

<$_fontnum()> , predefined macro for RTF output
119, 684

fonts
mapping, for HTML 576
OpenType and TrueType, browser support for

579

footer rows of tables
format for 103
in HTML <tfoot> elements 668
positioning for HTML 629

footnotes 582
ALink, adding to WinHelp topics304
converting

to HTML 581, 603
to WinHelp 288

inline, configuring, for HTML/XML 582
jump, formatting with macros583
links to, eliminating 583
omitting

from HTML/XML output 582
output format of, configuring102

separator for 582
table

converting to HTML 603, 642
positioning in HTML 642

using list tags vs. <div> and <p> tags 583

format
components

See also subformats
where to define141

configuration templates, setting up110
mapping options, specifying87
name prefixes, order of100
properties

base values of, specifying120
based 116
based vs. inline 122
before and after , assigning 118
block and inline 123, 124
css and rtf , applying 118
for HTML list formats 125
start and end , assigning 118

selection paths, including in output72
templates, organization of730

format strings in macro expressions703

formats
See also character, formats; paragraph, formats
character, properties of, overriding771
document section, RTF, configuring135
for table rows, configuring131
list, converting to HTML 584
mapping

to DITA XML 459
to DocBook XML 504
to generic XML 452
to HTML 565, 590

output
See also output formats
assigning content-adding properties to118
based on other formats116
border properties, block128
configuring 109
cross-reference, defining155
cross-reference, specifying101
default, specifying 121, 122
document section, RTF, configuring135
for headers and footers, including120
how to define 112
inline and block, properties of123, 124
mapping elements to87
modified by attributes95

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

888 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

prefixing with attribute values95
properties of, understanding115
purpose of 109
related-link, specifying 192
RTF section properties, listed 135
table cell properties, listed 133
table cell, configuring 132
table properties, listed 130
table row properties, listed 132
table row, configuring 131
table, defining 129
table, naming and defining129
tabs in RTF, specifying129
text, naming and defining121
where to define110, 120

paragraph
See also paragraph, formats
merging, RTF 226
properties of, overriding771
replacing with code, for WinHelp287, 711
replacing with code, for Word228, 711
script, designating for HTML568

prefixes for, default 100
properties of, defining109

fragment identifiers, RFC 5147177

framesets
image maps in623
in HTML 443
in HTML Help 445
in OmniHelp, customizing363
target for HTML jumps 623

framework for Omni Systems applications29

FTS, see full-text search

full-text search
for HTML Help 339

excluding topics from 340
for JavaHelp and Oracle Help397
for OmniHelp 367, 371

excluding content from374
excluding stop words from373

G
generated lists

including in HTML output 525
including links to 190
naming files for 198

generator, HTML, specifying435

GhostScript, PostScript interpreter
for converting EPSI graphics78

glossary
abbreviations for terms, configuring205
abbreviations of terms, first-use rules205
converting to JavaHelp401
file name, specifying204
generating 203
hover text for <glossentry> topics 441
link to, following related links 191
overriding default element paths93

Graph* , custom markers for HTML image attributes
720

GraphAlt , custom marker for WAI image attribute
651

$$_graphbase , macro variable616, 692

GraphDpi , custom marker for image resolution720

Graphic Workshop78

graphics
adding space before, HTML619
aligning, for HTML 617
alternate text for

HTML 620
WAI 650

aspect ratio, preserving, HTML621
attributes

See also image attributes
size, omitting 620
specifying 619
width and height units621

borders around
eliminating for HTML 619

class, assigning615
configuration sections subject to override, listed

775
directory

emptying before copying files to798
specifying for assembly799
specifying for HTML links 747

excluding
from RTF output 751

file extension, specifying, HTML747
files

assembling for distribution796
copying to assembly directory796
for assembly, listing797
path to, on UNIX server612
removing path from, HTML 611, 747
renaming extension, for Bristol Hyperhelp

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 889

283
replacing, renaming, relocating, for HTML

746
thumbnail, naming 540

formats, HTML, preferred746
groups

assigning properties to613
creating with overrides775
creating, HTML 613, 615

in extracts, referencing542
in table cells, repositioning

for HTML 619
indenting, HTML 617
JavaHelp, specifying location of391, 404
names of, including in Word237
properties

accessing with <$$_extrgraphid> 542
overriding for HTML 752, 774
overriding for RTF 752
specifying, HTML 619

replacement, format for, HTML747
scale, preserving in Word236
scaling

for HTML/XML 620
for Word 236

settings
custom, specifying752
synchronizing for HTML output799
synchronizing for RTF output800

size of, preserving, for Word236
spacer, for HTML 617, 641
tags around, omitting616
thumbnails, referencing, HTML540
WAI markup for 650

GraphLongdesc , custom marker for WAI image
attribute 651

$$_graphorighigh , macro variable616, 692

$$_graphorigwide , macro variable616, 692

$$_graphsrc , macro variable616, 692

GraphTitle , custom marker for WAI image attribute
651

Greek
DITA2Go support for27
for HTML Help output, specifying345
for RTF output, specifying220

groups
graphic, see graphics, groups
table, see tables: HTML, groups

H
<h1> - <h6> , HTML paragraph tags566

H2reg, for Microsoft Help Viewer244

hard returns
in configuration overrides776
to end WinHelp topic titles298

header and footer output formats
configuring, for RTF 136
including 120

headers
levels of, for WinHelp 307

headers , HTML table attribute for WAI 653
purpose of 657

headings, localizing157

headings, run-in
See also run-in headings
assigning to attribute prefixes97

Helen, third-party JavaHelp compiler395

Help 2, Microsoft, tools for 244

Help compiler, WinHelp
obtaining 33, 281
running automatically284

Help systems, merging280
Eclipse Help 423
HTML Help 350
JavaHelp, Oracle Help410
OmniHelp 377
WinHelp 285

Help Viewer, Microsoft
index terms for 252
tools for converting CHM files244

Help Workshop
downloading 33, 281
for HTML Help 314
for WinHelp 28, 33, 281

Help, on-line 243
contents entries, configuring250
context-sensitive, setting up277
Eclipse Help

evaluating 246
generating 413

evaluating features of244
HTML Help

evaluating 245
generating 313

HTML-based Help

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

890 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

contents levels, setting251
index entries, configuring251
JavaHelp or Oracle Help

evaluating 246
generating 385

merging systems280
Microsoft Help 2, tools for 244
OmniHelp

evaluating 245
generating 353

Oracle Help for Java, evaluating246
related-topic links, providing258
WinHelp

contents levels, setting250
evaluating 244
generating 281

HelpMerge , HTML custom marker type720
for HTML Help 351
for OmniHelp 378

helpset file, JavaHelp, configuring392

helpsets, merging410

hexadecimal numbers
displaying 704
in results of expressions700

.hha file for HTML Help 343

.hhc file
for HTML Help 336

.hhp file for HTML Help 318, 320

HHReg, HTML Help tool 347

.hht file, CSH IDs for HTML Help 344

HHW, see HTML Help Workshop

HIDC_ prefix for context-sensitive Help IDs343,
375

hiding content in Word228

hierarchical links in HTML 555

high ASCII characters
encoding for HTML 434
encoding for XML 450
mapping to HTML 570
replacing for W3C validation445

highlighting search terms in OmniHelp374

home directory, Omni Systems, creating29

hotspots
HTML Help, span of 264, 322
WinHelp

defining 299

for jumps and pop-ups299

hover text, providing, for HTML 441

.hpj file for WinHelp 282

htm , DCL output type 812

.htm , default HTML file extension431

HTMConfig , HTML custom marker type720

HTML
See also HTML code insertion
content for database input443
converting to 429, 611
extracts

code insertion methods for534
custom markers for537
customizing 537
graphics in, referencing542
replacing in parent file539
thumbnails for reference to540
titles, customizing 538

file extension, specifying431
files, split and extract, referencing536
generator, specifying435
links, creating 545
lists, indenting 589
macros for

defining and invoking 679
including in a library 685
selectively enabling683
using expressions in700
using variables in687

navigation macros555
tables, see tables: HTML
tags, closing: suppressing438
using XHTML tagging for 431

HTML code insertion
in splits and extracts534
keyword prefixes for splits and extracts, listed

535
keywords and locations, listed 535
keywords for splits and extracts, listed 536
methods for extracts, listed 535

HTML Help
See also HTML-based Help
advantages and disadvantages of245
ALink jumps, configuring 261
ALinks, target-and-jump262
binary TOC

for browse buttons320, 335
mid-topic links 337

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 891

no-link contents entries337
browse buttons, enabling319
.chm file, specifying 348
.chm , unblocking 314
compiling

and testing 346
for delivery 802
with HTML Help Workshop 347

contents, table of334
customizing 338
files, generating334
links to mid-file topics 337

file name restriction 26
font resizing 319
framesets in 445
full-text search, providing339
generating 313

contents and index files334
href links to other .chm files 324
hypertext jumps to other.chm files 323
index entries

case sensitivity of, specifying257
levels, combining 253
maximum length of 252
merging 256
sort order, specifying256

index files, generating334
index, customizing 338
jumps to secondary windows333
KLink jumps, configuring 261
links

specifying syntax of 324
to external files, configuring325

map files, specifying348
merging CHM files 350
parameters for ActiveX controls332
pop-ups

creating with HTML Help 322
creating with KeyHelp 322
creating with WinHelp 323
in hypertext Alert PI markers264

project title, specifying 316
project, compiling 314
registering a CHM for network use347
related topics, configuring332
span of hotspots, determining264, 322
starting topic, specifying317
synchronizing TOC references350
TOC, binary, compiling 321
uncompiled, configuring links for324

viewer
for .chm files 314
using CSS with 319

HTML Help Workshop 314
downloading 32

HTML-based Help
ALink jumps, configuring 261
ALinks, target-and-jump262
contents levels, setting251
index entries

case sensitivity, specifying257
sort order, specifying256

index link destination, specifying255
KLink jumps, configuring 261

HTMLComment , PI marker type720
HyperAlert , PI marker type 720

HyperAnchor , HTML PI marker type 720

hypergraphic, WinHelp graphic with hotspots300

HyperHelp, Bristol, see Bristol HyperHelp

HyperJump , HTML PI marker type 720

HyperLink , HTML PI marker type 720

hyperlinks, see hypertext, links

HyperPopup , HTML PI marker type 720

HyperTarget , HTML PI marker type 720

hypertext
alert markers, see alert markers
links

See also links, hypertext; links, HTML 553
for print RTF, converting 231
for print RTF, external 231
HTML, problem characters in548
WinHelp, using for jumps and pop-ups301

I
icons for drop-down links, configuring269

id , HTML table attribute for WAI 653
purpose 657
via CellID marker 666

identifying
Help files and titles, WinHelp306
links to other files, HTML 553

ideographic space in Japanese HTML Help346

IDH_ prefix for context-sensitive Help IDs
for HTML Help 343
for OmniHelp 375

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

892 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

id/headers method, WAI
column and row identifiers, naming674
columns, identifying 674
group identifiers, naming671
identifying row and column groups671
markup for table cells669
markup for tables657, 659
rows, identifying 674
span identifiers, naming673
using span IDs675

IDs
DITA element, specifying468
DocBook element, specifying510
duplicate, checking for77
HTML table, see TableID
symbolic, for HTML Help CSH 341
symbolic, for OmniHelp CSH375
unique, building blocks for76
unique, generating for elements76

.idx files for Oracle Help 399

<$_if not> , control structure for macros705

<$_if> , control structure for macros704

Illustrator, Adobe, for converting graphics78

image attributes
See also graphics, attributes; tag attributes
omitting

for DITA XML 484
for DocBook XML 521
for generic XML 453
for HTML 620

specifying, for HTML 619

image, background, for HTML624

images, see graphics

 tag attributes
alignment 617
class for anchor paragraphs601
specifying 619

via markers 650, 722
src , specifying 612

for JavaHelp 391

importance attribute, default prefixes and run-in
headings for 101

indenting
graphics, HTML 617
list items, HTML 126, 589
tables, HTML 641

index
See also index entries

file, naming 212
files, generating

for HTML Help 334
for JavaHelp 395
for non-Help HTML 211
for OmniHelp 367
for Word 207
for Word, in Word 240

heading letters
for non-Help HTML 213

including in single-file HTML output 525
link destinations for HTML-based Help,

specifying 255
link to, following related links 191
output format properties, configuring208
properties, configuring for Eclipse Help423
ranges, including209
references, configuring209
sort order, specifying

for HTML Help, OmniHelp 256
terms, see index entries
Word

configuring 207
generating in Word240
including or excluding 221

index entries
See also index
for Eclipse Help

configuring 423
for Help systems, configuring251
for HTML Help, maximum length of252
for HTML-based Help

case sensitivity of257
configuring 251
level separators for252
sort order of, specifying256

for JavaHelp
configuring 396

for Microsoft Help Viewer, preparing252
for non-Help HTML, configuring 212
for OmniHelp, configuring 370
for Word, configuring 207

indexes, multiple, configuring217

$$_indexfilename , macro variable692

indexterms, mapping to variant indexes217

index.xml , Eclipse Help index file423

indirect references, see pointers

indirection, using in macro expressions708

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 893

infopops for Eclipse Help, configuring425

.ini file, see configuration file

inline output format properties, listed 123

inline text , content-model element type760

inline , output format property122

insets
HTML, importing files as 441

installing DITA2Go
for the first time30
updates36

interfile links
in HTML, to renamed files553

J
Japanese

DITA2Go support for27
for HTML Help output, specifying345
for HTML Help, compiling 347
for RTF output, specifying220
ICU DLLs for HTML output 28
ICU DLLs, obtaining 317

JAR file, creating 400

Java Runtime Environment, for JavaHelp28

Java Virtual Machine, for JavaHelp385

JavaHelp
See also HTML-based Help
advantages and disadvantages246
ALink jumps, configuring 261
compiling, with Helen 395
contents and index files

creating 395
locating 397

conversion, setting up directories for386
excluding face attribute of font tags578
full-text search 397
generating 385
glossary, converting to401
helpset file, configuring392
images, mapping to files404
index entries

case sensitivity of, specifying257
configuring 396

index link destination, specifying255
JAR file, creating 400
JHIndexer command398
map file, specifying location of391

version 2.0, downloading32
windows, defining 403

JavaScript
for expandable sections271
including in HTML output 27, 430
inserting, for HTML attributes438
using macro variables in536

JH2Pop* , custom markers for JavaHelp 2 pop-up win-
dow properties 720

JH2Sec* , custom markers for JavaHelp 2 secondary
window properties 720

JHIndexer command for JavaHelp398

.jhm file, JavaHelp map file410

JPEG graphics export format
for Web use 746

JRE, Java Runtime Environment28

jumps
ALink

configuring for Help systems261
macros for HTML Help 328
with keywords for HTML Help 329

and pop-ups, WinHelp
creating 299
using hypertext links for301

destinations of, WinHelp
cross-reference, specifying289
external, coding 302

KLink, configuring for Help systems261
related-topic, adding for Help systems261
to other Help files, HTML Help323
to secondary windows

in Help systems262
in HTML Help 332
in OmniHelp 370
Oracle Help 408

K
key names in configuration settings63

Key Tools, obtaining 322

keydef
limiting scope of 172

KeyHelp, DLL for HTML Help pop-ups 322

keyref
indirection without employing175
to named branch173

KeyrefBranch , PI for keyref to named map branch

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

894 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

173, 720

keyword links, see KLinks

keywords, configuration
DITA content model, listed 833
HTML, listed 849
RTF, listed 837

KLinks
access to merged topics259
HTML-based Help, configuring261
jump destinations of, specifying262
maintenance issues260
OmniHelp, support for370
understanding259
WinHelp, limitations of 303

Korean
DITA2Go support for27
for HTML Help output, specifying345
for RTF output, specifying220

L
label attribute for Eclipse Help index entries423

label, Eclipse Help TOC, for book level421

labels, localizing 157

language templates, localizing157

language, localizing157

language, output, specifying
for headings, labels, names158
for HTML Help 344
for <html> tag 433
for print RTF 220

language, overriding158

languages supported27

last , macro string operator707

$$_lastfile , macro variable537, 692

leading, see line spacing, adjusting

length , macro string operator707

levels, macro nesting683

libraries, run-time, downloading37
library, macro, creating and naming685

line breaks
in DITA <codeblock> elements, preserving

462
in DITA, inserting via PIs 138
in DocBook <programlisting> elements,

preserving 505
in HTML, suppressing439
in macros, including or excluding681
in XML, suppressing 439, 451

line spacing, adjusting
for HTML list items 589
for RTF 227
in CSS 609

lines, dashed, in WMF graphics746

Link* , custom markers for HTML link attributes720

LinkClass marker 546
effect of 720
for WAI 652

links
See also cross references; hypertext, links
from maps, types to include189
hypertext

converting to RTF for Word231
in output, formatting 192
output format for, specifying89
peer, resolving 196
related, types to include190
related-topic

ALinks and KLinks 258
appending to topics190
for on-line Help 258

to generated lists, appending190
XML

anchors for, managing454
configuring 454

links, HTML
configuring 128
creating 545
CSS class, assigning

via format 547
via marker 546

drop-down, configuring268
buttons 269
icons 269
text 270
type, specifying 268

drop-down, delimiting
with formats 266
with markers 267

for breadcrumb trails555
forcing to lowercase549
from cross references551
hierarchical 555
mid-topic, from TOC 250

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 895

navigation
behavior of 559
creating 555

to footnotes, eliminating583
to other files, identifying 553

$$_linksrc , macro variable548, 552, 652, 692

LinkTitle , marker for WAI attribute 652

list formats
converting

to DITA XML 473, 476
to DocBook XML 513
to HTML 584

CSS properties for, assigning125
dictionary, converting

to HTML 588
indenting, for HTML 589
nested, converting

to DITA XML 476
to HTML 587

list variables
creating with configuration sections696
for macros 695
initializing 696
instead of conditional expressions698
processing with macros696
processing with pointers697
using in expressions707

lists, definition, options for104

lists, generated
including in HTML output 525
links to, including 190

lists, parameter, options for104

literals, character
assigning to macro variables689
for macro variables, listed 689

locale
for index sort order257
for RTF output 220
identifier for HTML Help 344
specifying for HTML Help 344

localizing headings, labels, names157

LocalTOCTitle , PI marker for HTML local
TOCs 720

log file
editor for displaying when errors74
for conversion events46, 74

logging

automation commands788
conversion events74

logical operators for macro expressions, listed 701

longdesc , HTML image attribute for WAI 650,
651

loops, nesting, in macros706

lower , macro string operator707

M
macro

See also macros, DITA2Go
configuration file, editing 740
expressions, results of

displaying in output 702
interpreting 700

files, individual 685

macro libraries, organization of729

macro parameter, passing709

macro templates187

macro variables
See also macros, DITA2Go
assigning paragraph content to692
assigning values to688
assignment values of, displaying690
in HTML navigation macros560
incrementing and decrementing690
list type 695

See also list variables
using in expressions707

nesting 690
predefined

for HTML extract replacement, listed 539
for HTML splits and extracts, listed 537
for system commands778
listed 691
uses for 691

referenced in WAI attributes649
syntax of 687
undefined, debugging709
valid contexts for 710

$$_macroparam , macro variable692

macros, DITA2Go
See also macro; macro variables
backslash escape character in680
conditional expressions in704
control-structure elements, listed 704

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

896 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

debugging709
defining 679
editing with the Configuration Manager56
expression results700
expressions700, 709
for HTML

framesets, using to create443
inserting, for split and extract files534
insertion methods for extracts534
JavaHelp secondary windows and pop-

ups 403
navigation, inserting predefined559, 710
navigation, redefining561
referenced in WAI attributes649
table, specifying642
using for attribute text552
using for link properties548
using to specify WAI attributes654

line breaks in681
nesting 683
nesting limit 683
operands701
operators, listed 701
predefined

HTML, listed 683
RTF, format 119
RTF, listed 684

specifying where to invoke710
ternary operators ? and : 705
trailing space in681

macros, WinHelp, invoking302

manifest file, Eclipse Help
MANIFEST.MF, configuring 417
plugin.xml , configuring 418

MANIFEST.MF, Eclipse Help manifest file416

map files for context-sensitive Help278
HTML Help, specifying 348
JavaHelp, specifying location of391

[MAP] section of HTML-based Help file342

mapping options for output formats87

maps
chunking 523
ditamaps, configuring493
filtering in, advantages of169
generated, specifying options for69
generating from topics69
including in output 105
named branches in, designating170
scoping and filtering in169

specifying output options for105

margins
of output table cells, default130
of output table cells, specifying133
of RTF output body, specifying135
specifying, for HTML Help pop-ups322

marker types
See also markers
configuration, defining 767
effects of properties, listed 723
naming 721
predefined

for DITA maps, listed 498
for DITA XML, listed 492
for DocBook XML, listed 521
for HTML extracts, listed 537

markers
attribute, for HTML or XML

for images 619
for links 547
for tables 634
listed 722

configuration, to override settings767
custom

for HTML extracts 537
hypertext alert

and alerttitle , for WinHelp pop-ups 301
for HTML Help pop-ups 264
for HTML split points 527
for splitting HTML files 527

memory deallocation821

merging
Eclipse Help projects423
Help systems280
HTML Help .chm files 348
JavaHelp or Oracle Help systems410
OmniHelp projects 377

Meta*, PI markers for <meta> tag content720
<meta> tag content, supplying436

for split or extract files 534

Microsoft
HTML Help Workshop, see HTML Help Work-

shop; Help Workshop
HTML Help, see HTML Help
Vista, no support for WinHelp244

Microsoft Help Viewer
index terms for 252
tools for converting CHM files244

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 897

mid-topic entry points
for Eclipse Help context anchors426
for HTML Help CSH links 343
for index links, not recognized by RoboHelp

255
for TOC links, in HTML Help 337
incompatible with HTML Help binary TOC

320, 337

mid-topic links
from OmniHelp TOC, avoiding364
in Eclipse Help TOC, enabling422
in Help systems, effects of244

modular Help systems280

modules, DCL conversion, writing813

mouseover
hover text in HTML output441
shortdesc in title attribute 106

for related links 192

MS HTML Help, see HTML Help

N
names

See also naming
of CSS classes, case sensitivity600
of files and paths, restrictions on26
of files, in double quotes812
of formats

table, specifying 129
text, specifying 121

of headings, localizing157

namespace, HTML, specifying433

naming
files

and paths 26
helpset, JavaHelp392
HTML split and extract 781
WinHelp 306
WinHelp topic 289

formats
table 129
text 121

marker types 721
projects

Eclipse Help 416
OmniHelp 358

WinHelp primary window 309

navigation

buttons
for HTML 560
for HTML Help 319
for OmniHelp 364

links for HTML, creating 559
macros for HTML

button definitions, listed 564
buttons for 560
default definitions of 560
redefining 561
scope of 563
text-link definitions, listed 563
where to invoke 564

titles
for DITA topics, alternate488
from ditamaps, configuring use of200

Ndoc, for Microsoft Help Viewer244

nested lists
converting to DITA XML 476
converting to HTML 587

nested topics, including in TOC199

nesting
DITA elements 471, 476
DITA maps 494
DocBook elements511
macro loops and conditionals, forbidden704,

705
macro variables690
macros 683

network drive
for shared configurations734
not a good place for %OMSYSHOME%29

network drives
why not to use 820

network file system, using HTML Help across347

.new , extension for changed configuration files51

<$_next> , HTML navigation macro 559

$$_nextfile , macro variable537, 692

$$_nexttitle , macro variable537, 692

<$nopage> index entries
for HTML-based Help 255
for OmniHelp 370

no-scroll region for WinHelp topic titles298

<note> , default type, specifying101

number subformats, properties of, listed. 148

numbered lists, converting
to HTML 586

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

898 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

to RTF 226
numbering properties

assigning to output formats150
configuring 146
of output formats, listed 147
of output formats, understanding146

numeric entity references
for XML 450

numeric IDs for context-sensitive Help278

O
omitting elements from output94

Omni Systems
environment variable %OMSYSHOME%, creating

29
home directory, creating29

OmniHelp
See also HTML-based Help
advantages and disadvantages of245
ALink jumps, configuring 261
ALink keywords, displaying 370
ALinks, target-and-jump262
buttons, excluding or displaying364, 369
contents

expanding and collapsing368
including 367

context-sensitive Help, setting up375
cookies, persistence of381
CSS usage, specifying361
data and control files, listed

supplied in ohview.zip 356
generated by DITA2Go 357

files, obtaining 354
frameset and frame dimensions, specifying363
full-text search

configuring 371
including 367
terms, highlighting 374

index entries
case sensitivity of, specifying257
expanding and collapsing368
levels, combining 253
See and See also entries 370
sort order, specifying256

index link destination, specifying255
index, including 367
interface, localizing 246, 365
KLink jumps, configuring 261

launching 381
memory requirements359
navigation aids, modifying364
navigation panel, modifying365
pop-up windows, specifying371
prev/next buttons, including364
projects

merging 377
naming 358
setting up 357
titles of 359

related topics
including 367
links, providing 370

search terms, highlighting374
secondary windows, jumping to370
settings, making persistent365
starting topic, specifying359
template, modifying 366

%OMSYSHOME% environment variable29

on-line Help, see Help, on-line

OpenOffice, producing RTF for241

operating settings, specifying67

operators for macro expressions, listed 701

Oracle Help for Java
See also HTML-based Help
advantages and disadvantages of246
ALink jumps, configuring 261
ALinks, target-and-jump262
content and index, creating397
Developer's Kit 28
downloading 32
full-text search 397
index entries

case sensitivity of257
configuring 396

index link destination, specifying255
JAR file, creating 400
obtaining information about385
windows, defining 403

order of configuration-file sections and settings63

otherprops values, complex, processing162

output 131, 135
directory, specifying 39
file paths and names, specifying812
numbering properties, configuring146
print, including or excluding content for71
text strings, configuring141

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 899

type, specifying 39
for print RTF 219
for WinHelp 284

output formats
See also formats, output
block properties, listed 124
border properties, block128
configuring 109
cross-reference, default names of, listed 157
cross-reference, specifying101
default names for88
default, specifying 121, 122
footnote properties102
for cross-reference elements91
for links 89
for unused features120
from @outputclass 88
from element names88
how to define 112
index properties208
inline and block, properties of123, 124
inline properties, listed 123
mapping elements to87
mapping options87
modified by attributes95
numbering properties of, listed 147
numbering properties of, understanding146
properties of, based on other formats116
properties of, understanding115
purpose of 109
RTF section properties, listed 135
table cell properties, listed 133
table cell, configuring 132
table row properties, listed 132
table, naming and defining129
table, properties of, listed 130
text, naming and defining121
text, understanding119
where to define110, 120

outputclass attributes
for border and shading properties88
for output format names88
mapping values to output formats89

for block and inline elements90
for cross references91
for tables 90, 103

of indexterm elements, mapping to variant
indexlists 217

overline, replacing with a tag in HTML/XML580

overrides
See also overriding
configuration

See also configuration settings, overriding
for HTML table and graphics groups775
persistent vs. temporary767

format
allowing or eliminating for HTML 573
suppressed for DITA XML 467

overriding
configuration settings

fixed-key 770
in macros 767
variable-key 771
with command-line options810
with configuration markers767
with text, for HTML 776

cross-reference properties773
format properties771
HTML graphics properties774
HTML table

[Attributes] values 644
column and row groups630
default heading/footing counts631
default WAI cell settings675
display attributes633
properties 773
WAI markup method 659

paragraph properties for HTML570
path to graphics for HTML748, 774
split points in HTML 527

overview topic in WinHelp 309

oXygen, integrating DITA2Go with 36

P
</p> tags, suppressing in HTML438

padding
HTML, around body text 120
of output table cells133
of output table cells, default130

page
breaks

between title and TOC525
forcing, for RTF 137
handling for WinHelp 285
inserting in DITA via PIs 137, 138

header and footer output formats, configuring for
RTF 136

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

900 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

layouts for RTF, defining134
numbers

in cross references, for print RTF231
including in cross-reference formats155

titles, for HTML files 531
assigned with markers533
based on file names533
based on paragraph formats532
computed 534
default 533
precedence531
prefixes and suffixes532

PAGEREF field, RTF, assigning via macro119

<$_pageref> , predefined macro for RTF output
119, 684

Paint Shop Pro, for converting graphics78

paragraph
See also paragraphs
attributes, suppressing, for HTML568
autonumbers, eliminating, for HTML454, 567
formats

See also formats, paragraph
eliminating tags for HTML 568
for splitting HTML files 526
mapping to DITA elements461
mapping to DocBook elements504
mapping to RTF styles225
merging, RTF 226
output properties, listed 123
output, default, specifying121, 122
properties of, overriding771
replacing with code, for WinHelp287, 711
replacing with code, for Word228, 711
replacing with comments for HTML568
script, designating, HTML568

properties
changing for individual paragraphs771
overriding, HTML 570
stripping, HTML 568

paragraphs
See also paragraph
empty

providing content for in HTML 569
replacing with RTF code

for WinHelp 287, 711
for Word 228, 711

unwanted, eliminating for HTML569

parameter entities, equivalent to element sets758

parameter for DITA2Go macro 709

parameter lists
for DITA output 475
options for DITA input 104

$$_paratag , macro variable692

pass-through code, HTML568

path
See also file, paths in configuration settings
current, macro variable for537
default, for Word documents232
element, mapping to output formats91
names

restrictions on 26
spaces in, avoiding26, 820

omitting from links, for OmniHelp 359
overriding, for HTML graphics748, 774
relative vs. absolute

in configuration settings64
in graphics references612

retaining in interfile links for HTML 553
specifying, for HTML graphics612
to assembly directory792
to configuration template731
to CSS directory, for copying CSS files800
to graphics files

on UNIX server 612
removing, for HTML 611, 747

to project directory, macro variable for692
to project DTD, specifying68
to shipping directory 806
to XML catalogs, specifying68

PDF output, producing via Word222

peer links, resolving196

pernicious mixed content in DITA source181

persistent configuration overrides767

persistent settings in OmniHelp365

pictures, see graphics

pkzip.exe

for archiving deliverables803
for packaging Eclipse Help topic files427

placement of, for HTML/XML 582

platform differences, accommodating, WinHelp283

plug-in manifest file plugin.xml , Eclipse Help,
configuring 418

plugin.xml , Eclipse Help manifest file418

pointers
to process lists697

policy, chunking, specifying524

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 901

pop-ups
See also windows, pop-up
browser, suppressing, effect on OmniHelp383
HTML Help 322

creating with HTML Help 322
creating with KeyHelp 322
creating with WinHelp 323

HTML, require JavaScript550
JavaHelp, using macros for403
OmniHelp, specifying 371
WinHelp

alert, creating 301
creating 299
from table cells 292
hotspots for 299
using hyperlinks for 301

postprocessing
activating and logging788
automated 787
files copied, listed 795
graphics files copied, listed 797
separately from converting807
understanding787

<pre> , HTML paragraph tag566

precedence
of configuration settings732, 742, 765

listed 766
of DITA topic type assignments486
of extract code insertion methods534
of extract property assignments538
of HTML page title assignments531
of macro definitions 683, 687
of macro variable definitions688
of table property assignments625

predefined
macro control-structure elements, listed 704
macro variables

all, listed 691
for HTML splits and extracts, listed 537
in system commands778
using 691

macros
for HTML, listed 683
for RTF formats 119
for RTF, listed 684

prefixes, format-name
assigning run-in headings to97
default, from attributes100
order of 100

preformatted text
assigning HTML <pre> tags 566
content-model element type760
HTML/XHTML, configuring 581
in table cells

for DITA 481
for DocBook 503
for HTML/XML 640

preserving whitespace in for DITA471

<$_prev> , HTML navigation macro 559

$$_prevfile , macro variable537, 692

$$_prevtitle , macro variable537, 692

primary window, naming in WinHelp309

print, output to be included or excluded for71

Print , PI marker720
Print , PI marker for conditional output72
$$_prjpath , system-command variable692, 778

project file
HTML Help 318, 320
JavaHelp helpset392
WinHelp 282

naming 284

Project Manager, DITA2Go
shortcut to 31
to create a project39

project, DITA2Go
creating 39
DTD, specifying 68
naming 39

properties
of element types

assigning to class attributes183
default 825
defining 179

of formats
based vs. inline122
block, specifying 124
border 128
character, specifying121
content-adding 118
css and rtf , assigning 118
implied, for HTML links 128
inline, specifying 123
list, DITA2Go list styles 127
list, HTML list styles 125
paragraph, specifying122
table 129

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

902 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

public and system IDs, overriding763

PUBLIC declaration for HTML/XML 432

punctuation
in ALink keywords, avoiding

for HTML Help 326
for OmniHelp 370
for Oracle Help 409

in CSH newlink markers
for JavaHelp, Oracle Help410

in file and directory names, avoiding26
in HTML file names 783
in index entries

ignoring for sort order256
in link keywords, disallowed258

pushatstart, pushatend
conref push actions176
for conref between topics176

Q
quotes

around configuration-assignment values768
around macro names in overrides768
style, specifying for print RTF227
style, specifying for <q> output 143, 159

R
redirect pages for OmniHelp CSH376

.ref files, interfile links
when not to delete791

reference files for HTML
deleting between conversions790

related links
appending to topics190
changing for peers196
divider, configuring 195
generating ALinks from 192
including descriptions with191
labels for, specifying193
listing by topic type 191
output appearance of193
output formats for, specifying194

related topic
keywords

adding with format properties260
adding with markers260

links
ALinks and KLinks 258
for Help systems258
for HTML Help 325
for OmniHelp 367, 370
for Oracle Help 409
for WinHelp 303
in DITA maps 496

relational operators for macro expressions, listed
701

relationship tables, DITA496

relative vs. absolute paths
in configuration settings64
in graphics references612

renaming files via system commands777

repeat loops in macros706

<$_repeat> , control structure for macros704, 705

replace with , macro string operator707

requirements, system27

resource.h , Help map file 278

returns, hard, see hard returns; line breaks

reusing topics 170

revision tracking in Word239

RFC 5147 fragment identifiers177

RGB colors
Web-safe 440

listed 441

RoboHelp, for generating WebHelp244, 245, 255

root element
for content model 757

row output formats for tables, configuring131

row spans, identifying673

Row* , custom markers for HTML or XML table row
attributes 720

RowClass , custom marker for CSS635

RowGroup cells 677
and ColGroup cells, using676

with id/headers method670
with scope attributes668

defined 661

rowspan , HTML table attribute 653

RTF
color number, assigning via macro119
converting to 219
formats, mapping225

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 903

output macros, predefined119
PAGEREF field, assigning via macro119
raw code, replacing content

in WinHelp 287, 711
in Word 228, 711

style name, assigning via macro119
STYLEREF field, assigning via macro119
tab positions, specifying129

RTF code, including for Word238

rtf , DCL output type 812

rtf , output format property118

RTFConfig , RTF custom marker type720

run-in headings
assigning to format-name prefixes97
configuring 153

Russian
DITA2Go support for27
for HTML Help output, specifying345
for RTF output, specifying220

S
SBAppLocale, HTML Help compiler for other

locales 347

scaling
graphics for HTML/XML 620
thumbnail graphics for HTML541

scope method, WAI
identifying column and row groups668
identifying columns and rows668
markup for tables657, 658

scope , HTML table attribute for WAI 653
adding via format 662, 663
adding via marker666
purpose of 657

script paragraph formats, designating, HTML568

<script> , HTML paragraph tag566

scrolling WinHelp topic titles 298

Search , PI marker340, 374, 720
search, see full-text search

secondary windows
See also windows, secondary
HTML Help 332

accessing from contents or index333
accessing from topics333
defining 333

JavaHelp
size and position settings for403
using macros for403

jumping to, in Help systems262
OmniHelp, specifying jumps to370
WinHelp

forcing contents to main window309
specifying 302

see and see-also index properties, configuring208

separator character
between index references210
between menu items159
between topics, adding525
in file paths 64

for importing HTML files 441
in system commands778

in index ranges210

SEQ fields , Word, for autonumbers226

service mark format, configuring157

sets, element, defining179

setting up a conversion
to DITA XML 455
to DocBook XML 500
to Eclipse Help 413
to generic XML 449
to HTML 430
to HTML Help 315
to JavaHelp or Oracle Help386
to OmniHelp 357
to print RTF 239
to WinHelp 281

ShadeFormat , PI marker for specifying shading
subformats 720

ShadeType , PI marker for specifying shading
subformats 146, 720

shading
for output formats, from <outputclass>

attributes 88
formats, defining 145

shed.exe , for WinHelp graphic hotspots300

.shg files, WinHelp hypergraphics300

_ship , default shipping subdirectory247, 788

shipping directory, specifying806

shortcut to ugdita2go.chm , creating31
shortdesc

deciding where to display107
including in title attribute

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

904 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

as a mouseover106
for related links 191

including in TOCs 200
including with links 192

SimpleTableRelCol , PI marker for table column
widths 720

SimpleTableWidth , PI marker for table width720

smart quotes, converting to straight quotes
for print RTF 227

solidus, mapped to a forward slash for HTML576

sort order, index, specifying256
See also index, sort order, specifying

source directory, specifying39

source map file, selecting39

space, adding
See also line spacing, adjusting
at the end of a macro681
before graphics in HTML619
before tables in HTML 643
between topics in a single HTML file525

spacer between fixed links, configuring195

spacer graphic for HTML
for indenting images617
for indenting tables641

$$spacerwidth , macro variable for HTML 685

spaces
around images in HTML table cells,

eliminating 619
fixed, in Japanese HTML Help346
in configuration settings63, 73
in CSS class names, removing or replacing600
in file or path names

for commands, double quotes812
for HTML links, avoiding 554
not recommended26, 820

in HTML links, removing or replacing548
removing from a string value709
trailing, in macros 681

span class, CSS attribute for character formats602

span , HTML table attribute for WAI 719

special characters, mapping for HTML574

specializations, providing XML catalogs for68

specialized elements, defining properties of179,
825

splash screen, break before TOC525

split files

See also split points
HTML 526

designating split points for526
naming

via paragraph formats782
via PI markers782

suppressing split points for527
titles of, specifying 531

split points
See also split files
for DITA XML files 484
for HTML files

overriding 527
preventing dangling headings with527
suppressing527
using Help-contents level numbers for527

Split , PI marker for splitting files526, 720
StarOffice, producing RTF for241

start , output format property118

starting configuration file, copied to project
directory 39

starting topic, specifying
for Eclipse Help 421
for HTML Help 317
for JavaHelp 393
for OmniHelp 359
for Oracle Help 393
for WinHelp 306

starts , macro string operator707

stop words in OmniHelp search373

stopping a DITA2Go conversion38
straddled table columns and rows

in WinHelp 292
in Word 233, 234

strikethrough, as a format override for HTML573

string operators for macro expressions, listed 702

stripping paragraph properties for HTML568

structure, XML, providing 451

style tags, HTML/XML, suppressing in output567,
570

style, RTF, assigning via macro119

<$_style()> , predefined macro for RTF output
119, 684

<$_stylenum()> , predefined macro for RTF
output 119, 684

STYLEREF field, RTF, assigning via macro119

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 905

<$_styleref()> , predefined macro for RTF
output 119, 684

stylesheet, Word, generated from output formats
109

subformats
aliases for, assigning142
properties of, based142
where sought142
where to define141

suffix, file name
for generated index212
for glossary 204
for list of figures 201
for list of tables 202
for table of contents199

suffix, file, see file, extension

summary, HTML table attribute for WAI 653, 654

support for DITA2Go , requesting819
suppressing elements94

symbolic IDs for context-sensitive Help278

syntax
command-line

for DCL 810
configuration-variable assignment768
macro variable, for HTML 687

system
commands, see also commands, system
commands, to automate conversions777
requirements for DITA2Go 27

T
table cells

HTML, see tables: HTML, cells
format properties for

configuring 132
listed 133

table formats, naming and defining129

table of contents, see contents; TOC

table structure model, CALS vs. HTML627

table titles, from figure titles203

Table* , PI markers for HTML table attributes720
TableID

assigning properties to, for HTML626

tables, format properties for
configuring 130

listed 130

tables, list of (LOT)
file name, specifying202
generating 202
link to, following related links 191

tables, options and formats for103

tables: converting
to HTML 625
to WinHelp 290
to Word 232

tables: HTML
access method, specifying for WAI658
adaptive sizing of 639
attributes

automatically generated, eliminating453
overriding 630, 633, 639

attributes, specifying
precedence of methods625
via [Attributes] 632
via macros 642
via markers 634

background color, automatic635
browser-dependent tags for628
caption tags 641
cells

attributes of, specifying645
format properties of132
identifying 664, 674

column groups
enumerating 628
identifying 628
overriding 630

columns
applying CSS class attribute to629
WAI information about 657

configuration sections subject to override, listed
774

converting to paragraphs647
display attributes

overriding 633
properties for, specifying632
specifying 632

footer rows, counting631
footnotes

converting 642
positioning 642

graphics in, adjusting spacing619
groups

assigning properties to626

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

906 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

creating 626
creating with overrides775
specifying settings for625
using wildcards to specify627

header cells, designating628
header rows

counting 631
designating 670

indenting 641
macros, specifying642
properties of, overriding773
properties, assigning625
row groups

attributes of, specifying644
identifying 628
overriding 630
specifying 629

rows
attributes of, specifying634, 644
information for WAI 657

space before, adding643
splitting files based on526
structure, specifying627
titles, positioning 641
WAI markup 652

applying 652
method for, choosing653
method for, default, specifying658
overriding 659
strategy for 657

tables: WinHelp
adaptive sizing of 291
appearance, adjusting291
converting rows to topics292
titles, positioning 291

tables: Word
cell properties, adjusting233
titles, repositioning 233

TableSummary , PI marker for WAI 655
TableTitle , PI marker for WAI 655
tabs

in autonumbers, eliminating for HTML568
in configuration settings63
in output formats, specifying for RTF129

tags, HTML/XML, eliminating from output567,
570

target frame for HTML jumps623

$$_tblcols , macro variable645, 692

$$_tblrows , macro variable645, 692

<tbody> elements
and RowGroup cells677
overriding [Attributes] for 644
required for scope row groups668
tags for HTML tables 629

technical support for DITA2Go , requesting819
template macros, DITA2Go user variables in187

templates
configuration 727

chaining 743
creating 741
format, organization of730
format, setting up110
general, organization of728
general, what to include in742
naming convention for728
organization of 727
precedence of743, 765
referencing 731

language, for headings, labels, names157
OmniHelp, modifying 366
Word, specifying 223

temporary configuration overrides767

ternary macro operators '?' and ':'705

test file title, eliminating 435, 531, 533

text
color, specifying

for HTML 580
for HTML or RTF 123

for drop-down links, configuring270
formats, naming and defining121
output, literal, configuring 141
pop-up attributes, HTML Help322
preformatted

configuring, HTML 581
designating, HTML 566

replacing, with code or macros711

<tfoot> elements
overriding [Attributes] for 644
tags for HTML tables 629

<th> elements, tags for HTML tables628

<thead> elements
overriding [Attributes] for 644
tags for HTML tables 629

thumbnails to reference graphics
in HTML extracts 540
in place of images in HTML616

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 907

title page
break before TOC525
for RTF output, configuring138

Title , custom marker for split and extract files720

title , DITA attribute
including shortdesc in106, 191

title , HTML attribute
for images

assigning via format650
for links

assigning via format652
assigning via marker651

for tables
assigning via TableID654
WAI guidelines for 653

Title , HTML marker type property533

titles
DITA, alternate, specifying488
HTML Help project, specifying316
HTML, specifying 435

for split and extract files531
to eliminate Test File 435, 531, 533

JavaHelp helpset, specifying392
WinHelp

file, identifying 306
table, repositioning291
topic, configuring 297

TOC
entries from <navtitle> elements 200
generated from map198
in single-file HTML output 525
including shortdesc in 200
page break before525

TOC, generating198

toc.xml , Eclipse Help TOC file 421

<$_top> , HTML navigation macro 559

topic
See also topics
DITA, starting point of 484
files, WinHelp

assembling contents for309
naming 289

ID, DITA, specifying 487
levels in WinHelp, specifying307
starting, specifying

for Eclipse Help 421
for HTML Help 317
for JavaHelp 393

for OmniHelp 359
for Oracle Help 393
for WinHelp 306

titles in WinHelp, configuring 297
type, DITA

default 486
specifying 486

TopicAlias , custom marker for context-sensitive
help 720

topicref
pull from external map175

topics
See also topic
DITA, see DITA, topics
pop-up, see pop-ups; windows, pop-up
reusing via map branches170
WinHelp

adding ALink footnotes to304
converting table rows to292
creating 294

TopicStartCode , PI marker for code at start of
topic 683, 720

<$_TopicStartCode> , predefined macro for
HTML 683

trademark formats, configuring157

<$_trail> , predefined macro for HTML555, 683

trailing space, in macros681

trails of links, creating for HTML 555

trim first , macro string operator707

trim last , macro string operator707

truncating cross-reference marker text, WinHelp
290

Turkish
for HTML Help output, specifying345
for RTF output, specifying220

type attribute
default prefixes and run-in headings for101
of <note> element, default value of101

type of, for non-Help HTML 211

typographic elements
assigning to a format for DITA output467
including for DITA XML 457
managing in HTML/XML 579
replacing with other tags580
suppressing in HTML/XML

all 580
use sparingly for DITA XML 466, 467

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

908 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

typographic tags
for text output 143
nesting 143

U
unblocking CHM files 314

underlined text
for hotspots in WinHelp296, 300
for links in HTML 545
solid vs. dotted, for WinHelp hotspots299

underscores
allowed in WinHelp reference strings297
avoiding in path and file names26

for HTML Help 553
disallowed in CSS class names600
disallowed to start user variable names688
removing from path and file names820
replacing spaces in graphics file names748

Unicode
character ranges, assign CSS classes to603
characters, mapping in HTML574
conversion for HTML 434
decimal value for character mapping575
space after, in RTF221

unique IDs
building blocks for 76
generating for elements76

UNIX server, relative path to graphics612

<$_until> , control structure for macros704, 705

upper , macro string operator707

user variables, see variables, DITA2Go user

UTF-8 character encoding450

V
validating HTML documents434, 445

valign and align , automatically generated, exclud-
ing from HTML table cells 453, 635

variable-key configuration sections
for cross-reference formats, listed 773
for HTML graphics properties, listed 775
for HTML table properties, listed 774
for text formats, listed 772
vs. fixed-key 63

variable-key settings, overriding771

variables, see:
variables, DITA2Go configuration
variables, DITA2Go macro
variables, environment
variables, DITA2Go user

variables, DITA2Go configuration
assigning macros and variables to768
assigning values to768
capturing settings with699

variables, DITA2Go macro
See also macro variables692
assigning paragraph content to692
assigning values to688
incrementing and decrementing690
list, using in expressions707
list, working with 695
nesting 690
predefined

all, listed 691
for extracts, listed 539
for splits and extracts, listed 537

starting values for689
variables, DITA2Go user

deploying in template macros187
element paths, assigning to186
including in macros 186
predefined, in system commands778
single- vs. multiple-instance, accessing185

variables, environment
%OMSYSHOME%, creating 29

variables, user see variables, DITA2Go user

version of DITA2Go
command-line809
how to find 820

view output command34
for Help systems248
for Word 223

Vista, Microsoft, support for WinHelp244

W
W3C

HTML 4 specification 432
placement of <tfoot> elements 629

WAI
abbr attribute

assigning to a paragraph format662
assigning with a special marker666

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. MAY 19, 2013 909

assigning with a special paragraph666
attributes

assigning to paragraph formats650, 661
assigning values to663
comparing ways to specify649
for links 651
image 650
image, assigning to a paragraph format651
image, PI markers for651
specifying with paragraph formats649, 650
supplying as paragraph content650
using special paragraphs for665

axis attribute
assigning to a paragraph format662
assigning with a special marker666
assigning with a special paragraph666

cells
header, group properties of660
identifying 664
identifying by row and column674
overriding default settings675
tags for, assigning with paragraph formats

663
ColGroup cell, defined 660
column groups, defining660
guidelines

for images 650
for links 652
for tables 653

id attribute, assigning with a special marker666
id/headers method for table cells669
link attributes, assigning to a paragraph format

652
markup

for images 650
for links 651
for tables 652

row groups, defining661
RowGroup cell, defined 661
scope attribute

assigning to a paragraph format662
assigning with a special marker666

span attributes672
summary attribute654
table markup, see tables: HTML, WAI markup
title attribute 654

warnings, logging as conversion events74

watermark, as background image for HTML624

$$_wcount , macro variable692, 706

Web Accessibility Initiative, see WAI

Web browsers, see browsers

Web Works Help 244

WebHelp
evaluating 245
from HTML Help and RoboHelp244, 255

Web-safe colors, see colors, Web-safe

while loops in macros for HTML705

<$_while> , control structure for macros704, 705

whitespace, preserving
in DITA block elements 471
in HTML output 581

wildcards, using
in attribute values163
in configuration settings65, 73
in ditaval statements161
in HTML special-character mappings574
to identify tables for HTML 626
to specify table sets for HTML627

window
browser, opening another444
JavaHelp main, naming403
WinHelp main, naming309

Window , PI marker for HTML Help secondary
windows 720

Windows Registry
browser command for OmniHelp CSH calls376
CHM files, registering 347

windows, pop-up
See also pop-ups
HTML Help 264, 322
HTML, require JavaScript550
JavaHelp 264, 403, 406
OmniHelp 264, 371
Oracle Help 264, 408
WinHelp 299

windows, secondary
See also secondary windows
HTML Help 332

defining 333
jumping to from a topic 333
jumping to from contents or index333

JavaHelp
jumping to 408
using a macro for403

OmniHelp, jumping to 370
Oracle Help, jumping to408

DITA2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

910 MAY 19, 2013 COPYRIGHT © 1999-2013 OMNI SYSTEMS, INC.

WinHelp
jumping to 302
not jumping to from contents309

WinHelp
advantages and disadvantages of244
compiling

for delivery 802
contents levels, setting250
contents, configuring306
files, identifying 306
generating 281

cross references288
footnotes 288
pop-ups from table cells292
tables 290
topics from table rows292

index entries, maximum length of252
macros, invoking 302
overview topic, renaming or eliminating309
platform-specific settings283
project file, naming 284
titles, identifying 306
topics

creating 294
from table rows 292

using for HTML Help pop-ups323

WinHelp 2000, producing via WinHelp 4244

WinMerge, file comparison tool35

WinZip add-on for archiving deliverables803

WMF graphics
limitations of 746

Word
stylesheet, generated from output formats109
template, specifying223
version 2000, converting to237
version 8, configuring for224
versions of, adjusting for224

wrap
and ship conversion output787

wrap directory, see assembly directory

_wrap , default assembly directory247, 788

wzzip.exe

for archiving deliverables803
for packaging Eclipse Help topic files427

X
XHTML

declaration, suppressing438
DocType and DTD 433
encoding, specifying434
for Confluence 4.x, generating442
OmniHelp viewer files 380
tagging for HTML output 431
using instead of HTML 430

XInclude, Calabash178

XML
catalogs, connecting to67
catalogs, for specializations68
comments, inserting with markers724
content type, specifying451
editor oXygen, integrating DITA2Go with 36
file extension, specifying431, 450
line breaks in, suppressing439, 451
links, managing 454
output settings, specifying450
structure, providing 451
tag names, deriving from CSS452
tags, providing 451
version, specifying 450
within HTML 566

.xml

default XML file extension 431

XrefBranch , PI marker for cross references to named
map branches171

Xrefbranch , PI marker for cross references to named
map branches720

Y
Y: No entries

Z
ZIP command for Eclipse Help427

	Contents
	Figures
	Tables
	About this guide
	Availability
	New information
	Colophon

	1 Getting started with DITA2Go
	1.1 What you need to know
	1.1.1 How DITA2Go is organized
	1.1.2 File, directory, and path names
	1.1.3 Output types you can specify
	1.1.4 Languages and character sets

	1.2 What you need to have
	1.3 What you need to do
	1.3.1 Set up a framework for Omni Systems applications
	1.3.2 Download a DITA2Go distribution
	1.3.3 Install DITA2Go
	1.3.4 Make Omni Systems executables accessible
	1.3.5 Check your DITA2Go installation
	1.3.6 Obtain tools for Help systems or eBooks
	1.3.7 Establish system-wide configuration settings
	1.3.8 Locate document-specific settings
	1.3.9 Obtain a file comparison tool (optional)
	1.3.10 Download the DITA2Go User’s Guide (optional)
	1.3.11 Integrate DITA2Go with <oXygen/> (optional)

	1.4 How to update DITA2Go
	1.4.1 Update your DITA2Go installation
	1.4.2 Try out DITA2Go beta executables

	1.5 How DITA2Go works
	1.6 How to start and stop DITA2Go
	1.7 How to work with DITA2Go
	1.8 How to uninstall DITA2Go

	2 Converting DITA documents
	2.1 Creating a DITA2Go conversion project
	2.2 Modifying a DITA2Go conversion project
	2.3 Configuring default DITA2Go project settings
	2.3.1 Understanding where to specify configuration settings
	2.3.2 Choosing a source-specific configuration file
	2.3.3 Deciding whether to compile and assemble output
	2.3.4 Specifying a ditaval file
	2.3.5 Naming an archive for output
	2.3.6 Assembling graphics to include with output
	2.3.7 Including output-specific settings
	2.3.8 Reviewing initial project settings

	2.4 Inspecting and editing configuration files
	2.5 Running a DITA2Go conversion
	2.6 Customizing the DITA2Go Project Manager
	2.7 Converting documents from the command line
	2.7.1 Executing the correct version of DCL
	2.7.2 Understanding how to run DITA2Go DCL
	2.7.3 Creating a script to run DITA2Go DCL

	3 Editing configuration files
	3.1 Working with DITA2Go configuration files
	3.2 Editing files with the Configuration Manager
	3.2.1 Understanding how to use the Configuration Manager
	3.2.2 Starting the Configuration Manager
	3.2.3 Setting Configuration Manager preferences
	3.2.4 Establishing a starting point
	3.2.5 Choosing a configuration category or file type
	3.2.6 Understanding variable vs. fixed names and keys
	3.2.7 Choosing the kind of change to make
	3.2.8 Selecting a configuration section
	3.2.9 Selecting a configuration setting
	3.2.10 Selecting a configuration file
	3.2.11 Specifying a final value

	3.3 Understanding where project settings come from
	3.4 Understanding the rules for configuration settings
	3.5 Specifying file paths in configuration settings
	3.6 Using wildcards in configuration settings
	3.7 Commenting out configuration sections
	3.8 Ending a configuration file

	4 Setting basic conversion options
	4.1 Specifying operating settings
	4.1.1 Connecting to XML catalogs
	4.1.2 Accommodating specializations
	4.1.3 Specifying a DITA XML DTD
	4.1.4 Generating a map from a DITA topic file
	4.1.5 Accommodating paths to network drives
	4.1.6 Checking output type and file extension
	4.1.7 Producing print output selectively
	4.1.8 Including element tags and paths in output
	4.1.9 Reusing or discarding ASCII DCL files
	4.1.10 Specifying how to treat cases, spaces, and wildcards

	4.2 Logging conversion events
	4.3 Identifying files and elements
	4.3.1 Generating document-wide unique IDs
	4.3.2 Specifying building blocks for unique IDs
	4.3.3 Specifying a prefix for bookmarks in RTF output
	4.3.4 Checking for duplicate IDs

	4.4 Processing graphics

	5 Modifying output appearance
	5.1 Understanding where to modify formats
	5.2 Understanding how to modify formats
	5.3 Changing how the output looks
	5.3.1 Producing HTML output from the DITA Test Suite
	5.3.2 Getting rid of that awful green color
	5.3.3 Changing the indentation
	5.3.4 Changing the spacing

	5.4 Determining how an element is rendered

	6 Mapping elements to output formats
	6.1 Understanding how to assign formats
	6.2 Specifying options for naming formats
	6.3 Mapping outputclass attribute values to formats
	6.3.1 Mapping block and inline outputclass attributes to formats
	6.3.2 Mapping table outputclass attributes to formats
	6.3.3 Mapping cross-reference outputclass attributes to formats
	6.3.4 Mapping wrapper-element outputclass attributes to formats

	6.4 Mapping element paths to output formats
	6.4.1 Understanding element paths
	6.4.2 Mapping block and inline element paths to formats
	6.4.3 Overriding element paths for default formats
	6.4.4 Mapping the same element to different formats
	6.4.5 Filtering out elements via format mapping

	6.5 Mapping element attributes to output formats
	6.5.1 Listing elements whose attributes can affect output formats
	6.5.2 Listing attributes whose values can affect output formats
	6.5.3 Assigning format-name prefixes to attribute values
	6.5.4 Assigning run-in headings to format-name prefixes
	6.5.5 Deciding which formats need a run-in heading property
	6.5.6 Understanding the order of prefixes for multiple attributes
	6.5.7 Understanding how prefixes modify output formats
	6.5.8 Understanding default attribute-based prefixes and headings

	6.6 Specifying formats for cross references
	6.7 Specifying formats for footnotes
	6.8 Specifying options for figures
	6.9 Specifying formats and options for tables
	6.10 Specifying options for special lists
	6.11 Specifying options for draft comments
	6.12 Specifying options for maps
	6.12.1 Providing default output formats for map content
	6.12.2 Including shortdesc content in the title attribute
	6.12.3 Including title-only topics in output
	6.12.4 Including children of topic headings

	6.13 Deciding where to display title and shortdesc

	7 Configuring output formats
	7.1 Understanding the purpose of output formats
	7.2 Working with format configuration files
	7.2.1 Understanding where to define output formats
	7.2.2 Specifying paths to your own format configuration files
	7.2.3 Understanding how DITA2Go builds format chains
	7.2.4 Understanding how DITA2Go processes format chains

	7.3 Creating aliases to existing format names
	7.3.1 Understanding reasons for aliasing format names
	7.3.2 Mapping legacy names to defined formats

	7.4 Understanding how to define output formats
	7.4.1 Naming output formats
	7.4.2 Assigning values to format properties
	7.4.3 Documenting output formats
	7.4.4 Understanding the basis of format properties
	7.4.5 Basing format properties on other formats
	7.4.6 Modifying DITA2Go default output formats
	7.4.7 Applying CSS and RTF code to output formats
	7.4.8 Assigning content-adding properties to formats

	7.5 Understanding text output formats
	7.5.1 Understanding where to define text output formats
	7.5.2 Providing padding around the text body area for HTML
	7.5.3 Establishing base values and units of measurement
	7.5.4 Including formats for features not present in body content

	7.6 Configuring text output formats
	7.6.1 Naming and defining text formats
	7.6.2 Specifying default properties for character formats
	7.6.3 Specifying default properties for paragraph formats
	7.6.4 Understanding based vs. inline properties for paragraph formats
	7.6.5 Specifying inline properties for paragraph and character formats
	7.6.6 Specifying block properties for paragraph formats
	7.6.7 Configuring list formats
	7.6.8 Assigning border properties to paragraph formats
	7.6.9 Configuring character formats for HTML links
	7.6.10 Specifying tab positions for RTF paragraph styles

	7.7 Configuring table output formats
	7.7.1 Naming and defining table, row, and cell formats
	7.7.2 Configuring table format properties
	7.7.3 Configuring row format properties
	7.7.4 Configuring cell format properties

	7.8 Configuring page layouts for RTF output
	7.8.1 Establishing default properties for output pages
	7.8.2 Configuring output section formats
	7.8.3 Configuring page header and footer formats
	7.8.4 Forcing page and column breaks
	7.8.5 Configuring border formats for output pages
	7.8.6 Configuring a title page (an example)

	7.9 Inserting line, column, and page breaks in output

	8 Configuring format components
	8.1 Managing format components
	8.1.1 Understanding where to define format components
	8.1.2 Basing format component properties on other components
	8.1.3 Assigning additional names to format components
	8.1.4 Understanding format-component name lookups
	8.1.5 Including typographic tags and character formats

	8.2 Defining border format components
	8.3 Defining shading format components
	8.4 Overriding border and shading properties
	8.5 Configuring output numbering properties
	8.5.1 Understanding numbering properties
	8.5.2 Defining number streams
	8.5.3 Defining number format components
	8.5.4 Defining footnote numbering
	8.5.5 Considering examples of numbering schemes

	8.6 Configuring run-in headings for text formats
	8.7 Defining cross-reference output formats
	8.8 Configuring trademark formats
	8.9 Localizing output headings, labels, and names
	8.9.1 Specifying an output language for your project
	8.9.2 Overriding language settings
	8.9.3 Specifying language-specific text values

	9 Specifying conditional processing
	9.1 Extracting conditions from ditaval files
	9.1.1 Specifying a single ditaval file
	9.1.2 Including wildcards in ditaval statements
	9.1.3 Processing complex otherprops settings

	9.2 Defining conditional actions
	9.2.1 Understanding the syntax of conditional action settings
	9.2.2 Flagging content for special treatment in output
	9.2.3 Specifying default conditions for inclusion or exclusion
	9.2.4 Including or excluding content based on attribute values
	9.2.5 Passing attribute values through in output

	9.3 Including flags for ditaval conditions
	9.4 Configuring conditional flags
	9.4.1 Specifying text properties for flags
	9.4.2 Providing images and alt text for startflag and endflag
	9.4.3 Highlighting conflicting flag properties

	9.5 Assigning attributes with conditional flags
	9.6 Scoping and filtering within maps
	9.6.1 Understanding the advantages of filtering in maps
	9.6.2 Designating map sections as named branches
	9.6.3 Reusing the same topics with different conditions
	9.6.4 Directing a cross reference to the correct branch
	9.6.5 Directing a content reference to the correct branch
	9.6.6 Limiting the scope of keydefs by branch
	9.6.7 Directing a key reference to the correct branch

	10 Including content by reference
	10.1 Pushing and pulling content by reference
	10.1.1 Referencing internal and external maps and topics
	10.1.2 Pushing content into an element
	10.1.3 Understanding problems with processing conkeyrefs

	10.2 Referencing external code or text fragments
	10.2.1 Including external code snippets with PI markers
	10.2.2 Including external code snippets with fragment identifiers

	11 Defining element sets and properties
	11.1 Defining sets of elements
	11.2 Specifying properties of element types
	11.2.1 Understanding when to assign element type properties
	11.2.2 Understanding what properties are available
	11.2.3 Assigning properties to element types
	11.2.4 Adding the full class attribute to an element

	12 Creating and deploying user variables
	12.1 Understanding how DITA2Go user variables work
	12.2 Assigning variable names to element paths
	12.3 Including user variables in DITA2Go macros
	12.4 Deploying user variables in template macros

	13 Processing related and associative links
	13.1 Understanding how DITA2Go treats reltables
	13.2 Generating and including related links
	13.3 Appending links to topics
	13.3.1 Appending related links to topics
	13.3.2 Appending fixed links to topics

	13.4 Including descriptions with related links
	13.5 Generating associative links for Help output
	13.6 Formatting links in output
	13.6.1 Understanding how DITA2Go presents related links
	13.6.2 Labeling related links
	13.6.3 Specifying output formats for related and fixed links
	13.6.4 Inserting dividers between topics and lists of links

	13.7 Changing link path for peer related links

	14 Generating lists and indexes
	14.1 Understanding how DITA2Go produces lists
	14.2 Naming generated HTML list and index files
	14.3 Generating a table of contents
	14.3.1 Specifying a file name and title for the TOC
	14.3.2 Deciding what to include in the TOC
	14.3.3 Specifying formats for TOC title, entries, and references
	14.3.4 Including navigation titles from maps in the TOC

	14.4 Generating a list of figures
	14.5 Generating a list of tables
	14.6 Treating figure titles as table titles
	14.7 Producing a glossary
	14.7.1 Specifying file name and title for the glossary
	14.7.2 Specifying output formats for the glossary
	14.7.3 Configuring use of abbreviations for glossary terms

	14.8 Producing an index
	14.8.1 Specifying output formats for the index
	14.8.2 Overriding formats for index entries and references
	14.8.3 Configuring see and see-also index entries
	14.8.4 Configuring index references
	14.8.5 Including heading letters in the index
	14.8.6 Configuring index features for HTML output

	14.9 Configuring variant booklist components
	14.9.1 Differentiating variant booklist components
	14.9.2 Naming variant booklist components
	14.9.3 Specifying properties of variant booklist components
	14.9.4 Defining properties of items in variant booklist components
	14.9.5 Mapping indexterms to variant indexes

	15 Converting to print RTF
	15.1 Setting up a print RTF project
	15.1.1 Specifying output file extension
	15.1.2 Specifying the default output language and code page
	15.1.3 Constraining the number of bookmarks in Word
	15.1.4 Including or excluding contents and index for RTF output
	15.1.5 Producing PDF automatically via Word
	15.1.6 Launching Word from the DITA2Go Project Manager
	15.1.7 Importing a Word template

	15.2 Adjusting output for different versions of Word
	15.3 Converting paragraph and character formats
	15.3.1 Mapping paragraph formats to RTF styles
	15.3.2 Merging paragraph formats
	15.3.3 Converting autonumbered formats
	15.3.4 Converting bulleted formats
	15.3.5 Converting character formats

	15.4 Modifying text appearance
	15.4.1 Adjusting line spacing
	15.4.2 Specifying a style for quotes
	15.4.3 Hiding content in Word
	15.4.4 Omitting content from RTF output
	15.4.5 Replacing content in RTF output

	15.5 Converting cross references and hypertext links
	15.5.1 Converting cross references to Word
	15.5.2 Converting hypertext links to Word
	15.5.3 Locking hypertext links to allow revision tracking
	15.5.4 Enabling interfile cross references and hypertext links

	15.6 Converting tables to print RTF
	15.7 Managing graphics for print RTF
	15.7.1 Understanding graphics requirements for Word
	15.7.2 Understanding where to locate graphics
	15.7.3 Limiting bitmap resolution and color depth
	15.7.4 Preserving graphics scale in Word
	15.7.5 Accommodating graphics in multiple versions of Word
	15.7.6 Including file names of referenced graphics in Word
	15.7.7 Linking instead of embedding referenced graphics
	15.7.8 Embedding graphics in converted RTF files
	15.7.9 Updating fields in Word to show linked graphics

	15.8 Including RTF code for Word output
	15.9 Turning on revision tracking in Word
	15.10 Managing Word output after conversion
	15.10.1 Supporting more than one version of Word
	15.10.2 Including index terms in Word
	15.10.3 Producing ASCII text from a converted Word document
	15.10.4 Checking print RTF output files for DITA2Go version

	15.11 Converting to OpenOffice or StarOffice

	16 Producing on-line Help
	16.1 Weighing Help-system alternatives
	16.1.1 Considering Help-system features
	16.1.2 Understanding the effects of mid-topic links
	16.1.3 Evaluating Microsoft Windows Help (WinHelp)
	16.1.4 Evaluating Microsoft HTML Help
	16.1.5 Evaluating WebHelp
	16.1.6 Evaluating OmniHelp
	16.1.7 Evaluating JavaHelp and Oracle Help for Java
	16.1.8 Evaluating Eclipse Help

	16.2 Completing Help system construction
	16.2.1 Specifying additional processing after conversion
	16.2.2 Compiling and distributing Help systems
	16.2.3 Launching a Help viewer from the Project Manager

	16.3 Producing contents and index for Help systems
	16.3.1 Modifying contents or index production for HTML-based Help
	16.3.2 Modifying contents or index production for WinHelp

	16.4 Configuring contents entries for Help systems
	16.4.1 Setting contents levels for WinHelp
	16.4.2 Including contents entries in HTML-based Help
	16.4.3 Setting contents levels for HTML-based Help

	16.5 Configuring index entries for Help systems
	16.5.1 Understanding how DITA2Go creates Help index entries
	16.5.2 Preparing index entries for Microsoft Help Viewer
	16.5.3 Limiting length of index entries for HTML Help or WinHelp
	16.5.4 Treating commas as potential index level separators
	16.5.5 Combining index levels for HTML-based Help
	16.5.6 Configuring See and See also entries for HTML-based Help
	16.5.7 Specifying index link destinations for HTML-based Help
	16.5.8 Customizing index sort order

	16.6 Providing related-topic links for Help systems
	16.6.1 Understanding related-topic links
	16.6.2 Understanding how ALinks work
	16.6.3 Understanding how KLinks work
	16.6.4 Adding related-topic link keywords in DITA XML
	16.6.5 Adding ALink and KLink jumps in DITA XML
	16.6.6 Creating target-and-jump ALinks for HTML-based Help
	16.6.7 Specifying ALink and KLink list-link destinations

	16.7 Jumping to secondary windows in Help systems
	16.7.1 Assigning secondary windows for WinHelp
	16.7.2 Assigning secondary windows for HTML-based Help

	16.8 Creating pop-up topics for Help systems
	16.8.1 Understanding pop-up hotspots, links, and topics
	16.8.2 Defining a pop-up hotspot
	16.8.3 Displaying a topic in a pop-up window

	16.9 Including expandable sections in Help topics
	16.9.1 Understanding DITA2Go expandable drop-down sections
	16.9.2 Setting up expandable sections for your document
	16.9.3 Delimiting expandable drop-down sections
	16.9.4 Configuring drop-down links
	16.9.5 Configuring drop-down blocks
	16.9.6 Providing CSS for drop-down links and blocks
	16.9.7 Deploying JavaScript code for drop-down sections
	16.9.8 Emulating Web Works Publisher drop-down hotspots

	16.10 Setting up Context Sensitive Help (CSH)
	16.10.1 Understanding how CSH works
	16.10.2 Specifying CSH mappings

	16.11 Setting up a dynamic modular Help system

	17 Generating WinHelp
	17.1 Obtaining tools for WinHelp
	17.2 Setting up a WinHelp project
	17.2.1 Setting up a WinHelp project
	17.2.2 Deciding where to locate configuration settings
	17.2.3 Preparing a document for conversion to WinHelp
	17.2.4 Deciding whether to regenerate the WinHelp project file
	17.2.5 Accommodating platform differences
	17.2.6 Setting basic WinHelp options in the configuration file
	17.2.7 Handling page breaks and section breaks
	17.2.8 Providing multiple .hlp files
	17.2.9 Integrating WinHelp from RoboHelp
	17.2.10 Compiling a WinHelp project
	17.2.11 Checking WinHelp RTF files for DITA2Go version

	17.3 Converting text
	17.3.1 Suppressing unwanted paragraphs
	17.3.2 Converting autonumbers
	17.3.3 Replacing paragraph or character content
	17.3.4 Converting footnotes

	17.4 Converting cross references
	17.4.1 Creating help context markers
	17.4.2 Specifying cross-reference destination files
	17.4.3 Specifying cross-reference jump destinations
	17.4.4 Specifying WinHelp options for cross-reference formats
	17.4.5 Limiting cross-reference text

	17.5 Converting tables to WinHelp RTF
	17.5.1 Positioning tables and table titles
	17.5.2 Adjusting table appearance
	17.5.3 Converting table rows to topics and table cells to pop-ups

	17.6 Managing graphics for WinHelp
	17.6.1 Choosing a graphics format for WinHelp
	17.6.2 Displaying graphics in pop-ups for WinHelp

	17.7 Configuring WinHelp topics
	17.7.1 Creating WinHelp topics
	17.7.2 Assigning properties to formats for topics and hotspots
	17.7.3 Configuring topic titles for WinHelp

	17.8 Creating jumps and pop-ups for WinHelp
	17.8.1 Configuring pop-up topics
	17.8.2 Creating hotspots for jumps and pop-ups in WinHelp
	17.8.3 Using cross references for jumps and pop-ups
	17.8.4 Using hypertext links for jumps and pop-ups
	17.8.5 Disallowing hypertext links for jumps and pop-ups
	17.8.6 Specifying jumps to secondary windows in WinHelp
	17.8.7 Specifying jumps to external files

	17.9 Invoking WinHelp macros
	17.9.1 Using a hypertext marker to invoke a macro
	17.9.2 Assigning a hotspot property to invoke a macro

	17.10 Creating related-topic links in WinHelp
	17.10.1 Understanding KLink limitations
	17.10.2 Adding ALinks and KLinks with PI markers
	17.10.3 Adding related-topic keywords with formats
	17.10.4 Inserting WinHelp macros for ALink jumps

	17.11 Configuring index entries for WinHelp
	17.11.1 Designating index level separators
	17.11.2 Eliminating duplicate keywords
	17.11.3 Keeping or discarding “See also” entries

	17.12 Configuring contents for WinHelp
	17.12.1 Naming and configuring Help files and titles
	17.12.2 Specifying heading formats and levels for contents
	17.12.3 Assembling WinHelp contents from the command line

	17.13 Creating browse sequences
	17.13.1 Setting up an automatic browse sequence
	17.13.2 Specifying browse numbers
	17.13.3 Setting up multi-file browse sequences
	17.13.4 Setting up branching browse sequences

	18 Generating Microsoft HTML Help
	18.1 Understanding how DITA2Go produces HTML Help
	18.2 Understanding why Unicode is not the answer
	18.3 Setting up an HTML Help project
	18.3.1 Creating an HTML Help project
	18.3.2 Deciding where to locate configuration settings
	18.3.3 Organizing source files for HTML Help
	18.3.4 Specifying a project title for HTML Help
	18.3.5 Deciding whether to compile HTML Help
	18.3.6 Naming project and compiled files for HTML Help
	18.3.7 Specifying a starting topic file for HTML Help
	18.3.8 Regenerating the HTML Help project file
	18.3.9 Locating graphics files for HTML Help

	18.4 Customizing HTML Help display features
	18.4.1 Using CSS and font tags with HTML Help
	18.4.2 Adding tabs and toolbar buttons to HTML Help
	18.4.3 Adding expandable sections to HTML Help

	18.5 Creating pop-ups for HTML Help
	18.5.1 Using HTML Help for pop-ups
	18.5.2 Using KeyHelp for pop-ups
	18.5.3 Using WinHelp for pop-ups

	18.6 Creating links and hypertext jumps in HTML Help
	18.6.1 Creating hypertext jumps to other CHM files
	18.6.2 Specifying href link syntax for HTML Help
	18.6.3 Linking to external files from compiled HTML Help

	18.7 Creating related-topic links for HTML Help
	18.7.1 Adding ALink keywords for HTML Help
	18.7.2 Adding ALink and KLink jumps for HTML Help
	18.7.3 Configuring ALink and KLink jumps for HTML Help
	18.7.4 Rolling your own macros for ALink jumps in HTML Help
	18.7.5 Using the same format for ALink keywords and jumps
	18.7.6 Creating buttons for other types of related-topic links

	18.8 Using secondary windows in HTML Help
	18.8.1 Defining secondary windows for HTML Help
	18.8.2 Jumping from a topic to a secondary window
	18.8.3 Jumping from contents or index to a secondary window

	18.9 Generating contents and index for HTML Help
	18.9.1 Choosing how to generate HTML Help contents and index
	18.9.2 Choosing whether to generate binary contents or index
	18.9.3 Generating contents and index with HTML Help Workshop
	18.9.4 Generating contents and index with DITA2Go
	18.9.5 Configuring contents entries for HTML Help
	18.9.6 Providing mid-topic contents links in HTML Help
	18.9.7 Making the TOC track index links in HTML Help
	18.9.8 Customizing contents and index for HTML Help

	18.10 Providing full-text search (FTS) for HTML Help
	18.11 Setting up CSH for HTML Help
	18.11.1 Inserting CSH destinations in your document
	18.11.2 Determining whether you need map and alias files
	18.11.3 Specifying and generating a map file for CSH links
	18.11.4 Creating an alias file for CSH links
	18.11.5 Understanding alias-file entries
	18.11.6 Producing a list of aliases and associated topic titles

	18.12 Generating HTML Help in non-Western languages
	18.12.1 Converting from Unicode to Windows code pages
	18.12.2 Specifying locale and language for HTML Help
	18.12.3 Preventing inclusion of Unicode numeric references

	18.13 Compiling and testing HTML Help
	18.13.1 Directing DITA2Go to run the HTML Help compiler
	18.13.2 Copying output files and compiling later
	18.13.3 Compiling in a different language
	18.13.4 Registering your HTML Help system for network use

	18.14 Mapping and merging CHM files
	18.14.1 Interlinking multiple CHM files
	18.14.2 Synchronizing TOC references to slave CHM files
	18.14.3 Putting up with a binary index for merged CHM files
	18.14.4 Merging CHM files
	18.14.5 Comparing HHW settings for stand-alone vs. merged CHMs

	19 Generating OmniHelp
	19.1 Understanding how OmniHelp works
	19.2 Setting up OmniHelp viewer control files
	19.2.1 Choosing XHTML vs. HTML OmniHelp control files
	19.2.2 Making OmniHelp viewer control files available
	19.2.3 Customizing OmniHelp viewer control files
	19.2.4 Examining generated control and data files

	19.3 Setting up an OmniHelp project
	19.3.1 Creating an OmniHelp project
	19.3.2 Deciding where to locate configuration settings
	19.3.3 Naming your OmniHelp project
	19.3.4 Giving your OmniHelp project a title
	19.3.5 Specifying the starting topic
	19.3.6 Specifying memory requirements
	19.3.7 Removing paths from interfile links for OmniHelp
	19.3.8 Getting OmniHelp supporting files in the right place

	19.4 Using CSS with OmniHelp
	19.4.1 Specifying CSS for topics in OmniHelp
	19.4.2 Understanding how CSS works in OmniHelp topics
	19.4.3 Specifying CSS for OmniHelp navigation frames

	19.5 Customizing OmniHelp display features
	19.5.1 Configuring OmniHelp window usage and frameset dimensions
	19.5.2 Altering OmniHelp top navigation frame content
	19.5.3 Modifying OmniHelp navigation aids
	19.5.4 Choosing whether to use cookies for OmniHelp
	19.5.5 Localizing the OmniHelp interface
	19.5.6 Modifying OmniHelp CSS classes
	19.5.7 Modifying the OmniHelp template

	19.6 Choosing navigation features for OmniHelp
	19.7 Configuring contents and index for OmniHelp
	19.7.1 Understanding OmniHelp contents and index creation
	19.7.2 Choosing whether to use expanding contents or index
	19.7.3 Choosing how far to expand contents and index subentries
	19.7.4 Providing alternate expansion icons for contents or index
	19.7.5 Excluding Open All and Close All buttons
	19.7.6 Redirecting See and See also index entries

	19.8 Providing related-topic links in OmniHelp
	19.9 Jumping to secondary windows in OmniHelp
	19.10 Configuring full-text search for OmniHelp
	19.10.1 Understanding how OmniHelp FTS works
	19.10.2 Generating search data
	19.10.3 Making compound terms searchable
	19.10.4 Supporting search for non-ANSI text
	19.10.5 Specifying length of search terms
	19.10.6 Excluding search terms
	19.10.7 Excluding content from being searched
	19.10.8 Using regular expressions in search
	19.10.9 Highlighting search terms found in topics

	19.11 Setting up CSH for OmniHelp
	19.11.1 Specifying alias prefixes for OmniHelp CSH calls
	19.11.2 Referencing OmniHelp topic IDs from an application
	19.11.3 Using redirect pages for OmniHelp CSH calls
	19.11.4 Executing browser commands for OmniHelp CSH calls

	19.12 Merging OmniHelp projects
	19.12.1 Understanding the OmniHelp merge process
	19.12.2 Listing and mapping OmniHelp subprojects
	19.12.3 Providing TOC placeholders for OmniHelp subprojects
	19.12.4 Deciding when to merge OmniHelp subprojects

	19.13 Assembling OmniHelp files for viewing
	19.14 Deploying OmniHelp
	19.14.1 Starting with the default topic or a specified topic
	19.14.2 Restarting where you left off
	19.14.3 Coping with browser quirks

	20 Generating JavaHelp or Oracle Help
	20.1 Deciding which Java Help system to use
	20.2 Obtaining tools for a Java-based Help system
	20.3 Setting up a JavaHelp or Oracle Help project
	20.3.1 Creating a JavaHelp or Oracle Help for Java project
	20.3.2 Deciding where to locate configuration settings
	20.3.3 Specifying output options for JavaHelp
	20.3.4 Establishing a JavaHelp environment
	20.3.5 Establishing an Oracle Help environment
	20.3.6 Creating a directory structure for JavaHelp / Oracle Help
	20.3.7 Configuring the helpset file
	20.3.8 Coping with JavaHelp / Oracle Help viewer limitations
	20.3.9 Compiling JavaHelp with Helen

	20.4 Generating contents and index
	20.4.1 Configuring contents entries for JavaHelp or Oracle Help
	20.4.2 Assigning TOC images and expansion levels in JavaHelp 2
	20.4.3 Configuring index entries for JavaHelp or Oracle Help
	20.4.4 Locating JavaHelp or Oracle Help contents and index files

	20.5 Providing full-text search for JavaHelp / Oracle Help
	20.5.1 Including a search-index link in the helpset file
	20.5.2 Creating a search index for JavaHelp
	20.5.3 Creating a search index for Oracle Help

	20.6 Creating and viewing a Java Archive (JAR) file
	20.6.1 Creating a JAR file
	20.6.2 Viewing a JAR file

	20.7 Converting a glossary to JavaHelp 2
	20.7.1 Evaluating glossary usability
	20.7.2 Assigning glossary properties
	20.7.3 Configuring glossary IDs
	20.7.4 Eliminating glossary entries from the JavaHelp TOC

	20.8 Defining windows for JavaHelp or Oracle Help
	20.8.1 Specifying window parameters for JavaHelp 2
	20.8.2 Specifying window parameters for Oracle Help
	20.8.3 Jumping to secondary windows in JavaHelp or Oracle Help

	20.9 Linking to destinations within topics
	20.10 Creating ALinks for Oracle Help
	20.11 Merging JavaHelp or Oracle Help systems
	20.12 Setting up CSH for JavaHelp or Oracle Help

	21 Generating Eclipse Help
	21.1 Understanding how Eclipse Help works
	21.2 Setting up an Eclipse Help project
	21.2.1 Creating an Eclipse Help project
	21.2.2 Deciding where to locate configuration settings
	21.2.3 Specifying Eclipse Help output options
	21.2.4 Making sure links work in Eclipse Help
	21.2.5 Disabling breadcrumb trails in Eclipse Help

	21.3 Configuring Eclipse Help manifest files
	21.3.1 Specifying a Java manifest file for Eclipse Help
	21.3.2 Specifying Eclipse Help plug-in properties
	21.3.3 Configuring the Java manifest file for Eclipse Help
	21.3.4 Configuring the plug-in manifest file for Eclipse Help

	21.4 Configuring contents and index for Eclipse Help
	21.4.1 Choosing contents and index methods for Eclipse Help
	21.4.2 Supplying path information for contents and index links
	21.4.3 Configuring contents properties for Eclipse Help
	21.4.4 Configuring index properties for Eclipse Help

	21.5 Configuring search properties for Eclipse Help
	21.6 Merging Eclipse Help projects
	21.6.1 Linking primary content to secondary TOCs
	21.6.2 Linking secondary TOCs to primary content (deprecated)

	21.7 Setting up CSH for Eclipse Help
	21.7.1 Understanding how DITA2Go generates context links
	21.7.2 Naming context file and attribute for secondary plug-ins
	21.7.3 Configuring context IDs and context anchors
	21.7.4 Configuring context descriptions
	21.7.5 Locating context information

	21.8 Packaging Eclipse Help files
	21.8.1 Specifying a ZIP command for doc.zip
	21.8.2 Specifying ZIP command parameters
	21.8.3 Archiving Eclipse Help files

	22 Converting to HTML/XHTML
	22.1 Deciding which type of output to produce
	22.2 Setting up an HTML project
	22.2.1 Creating an HTML or XHTML project
	22.2.2 Specifying a different output file extension
	22.2.3 Checking HTML or XML output files for DITA2Go version
	22.2.4 Using XHTML tagging rules for HTML

	22.3 Including starting code and entity references
	22.4 Supplying values for the <head> element
	22.4.1 Specifying HTML/XML version, DOCTYPE, and DTD
	22.4.2 Specifying namespace and language
	22.4.3 Specifying character encoding for HTML
	22.4.4 Including or omitting HTML/XML generator information
	22.4.5 Specifying page titles for HTML output files
	22.4.6 Supplying content for the <meta> tag
	22.4.7 Specifying nonstandard values for declarations

	22.5 Specifying HTML <body> attributes
	22.6 Specifying document-wide properties for HTML
	22.6.1 Specifying a default DPI setting
	22.6.2 Suppressing closing </p> tags for HTML
	22.6.3 Suppressing line breaks in HTML and XML output
	22.6.4 Preventing adjacent <pre> elements from merging

	22.7 Defining text colors for HTML
	22.7.1 Numbering and defining text colors
	22.7.2 Using Web-safe colors

	22.8 Importing HTML files as insets
	22.9 Providing hover text for links in HTML
	22.10 Generating XHTML for Confluence 4.x
	22.11 Exporting content for database input
	22.12 Specifying a starting topic for HTML or XHTML
	22.13 Using framesets
	22.14 Passing W3C validation tests
	22.14.1 Understanding limitations of W3C validation
	22.14.2 Replacing high ASCII characters for W3C validation
	22.14.3 Eliminating <nobr> tags
	22.14.4 Avoiding redundant attribute assignments in tables

	23 Converting to generic XML
	23.1 Setting up a generic XML project
	23.2 Specifying generic XML output settings
	23.2.1 Creating a generic XML project
	23.2.2 Changing output XML version or file extension
	23.2.3 Specifying character encoding for generic XML
	23.2.4 Specifying the root element and content type
	23.2.5 Preventing arbitrary line breaks in XML text elements
	23.2.6 Specifying a starting topic for generic XML

	23.3 Providing XML tags and structure
	23.3.1 Deriving XML tags from format and class names
	23.3.2 Eliminating HTML attributes and tags for generic XML
	23.3.3 Including or excluding autonumbers

	23.4 Configuring links for generic XML

	24 Converting to DITA XML
	24.1 Generating DITA XML output from DITA input
	24.2 Setting up a DITA XML project
	24.2.1 Creating a DITA XML project
	24.2.2 Specifying DITA output options
	24.2.3 Specifying DITA version
	24.2.4 Configuring the DITA DTD SYSTEM identifier
	24.2.5 Substituting document format names for default names

	24.3 Specifying general options for DITA
	24.4 Configuring DITA elements
	24.4.1 Understanding how DITA2Go delimits DITA elements
	24.4.2 Treating format names as DITA element names
	24.4.3 Mapping paragraph formats to DITA block elements
	24.4.4 Mapping character formats to DITA inline elements
	24.4.5 Assigning multiple typographic elements to a format
	24.4.6 Assigning attributes to DITA elements
	24.4.7 Preserving whitespace in block elements

	24.5 Nesting DITA block elements
	24.5.1 Understanding how DITA2Go determines element nesting
	24.5.2 Designating DITA ancestor elements
	24.5.3 Fixing up interpolated ancestries
	24.5.4 Deciding when to fully specify ancestry
	24.5.5 Specifying alternate ancestries for the same element
	24.5.6 Avoiding invalid ancestries
	24.5.7 Specifying first-child status for nested elements
	24.5.8 Configuring nested lists
	24.5.9 Closing DITA ancestor elements
	24.5.10 Opening DITA ancestor elements
	24.5.11 Configuring multi-paragraph list items
	24.5.12 Specifying DITA element levels

	24.6 Specifying options for tables in DITA XML
	24.6.1 Designating ancestors for <table> elements
	24.6.2 Applying attributes to DITA tables
	24.6.3 Configuring DITA table components

	24.7 Specifying options for images in DITA XML
	24.7.1 Designating ancestors for <image> and <fig> elements
	24.7.2 Specifying what to include in a <fig> wrapper
	24.7.3 Omitting size attributes from images for DITA output

	24.8 Configuring DITA topics
	24.8.1 Designating starting points for DITA topics
	24.8.2 Specifying the DITA topic type
	24.8.3 Specifying the ID for a DITA topic
	24.8.4 Adjusting DITA topic IDs generated from file names
	24.8.5 Specifying alternate titles for a DITA topic
	24.8.6 Omitting a DITA topic from the TOC

	24.9 Configuring cross references and links for DITA
	24.9.1 Understanding how DITA2Go converts cross references
	24.9.2 Specifying an outputclass for cross-reference wrappers
	24.9.3 Linking to elements below topic level
	24.9.4 Omitting <xref> elements from footnotes
	24.9.5 Overriding <xref> attribute values

	24.10 Including CSH targets in DITA XML
	24.11 Overriding DITA settings with markers

	25 Configuring DITA maps
	25.1 Configuring ditamaps
	25.1.1 Specifying options for ditamaps
	25.1.2 Specifying topic levels in ditamaps
	25.1.3 Specifying roles for topics in ditamaps
	25.1.4 Adding relationship tables to ditamaps
	25.1.5 Providing navigation aids in ditamaps

	25.2 Overriding map settings with PI markers

	26 Converting to DocBook XML
	26.1 Generating DocBook XML with DITA2Go
	26.1.1 Understanding what you need to know about DocBook
	26.1.2 Understanding what information you must supply

	26.2 Setting up a DocBook XML project
	26.2.1 Creating a DocBook project
	26.2.2 Specifying DocBook output options

	26.3 Specifying general options for DocBook
	26.3.1 Configuring entity information for DocBook XML
	26.3.2 Configuring links for DocBook XML
	26.3.3 Configuring tables for DocBook XML
	26.3.4 Retaining empty paragraph tags in DocBook table cells
	26.3.5 Configuring footnotes for DocBook XML

	26.4 Configuring DocBook elements
	26.4.1 Treating format names as element names
	26.4.2 Mapping paragraph formats to DocBook elements
	26.4.3 Mapping character formats to DocBook elements
	26.4.4 Assigning ID attributes to DocBook block elements
	26.4.5 Assigning attributes other than ID to DocBook elements

	26.5 Nesting DocBook block elements
	26.5.1 Understanding how DITA2Go determines element nesting
	26.5.2 Designating DocBook ancestor elements
	26.5.3 Fixing up interpolated ancestries
	26.5.4 Deciding when to fully specify ancestry
	26.5.5 Specifying alternate ancestries for the same element
	26.5.6 Specifying first-child status for nested elements
	26.5.7 Specifying full ancestry for nested sections
	26.5.8 Closing DocBook ancestor elements
	26.5.9 Opening DocBook ancestor elements
	26.5.10 Configuring multi-paragraph list items
	26.5.11 Specifying DocBook element levels

	26.6 Designating ancestors for table elements
	26.7 Specifying options for figure elements
	26.7.1 Deciding what to include in a figure element
	26.7.2 Specifying ancestry for figure elements
	26.7.3 Omitting size attributes from images for DocBook

	26.8 Overriding DocBook settings with PI markers

	27 Splitting and extracting files
	27.1 Splitting and extracting vs. chunking
	27.2 Chunking DITA maps
	27.2.1 Choosing between splitting and chunking
	27.2.2 Specifying a chunking policy
	27.2.3 Providing a page break between title and TOC
	27.2.4 Producing a single HTML file that includes generated lists

	27.3 Splitting files
	27.3.1 Designating split points
	27.3.2 Managing split points

	27.4 Extracting files
	27.4.1 Enabling and disabling extract processing
	27.4.2 Delimiting material to extract

	27.5 Identifying split and extract files
	27.5.1 Understanding how split and extract files are named
	27.5.2 Specifying page titles for split or extract files
	27.5.3 Supplying <meta> text for split or extract files

	27.6 Inserting HTML code in split and extract files
	27.6.1 Choosing how to insert code in extracts
	27.6.2 Assigning code to [Inserts] keywords for splits and extracts
	27.6.3 Using special sections to insert code in extracts

	27.7 Referencing split and extract files
	27.8 Customizing and replacing extracts
	27.8.1 Using PI markers for extract processing
	27.8.2 Customizing title text for extracts
	27.8.3 Replacing extracts with links in the parent file
	27.8.4 Specifying extracts: an example

	28 Creating HTML links
	28.1 Understanding sources of links
	28.2 Specifying link appearance
	28.2.1 Specifying link colors
	28.2.2 Specifying link class
	28.2.3 Assigning link attributes with PI markers
	28.2.4 Specifying link properties with macros
	28.2.5 Replacing problem characters in links
	28.2.6 Forcing link text to lowercase

	28.3 Specifying link destination
	28.3.1 Forcing links to top-of-page for selected paragraph formats
	28.3.2 Forcing all links to top-of-page
	28.3.3 Linking to an arbitrary location

	28.4 Creating jumps to particular windows for HTML
	28.5 Converting DITA cross-reference links to HTML
	28.5.1 Specifying HTML options for all cross references
	28.5.2 Specifying HTML options for cross-reference formats

	28.6 Linking to other files and other DITA2Go projects
	28.6.1 Retaining file paths in interfile links
	28.6.2 Enabling links to renamed or relocated files

	28.7 Linking to external destinations

	29 Providing navigation in HTML
	29.1 Understanding how navigation links work
	29.2 Generating trails of links
	29.2.1 Understanding trails of links
	29.2.2 Specifying whether to include trails of links
	29.2.3 Specifying what to include in trails of links
	29.2.4 Specifying heading levels for trails of links
	29.2.5 Specifying where to display trails of links

	29.3 Creating a browse sequence
	29.3.1 Understanding how browse macros work
	29.3.2 Choosing buttons versus text links for a browse sequence
	29.3.3 Formatting browse-link labels
	29.3.4 Modifying macros <$_prev>, <$_next>, and <$_top>
	29.3.5 Understanding browse keyword scope and default values
	29.3.6 Specifying where to invoke a browse macro

	30 Mapping text formats to HTML/XML
	30.1 Choosing how to map formats
	30.2 Mapping paragraph formats
	30.2.1 Assigning HTML tags and attributes to paragraph formats
	30.2.2 Including or excluding paragraph autonumbers
	30.2.3 Designating script paragraph formats
	30.2.4 Stripping paragraph properties
	30.2.5 Providing content for empty paragraphs
	30.2.6 Eliminating unwanted paragraphs

	30.3 Mapping character formats
	30.4 Assigning properties to text formats
	30.4.1 Understanding where to specify format property overrides
	30.4.2 Overriding paragraph alignment and size properties
	30.4.3 Overriding properties added by typographic elements
	30.4.4 Overriding properties specified in font tags

	30.5 Mapping special characters
	30.5.1 Converting Western European accented characters
	30.5.2 Mapping individual special characters
	30.5.3 Avoiding use of special characters in URIs
	30.5.4 Preventing character mapping

	30.6 Mapping fonts
	30.6.1 Specifying a default font and size
	30.6.2 Mapping font sizes
	30.6.3 Including or excluding font tags
	30.6.4 Excluding face and size attributes from font tags
	30.6.5 Accommodating browser font-rendering differences

	30.7 Managing typographic elements for HTML or XML
	30.7.1 Deciding whether to suppress typographic elements
	30.7.2 Choosing how to treat typographic elements

	30.8 Specifying text colors for HTML
	30.9 Configuring preformatted text for HTML/XML
	30.10 Converting footnotes to HTML or XML
	30.10.1 Configuring and placing footnotes
	30.10.2 Eliminating links to jump footnotes
	30.10.3 Using list tags or <div> and <p> tags for jump footnotes
	30.10.4 Formatting jump footnote text with macros

	30.11 Converting list formats to HTML (deprecated)
	30.11.1 Understanding the problem with HTML lists
	30.11.2 Converting list formats to HTML list styles
	30.11.3 Indenting list items
	30.11.4 Converting list formats to HTML/XML paragraphs

	31 Setting up CSS for HTML
	31.1 Deciding whether to use CSS
	31.2 Understanding how to use CSS
	31.3 Understanding how DITA2Go generates CSS
	31.4 Specifying CSS file and link options
	31.4.1 Specifying CSS options in a DITA2Go configuration file
	31.4.2 Designating and locating a CSS file
	31.4.3 Directing DITA2Go to generate a CSS file
	31.4.4 Understanding effects of the older Stylesheet setting

	31.5 Understanding how CSS affects other options
	31.6 Linking to alternate CSS files
	31.6.1 Selecting a CSS file at run time
	31.6.2 Changing CSS files in the middle of a document
	31.6.3 Customizing the CSS link tag
	31.6.4 Using an alternate CSS link tag for Netscape 4

	31.7 Assigning CSS classes
	31.7.1 Understanding CSS class name restrictions
	31.7.2 Mapping paragraph formats to CSS classes
	31.7.3 Mapping character formats to tags or span classes
	31.7.4 Assigning CSS classes to table formats
	31.7.5 Assigning CSS classes to text and table footnotes
	31.7.6 Assigning CSS classes based on Unicode character ranges
	31.7.7 Using link format names as CSS class names
	31.7.8 Using CSS class names as tags for XML
	31.7.9 Omitting tags from CSS selectors
	31.7.10 Overriding CSS class for selected paragraphs

	31.8 Customizing CSS properties
	31.8.1 Specifying CSS <body> tag properties
	31.8.2 Specifying CSS size values and units of measurement
	31.8.3 Overriding styles in DITA2Go-generated CSS files
	31.8.4 Adjusting leading (line spacing) in CSS
	31.8.5 Preventing tags from overriding CSS properties

	32 Including graphics in HTML
	32.1 Locating graphics files for HTML
	32.2 Specifying options for HTML graphics
	32.3 Omitting graphics from HTML output
	32.4 Selecting and modifying graphics
	32.4.1 Assigning properties to sets of graphics
	32.4.2 Replacing or surrounding a graphic with macro code
	32.4.3 Omitting paragraph tags around graphics

	32.5 Positioning graphics in HTML output
	32.5.1 Aligning anchored graphics
	32.5.2 Indenting images (deprecated)
	32.5.3 Adding space above an image
	32.5.4 Eliminating space above or below graphics in table cells

	32.6 Specifying HTML image attributes
	32.7 Providing (or omitting) alternate text for images
	32.8 Scaling images for HTML
	32.8.1 Excluding image size attributes from HTML
	32.8.2 Adjusting image size for selected graphics
	32.8.3 Specifying px units for graphics sized in pixels

	32.9 Creating image maps for HTML
	32.9.1 Providing alternate text for a hotspot in an image map
	32.9.2 Specifying jumps from image maps in framesets

	32.10 Supplying a background image or watermark

	33 Converting tables to HTML
	33.1 Assigning properties to tables
	33.1.1 Understanding precedence of assignment methods
	33.1.2 Overriding default table and cell properties and attributes

	33.2 Defining sets of tables
	33.2.1 Creating table groups
	33.2.2 Using wildcards to specify table sets

	33.3 Specifying table structure
	33.3.1 Choosing the table structure model
	33.3.2 Identifying row and column groups and header cells
	33.3.3 Identifying table headers and footers

	33.4 Specifying table attributes
	33.4.1 Specifying attributes for all tables
	33.4.2 Overriding attributes for selected tables
	33.4.3 Assigning a CSS class to a table
	33.4.4 Using PI markers to assign attributes to tables, rows, or cells
	33.4.5 Specifying attributes for table rows
	33.4.6 Specifying attributes for table cells
	33.4.7 Eliminating automatically generated attributes
	33.4.8 Adjusting borders, cell spacing, and cell padding
	33.4.9 Determining the width of table columns
	33.4.10 Deciding what to do with empty paragraphs in table cells

	33.5 Positioning tables, table titles, and table footnotes
	33.5.1 Indenting tables (deprecated)
	33.5.2 Configuring and positioning table titles
	33.5.3 Positioning table footnotes

	33.6 Using macros to control table properties
	33.6.1 Invoking macros around tables
	33.6.2 Adding space before tables
	33.6.3 Adjusting space after tables
	33.6.4 Turning processing on and off around selected tables
	33.6.5 Specifying row-group, row, and cell attributes with macros
	33.6.6 Capturing table row and column counts with variables
	33.6.7 Selectively modifying table text with macros: an example

	33.7 Converting tables to paragraphs
	33.7.1 Removing table-specific tags from all tables
	33.7.2 Removing table-specific tags from selected tables
	33.7.3 Removing table-specific tags from complex tables

	34 Generating WAI markup for HTML
	34.1 Comparing DITA2Go markup methods for WAI
	34.1.1 Choosing a markup method for WAI attributes
	34.1.2 Using paragraph formats for WAI attributes
	34.1.3 Inserting PI markers for WAI attributes

	34.2 Applying WAI markup to images
	34.2.1 Following WAI guidelines for images
	34.2.2 Assigning WAI image attributes with dedicated formats
	34.2.3 Assigning WAI image attributes with PI markers

	34.3 Applying WAI markup to links
	34.3.1 Following WAI guidelines for links
	34.3.2 Assigning WAI link attribute values with dedicated formats
	34.3.3 Assigning WAI link attribute values with PI markers

	34.4 Applying WAI markup to tables
	34.4.1 Following WAI guidelines for tables
	34.4.2 Choosing a WAI markup method for tables
	34.4.3 Providing table summary and title information
	34.4.4 Identifying table row and column information

	35 Identifying HTML table structure for WAI
	35.1 Identifying table rows and columns
	35.1.1 Developing a strategy for row and column markup
	35.1.2 Comparing scope and id/headers accessibility methods
	35.1.3 Specifying a default accessibility method
	35.1.4 Overriding the default accessibility method

	35.2 Associating table cells with header cells
	35.2.1 Specifying group properties for header cells
	35.2.2 Using paragraph formats for table-cell attributes
	35.2.3 Assigning table-cell attribute values with dedicated formats
	35.2.4 Assigning table-cell attribute values with PI markers

	36 Marking HTML table cells for WAI
	36.1 Understanding table cell settings
	36.2 Using the scope method to identify table cells
	36.3 Using the id/headers method to identify table cells
	36.3.1 Choosing an id/headers level
	36.3.2 Specifying id/headers attributes for table cells
	36.3.3 Grouping header cells for identification
	36.3.4 Column-group and row-group extent
	36.3.5 Choosing a different row-group method
	36.3.6 Using span attributes to identify rows and columns
	36.3.7 Column-span and row-span extent
	36.3.8 Identifying individual table cells by row and column
	36.3.9 Column and row extent
	36.3.10 Using span IDs with row or column IDs

	36.4 Overriding default table-cell settings
	36.5 Using ColGroup and RowGroup cells
	36.5.1 Understanding how the ColGroup property works
	36.5.2 Understanding how the RowGroup property works

	37 Working with macros
	37.1 Defining and invoking macros
	37.1.1 Defining macros
	37.1.2 Invoking a macro
	37.1.3 Nesting macros
	37.1.4 Using predefined macros

	37.2 Accessing DITA2Go macro libraries
	37.2.1 Understanding DITA2Go-supplied macro libraries
	37.2.2 Modifying DITA2Go-supplied macro definitions
	37.2.3 Storing a macro definition in a separate file
	37.2.4 Including macro definitions in your own macro library

	37.3 Using macro variables
	37.3.1 Creating and invoking macro variables
	37.3.2 Assigning values to macro variables
	37.3.3 Incrementing and decrementing macro variables
	37.3.4 Using predefined macro variables
	37.3.5 Creating macro variables from paragraph content

	37.4 Using multiple-value list variables
	37.4.1 Understanding list-variable syntax
	37.4.2 Assigning a value to a list-variable item
	37.4.3 Initializing list variables
	37.4.4 Using macros to process lists
	37.4.5 Using pointers to process lists
	37.4.6 Using a list instead of a conditional expression

	37.5 Accessing settings with configuration macros
	37.5.1 Understanding configuration macros and variables
	37.5.2 Determining the value of a configuration variable
	37.5.3 Deploying configuration macros

	37.6 Using expressions in macros
	37.6.1 Understanding macro expressions
	37.6.2 Understanding operands and operators
	37.6.3 Displaying expression results in output
	37.6.4 Using control structures in expressions
	37.6.5 Specifying substrings in expressions
	37.6.6 Using list variables in expressions
	37.6.7 Using indirection in expressions
	37.6.8 Removing spaces from strings: an example

	37.7 Passing a parameter to a macro
	37.8 Debugging macros
	37.9 Deploying macros and macro variables
	37.9.1 Understanding where to use macros and macro variables
	37.9.2 Invoking macros at predetermined points in output
	37.9.3 Surrounding or replacing text with code or macros
	37.9.4 Assigning macros to graphics or tables for HTML
	37.9.5 Using HTML Macro PI markers to invoke macros
	37.9.6 Implementing drop-down text with macros

	37.10 Using macros to fine-tune HTML or XML output

	38 Working with processing instructions
	38.1 Understanding DITA2Go PI markers
	38.1.1 Understanding DITA2Go PI marker syntax
	38.1.2 Including special characters in PI markers
	38.1.3 Deciding when to use PI markers

	38.2 Understanding effects of PI markers
	38.3 Adding attributes with PI markers
	38.4 Assigning properties to PI marker types
	38.5 Inserting code with PI markers

	39 Working with templates
	39.1 Working with configuration templates
	39.1.1 Understanding how templates are organized
	39.1.2 Understanding how templates are named
	39.1.3 Understanding how templates are chained together
	39.1.4 Understanding how macro libraries are organized
	39.1.5 Understanding how format templates are organized
	39.1.6 Understanding how language templates are organized

	39.2 Referencing configuration files and templates
	39.3 Including document-specific configuration files
	39.3.1 Referencing a document-specific configuration file
	39.3.2 Deciding where to keep document-specific configuration files
	39.3.3 Indicating the intended scope of a configuration file

	39.4 Deciding which configuration file to edit
	39.4.1 Understanding what configuration files are available
	39.4.2 Editing a project configuration file
	39.4.3 Editing a document-specific configuration file
	39.4.4 Editing an output-specific configuration file
	39.4.5 Editing a format configuration file
	39.4.6 Editing a language configuration file
	39.4.7 Editing a macro configuration file
	39.4.8 Indicating the intended scope of a configuration file

	39.5 Creating your own configuration templates
	39.5.1 Creating a template from a project configuration file
	39.5.2 Deciding what to include in a general configuration template
	39.5.3 Chaining configuration templates

	40 Working with graphics
	40.1 Choosing an appropriate graphics format
	40.1.1 Graphics formats for Word documents
	40.1.2 Graphics formats for WinHelp
	40.1.3 WMF format limitations
	40.1.4 Graphics formats for HTML

	40.2 Replacing and relocating graphics files
	40.2.1 Changing graphics files for HTML output
	40.2.2 Changing graphics files for RTF output

	40.3 Specifying custom settings for individual graphics

	41 Working with content models
	41.1 Understanding DITA2Go content models
	41.2 Modifying or replacing a content model
	41.2.1 Obtaining a copy of a built-in content-model
	41.2.2 Generating a content model from a DTD

	41.3 Preparing a content model for use with DITA2Go
	41.4 Understanding content-model configurations
	41.4.1 Content model [Topic] settings
	41.4.2 Content model [ElementSets] settings
	41.4.3 Content model [TopicParents] settings
	41.4.4 Content model [TopicFirst] settings
	41.4.5 Content model [TopicLevels] settings

	41.5 Understanding how DITA2Go uses content models
	41.6 Inspecting and correcting element types
	41.7 Specializing or modifying DITA topic types
	41.7.1 Creating a content model for a specialized topic type
	41.7.2 Overriding settings in a DITA content model
	41.7.3 Eliminating elements from a DITA content model
	41.7.4 Overriding declarations in a DITA map content model
	41.7.5 Listing DITA topic type configuration files
	41.7.6 Locating DITA topic type configuration files

	41.8 Extracting content-model debug information

	42 Overriding configuration settings
	42.1 Using a different configuration for selected files
	42.1.1 Providing configuration files for individual ditamaps
	42.1.2 Understanding precedence of configuration settings

	42.2 Overriding settings with PI markers or macros
	42.2.1 Determining the extent of a configuration override
	42.2.2 Overriding settings with configuration PI markers
	42.2.3 Overriding settings with macros
	42.2.4 Assigning values to configuration variables
	42.2.5 Adding a new configuration setting on the fly
	42.2.6 Assigning a macro or variable to a configuration variable
	42.2.7 Understanding fixed-key vs. variable-key settings
	42.2.8 Overriding fixed-key configuration settings
	42.2.9 Overriding variable-key configuration settings
	42.2.10 Assigning HTML table and graphic groups with overrides

	42.3 Overriding configuration settings with text

	43 Automating DITA2Go conversions
	43.1 Executing operating-system commands
	43.1.1 Specifying system commands
	43.1.2 Including macros and variables in system commands
	43.1.3 Monitoring system command execution
	43.1.4 Supplying system commands in a .bat file
	43.1.5 Supplying system commands in a macro

	43.2 Converting autonumbers for database systems
	43.3 Renaming output files for automated systems
	43.3.1 Renaming individual output files
	43.3.2 Using PI markers to name output files
	43.3.3 Using paragraph formats to name output files

	44 Producing deliverable results
	44.1 Understanding DITA2Go pre- and post-processing
	44.2 Activating and logging production of deliverables
	44.3 Understanding path values for deliverables
	44.4 Clearing out old files before converting
	44.4.1 Specifying when to delete old files from the project directory
	44.4.2 Specifying which files to delete from the project directory
	44.4.3 Understanding when not to delete .ref and .htm files

	44.5 Gathering additional files before converting
	44.6 Assembling files for distribution
	44.6.1 Specifying a wrap directory
	44.6.2 Emptying the wrap directory before copying
	44.6.3 Listing files to copy to the wrap directory
	44.6.4 Understanding when to use other file copy settings
	44.6.5 Understanding which files are copied from where
	44.6.6 Listing extracurricular files to put in the wrap directory

	44.7 Placing graphics files for distribution
	44.7.1 Copying referenced graphics to a distribution directory
	44.7.2 Selecting graphics to copy from arbitrary locations
	44.7.3 Deleting prior contents of the graphics destination directory
	44.7.4 Synchronizing graphics settings for HTML output
	44.7.5 Synchronizing graphics settings for RTF output

	44.8 Placing CSS or XSL files for assembly
	44.9 Gathering files for an HTML project: an example
	44.10 Gathering and processing Help-system files
	44.11 Archiving deliverables
	44.11.1 Specifying an archiving command
	44.11.2 Supplying parameters for the archiving command
	44.11.3 Specifying archive file name and optional version

	44.12 Placing deliverables in a shipping directory
	44.12.1 Specifying a shipping directory for deliverables
	44.12.2 Understanding which files are placed in the shipping directory
	44.12.3 Choosing whether to copy or move deliverables

	44.13 Postprocessing separately from converting

	45 Converting via DCL
	45.1 How the DCL filter works
	45.2 Using the DCL filter
	45.2.1 Understanding where to run DCL
	45.2.2 Preparing for conversion
	45.2.3 Converting a single DITA or DCL file
	45.2.4 Converting a group of files

	45.3 DCL command-line syntax
	45.3.1 Command-line switch -f format
	45.3.2 Command-line switch -o output
	45.3.3 Command-line argument input ...
	45.3.4 Command-line switch -v
	45.3.5 Additional command-line switches

	45.4 Specifying output file paths and names
	45.5 About DCL technology
	45.5.1 DCL file structure
	45.5.2 Writing DCL conversion modules

	46 Creating a map with DITA2Map
	46.1 Understanding how DITA2Map works
	46.2 Setting up a DITA2Map project
	46.3 Specifying DITA2Map configuration options
	46.3.1 Locating a DITA DTD
	46.3.2 Locating configuration template files
	46.3.3 Specifying processing options
	46.3.4 Specifying logging options
	46.3.5 Specifying map options for DITA2Map

	46.4 Running DITA2Map

	A Technical support for DITA2Go
	A.1 Things to check first
	A.1.1 Examine your conversion log file
	A.1.2 Check your DITA2Go installation
	A.1.3 Check the DITA2Go User’s Guide
	A.1.4 Check path names, file names, and drive location
	A.1.5 Check your version of DITA2Go

	A.2 How to request help
	A.2.1 If the problem involves a crash
	A.2.2 Scope the problem
	A.2.3 Document the problem
	A.2.4 Package the problem
	A.2.5 Send the package to Omni Systems

	B Element type default properties
	C Content model configuration
	RTF keyword index
	HTML/XML keyword index
	Subject index

